Следите за новостями GitVerse в нашем телеграм-канале

dream

Форк
0

2 года назад
год назад
3 года назад
3 года назад
год назад
3 года назад
6 лет назад
10 месяцев назад
README.md

DeepPavlov Dream

DeepPavlov Dream is a platform for creating multi-skill generative AI assistants.

To learn more about the platform and how to build AI assistants with it, please visit Dream. If you want to learn more about DeepPavlov Agent that powers Dream visit DeepPavlov Agent documentation.

Star History

Star History Chart

Distributions

We've already included six distributions: four of them are based on lightweight Deepy socialbot, one is a full-sized Dream chatbot (based on Alexa Prize Challenge version) in English and a Dream chatbot in Russian.

Deepy Base

Base version of Lunar assistant. Deepy Base contains Spelling Preprocessing annotator, template-based Harvesters Maintenance Skill, and AIML-based open-domain Program-y Skill based on Dialog Flow Framework.

Deepy Advanced

Advanced version of Lunar assistant. Deepy Advanced contains Spelling Preprocessing, Sentence Segmentation, Entity Linking and Intent Catcher annotators, Harvesters Maintenance GoBot Skill for goal-oriented responses, and AIML-based open-domain Program-y Skill based on Dialog Flow Framework.

Deepy FAQ

FAQ version of Lunar assistant. Deepy FAQ contains Spelling Preprocessing annotator, template-based Frequently Asked Questions Skill, and AIML-based open-domain Program-y Skill based on Dialog Flow Framework.

Deepy GoBot

Goal-oriented version of Lunar assistant. Deepy GoBot Base contains Spelling Preprocessing annotator, Harvesters Maintenance GoBot Skill for goal-oriented responses, and AIML-based open-domain Program-y Skill based on Dialog Flow Framework.

Dream

Full version of DeepPavlov Dream Socialbot. This is almost the same version of the DREAM socialbot as at the end of Alexa Prize Challenge 4. Some API services are replaced with trainable models. Some services (e.g., News Annotator, Game Skill, Weather Skill) require private keys for underlying APIs, most of them can be obtained for free. If you want to use these services in local deployments, add your keys to the environmental variables (e.g.,

./.env
,
./.env_ru
). This version of Dream Socialbot consumes a lot of resources because of its modular architecture and original goals (participation in Alexa Prize Challenge). We provide a demo of Dream Socialbot on our website.

Dream Mini

Mini version of DeepPavlov Dream Socialbot. This is a generative-based socialbot that uses English DialoGPT model to generate most of the responses. It also contains intent catcher and responder components to cover special user requests. Link to the distribution.

Dream Russian

Russian version of DeepPavlov Dream Socialbot. This is a generative-based socialbot that uses Russian DialoGPT by DeepPavlov to generate most of the responses. It also contains intent catcher and responder components to cover special user requests. Link to the distribution.

Prompted Dream Distributions

Mini version of DeepPavlov Dream Socialbot with the use of prompt-based generative models. This is a generative-based socialbot that uses large language models to generate most of the responses. You can upload your own prompts (json files) to common/prompts, add prompt names to

PROMPTS_TO_CONSIDER
(comma-separated), and the provided information will be used in LLM-powered reply generation as a prompt. Link to the distribution.

Quick Start

System Requirements

  • Operating System: Ubuntu 18.04+, Windows 10+ (через WSL & WSL2), MacOS Big Sur;
  • Version of
    docker
    from 20 and above;
  • Version of
    docker-compose
    v1.29.2;
  • Operative Memory from 2 Gb (using proxy), from 4 Gb (LLM-based prompted distributions) and from 20 Gb (old scripted distributions).

Clone the repo

git clone https://github.com/deeppavlov/dream.git

Install docker and docker-compose

If you get a "Permission denied" error running docker-compose, make sure to configure your docker user correctly.

Run one of the Dream distributions

Deepy Base

docker-compose -f docker-compose.yml -f assistant_dists/deepy_base/docker-compose.override.yml up --build

Deepy Advanced

docker-compose -f docker-compose.yml -f assistant_dists/deepy_adv/docker-compose.override.yml up --build

Deepy FAQ

docker-compose -f docker-compose.yml -f assistant_dists/deepy_faq/docker-compose.override.yml up --build

Deepy GoBot

docker-compose -f docker-compose.yml -f assistant_dists/deepy_gobot_base/docker-compose.override.yml up --build

Dream (via proxy)

The easiest way to try out Dream is to deploy it via proxy. All the requests will be redirected to DeepPavlov API, so you don't have to use any local resources. See proxy usage for details.

docker-compose -f docker-compose.yml -f assistant_dists/dream/docker-compose.override.yml -f assistant_dists/dream/dev.yml -f assistant_dists/dream/proxy.yml up --build

Dream (locally)

Please note, that DeepPavlov Dream components require a lot of resources. Refer to the components section to see estimated requirements.

docker-compose -f docker-compose.yml -f assistant_dists/dream/docker-compose.override.yml -f assistant_dists/dream/dev.yml up --build

We've also included a config with GPU allocations for multi-GPU environments:

AGENT_PORT=4242 docker-compose -f docker-compose.yml -f assistant_dists/dream/docker-compose.override.yml -f assistant_dists/dream/dev.yml -f assistant_dists/dream/test.yml up

When you need to restart particular docker container without re-building (make sure mapping in

assistant_dists/dream/dev.yml
is correct):

AGENT_PORT=4242 docker-compose -f docker-compose.yml -f assistant_dists/dream/docker-compose.override.yml -f assistant_dists/dream/dev.yml restart container-name

Prompted Dream

docker-compose -f docker-compose.yml -f assistant_dists/dream_persona_prompted/docker-compose.override.yml -f assistant_dists/dream_persona_prompted/dev.yml -f assistant_dists/dream_persona_prompted/proxy.yml up --build

We've also included a config with GPU allocations for multi-GPU environments.

Let's chat

DeepPavlov Agent provides several options for interaction: a command line interface, an HTTP API, and a Telegram bot

CLI

In a separate terminal tab run:

docker-compose exec agent python -m deeppavlov_agent.run agent.channel=cmd agent.pipeline_config=assistant_dists/dream/pipeline_conf.json

Enter your username and have a chat with Dream!

HTTP API

Once you've started the bot, DeepPavlov's Agent API will run on

http://localhost:4242
. You can learn about the API from the DeepPavlov Agent Docs.

A basic chat interface will be available at

http://localhost:4242/chat
.

Telegram Bot

Currently, Telegram bot is deployed instead of HTTP API. Edit

agent
command
definition inside
docker-compose.override.yml
config:

agent: command: sh -c 'bin/wait && python -m deeppavlov_agent.run agent.channel=telegram agent.telegram_token=<TELEGRAM_BOT_TOKEN> agent.pipeline_config=assistant_dists/dream/pipeline_conf.json'

NOTE: treat your Telegram token as a secret and do not commit it to public repositories!

Configuration and proxy usage

Dream uses several docker-compose configuration files:

./docker-compose.yml
is the core config which includes containers for DeepPavlov Agent and mongo database;

./assistant_dists/*/docker-compose.override.yml
lists all components for the distribution;

./assistant_dists/dream/dev.yml
includes volume bindings for easier Dream debugging;

./assistant_dists/dream/proxy.yml
is a list of proxied containers.

If your deployment resources are limited, you can replace containers with their proxied copies hosted by DeepPavlov. To do this, override those container definitions inside

proxy.yml
, e.g.:

convers-evaluator-annotator: command: ["nginx", "-g", "daemon off;"] build: context: dp/proxy/ dockerfile: Dockerfile environment: - PROXY_PASS=proxy.deeppavlov.ai:8004 - SERVICE_PORT=8004

and include this config in your deployment command:

docker-compose -f docker-compose.yml -f assistant_dists/dream/docker-compose.override.yml -f assistant_dists/dream/dev.yml -f assistant_dists/dream/proxy.yml up --build

By default,

proxy.yml
contains all available proxy definitions.

Components English Version

Dream Architecture is presented in the following image: DREAM

NameRequirementsDescription
Rule Based SelectorAlgorithm that selects list of skills to generate candidate responses to the current context based on topics, entities, emotions, toxicity, dialogue acts and dialogue history
Response Selector50 MB RAMAlgorithm that selects a final responses among the given list of candidate responses

Annotators

NameRequirementsDescription
ASR40 MB RAMcalculates overall ASR confidence for a given utterance and grades it as either very low, low, medium, or high (for Amazon markup)
Badlisted Words150 MB RAMdetects words and phrases from the badlist
Combined Classification1.5 GB RAM, 3.5 GB GPUBERT-based model including topic classification, dialog acts classification, sentiment, toxicity, emotion, factoid classification
Combined Classification lightweight1.6 GB RAMThe same model as Combined Classification, but takes 42% less time thanks to the lighter backbone
COMeT Atomic2 GB RAM, 1.1 GB GPUCommonsense prediction models COMeT Atomic
COMeT ConceptNet2 GB RAM, 1.1 GB GPUCommonsense prediction models COMeT ConceptNet
Convers Evaluator Annotator1 GB RAM, 4.5 GB GPUis trained on the Alexa Prize data from the previous competitions and predicts whether the candidate response is interesting, comprehensible, on-topic, engaging, or erroneous
Emotion Classification2.5 GB RAMemotion classification annotator
Entity Detection1.5 GB RAM, 3.2 GB GPUextracts entities and their types from utterances
Entity Linking2.5 GB RAM, 1.3 GB GPUfinds Wikidata entity ids for the entities detected with Entity Detection
Entity Storer220 MB RAMa rule-based component, which stores entities from the user's and socialbot's utterances if opinion expression is detected with patterns or MIDAS Classifier and saves them along with the detected attitude to dialogue state
Fact Random50 MB RAMreturns random facts for the given entity (for entities from user utterance)
Fact Retrieval7.4 GB RAM, 1.2 GB GPUextracts facts from Wikipedia and wikiHow
Intent Catcher1.7 GB RAM, 2.4 GB GPUclassifies user utterances into a number of predefined intents which are trained on a set of phrases and regexps
KBQA2 GB RAM, 1.4 GB GPUanswers user's factoid questions based on Wikidata KB
MIDAS Classification1.1 GB RAM, 4.5 GB GPUBERT-based model trained on a semantic classes subset of MIDAS dataset
MIDAS Predictor30 MB RAMBERT-based model trained on a semantic classes subset of MIDAS dataset
NER2.2 GB RAM, 5 GB GPUextracts person names, names of locations, organizations from uncased text
News API Annotator80 MB RAMextracts the latest news about entities or topics using the GNews API. DeepPavlov Dream deployments utilize our own API key.
Personality Catcher30 MB RAMthe skill is to change the system's personality description via chatting interface, it works as a system command, the response is system-like message
Prompt Selector50 MB RAMAnnotator utilizing Sentence Ranker to rank prompts and selecting
N_SENTENCES_TO_RETURN
most relevant prompts (based on questions provided in prompts)
Property Extraction6.3 GiB RAMextracts user attributes from utterances
Rake Keywords40 MB RAMextracts keywords from utterances with the help of RAKE algorithm
Relative Persona Extractor50 MB RAMAnnotator utilizing Sentence Ranker to rank persona sentences and selecting
N_SENTENCES_TO_RETURN
the most relevant sentences
Sentrewrite200 MB RAMrewrites user's utterances by replacing pronouns with specific names that provide more useful information to downstream components
Sentseg1 GB RAMallows us to handle long and complex user's utterances by splitting them into sentences and recovering punctuation
Spacy Nounphrases180 MB RAMextracts nounphrases using Spacy and filters out generic ones
Speech Function Classifier1.1 GB RAM, 4.5 GB GPUa hierarchical algorithm based on several linear models and a rule-based approach for the prediction of speech functions described by Eggins and Slade
Speech Function Predictor1.1 GB RAM, 4.5 GB GPUyields probabilities of speech functions that can follow a speech function predicted by Speech Function Classifier
Spelling Preprocessing50 MB RAMpattern-based component to rewrite different colloquial expressions to a more formal style of conversation
Topic Recommendation40 MB RAMoffers a topic for further conversation using the information about the discussed topics and user's preferences. Current version is based on Reddit personalities (see Dream Report for Alexa Prize 4).
Toxic Classification3.5 GB RAM, 3 GB GPUToxic classification model from Transformers specified as PRETRAINED_MODEL_NAME_OR_PATH
User Persona Extractor40 MB RAMdetermines which age category the user belongs to based on some key words
Wiki Parser100 MB RAMextracts Wikidata triplets for the entities detected with Entity Linking
Wiki Facts1.7 GB RAMmodel that extracts related facts from Wikipedia and WikiHow pages

Services

NameRequirementsDescription
DialoGPT1.2 GB RAM, 2.1 GB GPUgenerative service based on Transformers generative model, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(for example,
microsoft/DialoGPT-small
with 0.2-0.5 sec on GPU)
DialoGPT Persona-based1.2 GB RAM, 2.1 GB GPUgenerative service based on Transformers generative model, the model was pre-trained on the PersonaChat dataset to generate a response conditioned on a several sentences of the socialbot's persona
Image Captioning4 GB RAM, 5.4 GB GPUcreates text representation of a received image
Infilling1 GB RAM, 1.2 GB GPU(turned off but the code is available) generative service based on Infilling model, for the given utterance returns utterance where
_
from original text is replaced with generated tokens
Knowledge Grounding2 GB RAM, 2.1 GB GPUgenerative service based on BlenderBot architecture providing a response to the context taking into account an additional text paragraph
Masked LM1.1 GB RAM, 1 GB GPU(turned off but the code is available)
Seq2seq Persona-based1.5 GB RAM, 1.5 GB GPUgenerative service based on Transformers seq2seq model, the model was pre-trained on the PersonaChat dataset to generate a response conditioned on a several sentences of the socialbot's persona
Sentence Ranker1.2 GB RAM, 2.1 GB GPUranking model given as
PRETRAINED_MODEL_NAME_OR_PATH
which for a pair os sentences returns a float score of correspondence
StoryGPT2.6 GB RAM, 2.15 GB GPUgenerative service based on fine-tuned GPT-2, for the given set of keywords returns a short story using the keywords
GPT-3.5100 MB RAMgenerative service based on OpenAI API service, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(in particular, in this service,
text-davinci-003
is used.
ChatGPT100 MB RAMgenerative service based on OpenAI API service, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(in particular, in this service,
gpt-3.5-turbo
is used.
Prompt StoryGPT3 GB RAM, 4 GB GPUgenerative service based on fine-tuned GPT-2, for the given topic represented by one noun returns short story on a given topic
GPT-J 6B1.5 GB RAM, 24.2 GB GPUgenerative service based on Transformers generative model, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(in particular, in this service, GPT-J model is used.
BLOOMZ 7B2.5 GB RAM, 29 GB GPUgenerative service based on Transformers generative model, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(in particular, in this service, BLOOMZ-7b1 model is used.
GPT-JT 6B2.5 GB RAM, 25.1 GB GPUgenerative service based on Transformers generative model, the model is set in docker compose argument
PRETRAINED_MODEL_NAME_OR_PATH
(in particular, in this service, GPT-JT model is used.

Skills

NameRequirementsDescription
Alexa Handler30 MB RAMhandler for several specific Alexa commands
Christmas Skill30 MB RAMsupports FAQ, facts, and scripts for Christmas
Comet Dialog skill300 MB RAMuses COMeT ConceptNet model to express an opinion, to ask a question or give a comment about user's actions mentioned in the dialogue
Convert Reddit1.2 GB RAMuses a ConveRT encoder to build efficient representations for sentences
Dummy Skilla part of agent containera fallback skill with multiple non-toxic candidate responses
Dummy Skill Dialog600 MB RAMreturns the next turn from the Topical Chat dataset if the response of the user to the Dummy Skill is similar to the corresponding response in the source data
Eliza30 MB RAMChatbot (https://github.com/wadetb/eliza)
Emotion Skill40 MB RAMreturns template responses to emotions detected by Emotion Classification from Combined Classification annotator
Factoid QA170 MB RAManswers factoid questions
Game Cooperative Skill100 MB RAMprovides user with a conversation about computer games: the charts of the best games for the past year, past month, and last week
Harvesters Maintenance Skill30 MB RAMHarvesters maintenance skill
Harvesters Maintenance Gobot Skill30 MB RAMHarvesters maintenance Goal-oriented skill
Knowledge Grounding Skill100 MB RAMgenerates a response based on the dialogue history and provided knowledge related to the current conversation topic
Meta Script Skill150 MB RAMprovides a multi-turn dialogue around human activities. The skill uses COMeT Atomic model to generate commonsensical descriptions and questions on several aspects
Misheard ASR40 MB RAMuses the ASR Processor annotations to give feedback to the user when ASR confidence is too low
News API Skill60 MB RAMpresents the top-rated latest news about entities or topics using the GNews API
Oscar Skill30 MB RAMsupports FAQ, facts, and scripts for Oscar
Personal Info Skill40 MB RAMqueries and stores user's name, birthplace, and location
DFF Program Y Skill800 MB RAM[New DFF version] Chatbot Program Y (https://github.com/keiffster/program-y) adapted for Dream socialbot
DFF Program Y Dangerous Skill100 MB RAM[New DFF version] Chatbot Program Y (https://github.com/keiffster/program-y) adapted for Dream socialbot, containing responses to dangerous situations in a dialog
DFF Program Y Wide Skill110 MB RAM[New DFF version] Chatbot Program Y (https://github.com/keiffster/program-y) adapted for Dream socialbot, which includes only very general templates (with lower confidence)
Small Talk Skill35 MB RAMasks questions using the hand-written scripts for 25 topics, including but not limited to love, sports, work, pets, etc.
SuperBowl Skill30 MB RAMsupports FAQ, facts, and scripts for SuperBowl
Text QA1.8 GB RAM, 2.8 GB GPUThe service finds the answer of a factoid question in text.
Valentine's Day Skill30 MB RAMsupports FAQ, facts, and scripts for Valentine's Day
Wikidata Dial Skill100 MB RAMgenerates an utterance using Wikidata triplets. Not turned on, needs improvement
DFF Animals Skill200 MB RAMis created using DFF and has three branches of conversation about animals: user's pets, pets of the socialbot, and wild animals
DFF Art Skill100 MB RAMDFF-based skill to discuss art
DFF Book Skill400 MB RAM[New DFF version] detects book titles and authors mentioned in the user's utterance with the help of Wiki parser and Entity linking and recommends books by leveraging information from the GoodReads database
DFF Bot Persona Skill150 MB RAMaims to discuss user favorites and 20 most popular things with short stories expressing the socialbot's opinion towards them
DFF Coronavirus Skill110 MB RAM[New DFF version] retrieves data about the number of coronavirus cases and deaths in different locations sourced from the John Hopkins University Center for System Science and Engineering
DFF Food Skill150 MB RAMconstructed with DFF to encourage food-related conversation
DFF Friendship Skill100 MB RAM[New DFF version] DFF-based skill to greet the user in the beginning of the dialog, and forward the user to some scripted skill
DFF Funfact Skill100 MB RAM[New DFF version] Tells user fun facts
DFF Gaming Skill80 MB RAMprovides a video games discussion. Gaming Skill is for more general talk about video games
DFF Gossip Skill95 MB RAMDFF-based skill to discuss other people with news about them
DFF Image Skill100 MB RAM[New DFF version] Scripted skill that based on the sent image captioning (from annotations) responses with specified responses in case of food, animals or people detected, and default responses otherwise
DFF Template Skill50 MB RAM[New DFF version] DFF-based skill that provides an example of DFF usage
DFF Template Prompted Skill50 MB RAM[New DFF version] DFF-based skill that provides answers generated by language model based on specified prompts and the dialog context. The model to be used is specified in GENERATIVE_SERVICE_URL. For example, you may use Transformer LM GPTJ service.
DFF Grounding Skill90 MB RAM[New DFF version] DFF-based skill to answer what is the topic of the conversation, to generate acknowledgement, to generate universal responses on some dialog acts by MIDAS
DFF Intent Responder100 MB RAM[New DFF version] provides template-based replies for some of the intents detected by Intent Catcher annotator
DFF Movie Skill1.1 GB RAMis implemented using DFF and takes care of the conversations related to movies
DFF Music Skill70 MB RAMDFF-based skill to discuss music
DFF Science Skill90 MB RAMDFF-based skill to discuss science
DFF Short Story Skill90 MB RAM[New DFF version] tells user short stories from 3 categories: (1) bedtime stories, such as fables and moral stories, (2) horror stories, and (3) funny ones
DFF Sport Skill70 MB RAMDFF-based skill to discuss sports
DFF Travel Skill70 MB RAMDFF-based skill to discuss travel
DFF Weather Skill1.4 GB RAM[New DFF version] uses the OpenWeatherMap service to get the forecast for the user's location
DFF Wiki Skill150 MB RAMused for making scenarios with the extraction of entities, slot filling, facts insertion, and acknowledgements

Prompted Skills

NameRequirementsDescription
AI FAQ Skill150 MB RAM[New DFF version] Everything you wanted to know about modern AI but was afraid to ask! This FAQ Assistant chats with you while explaining the simplest topics from today's technology world.
Fashion Stylist Skill150 MB RAM[New DFF version] Stay protected in every season with da Costa Industries Clothes Assistant! Experience the ultimate comfort and protection, no matter the weather. Stay warm in winter a...
Dream Persona Skill150 MB RAM[New DFF version] Prompt-based skill that utilizes given generative service to generate responses based on the given prompt
Marketing Skill150 MB RAM[New DFF version] Connect with your audience like never before with Marketing AI Assistant! Reach new heights of success by tapping into the power of empathy. Say goodbye..
Fairytale Skill150 MB RAM[New DFF version] This assistant will tell you or your children a short but engaging fairytale. Choose the characters and the topic and leave the rest to AI imagination.
Nutrition Skill150 MB RAM[New DFF version] Discover the secret to healthy eating with our AI assistant! Find nutritious food options for you and your loved ones with ease. Say goodbye to mealtime stress and hello to delici...
Life Coaching Skill150 MB RAM[New DFF version] Unlock your full potential with Rhodes & Co's patented AI assistant! Reach peak performance at work and at home. Get into top form effortlessly and inspire others with.

Papers

Alexa Prize 3

Kuratov Y. et al. DREAM technical report for the Alexa Prize 2019 //Alexa Prize Proceedings. – 2020.

Alexa Prize 4

Baymurzina D. et al. DREAM Technical Report for the Alexa Prize 4 //Alexa Prize Proceedings. – 2021.

License

DeepPavlov Dream is licensed under Apache 2.0.

Program-y (see

dream/skills/dff_program_y_skill
,
dream/skills/dff_program_y_wide_skill
,
dream/skills/dff_program_y_dangerous_skill
) is licensed under Apache 2.0. Eliza (see
dream/skills/eliza
) is licensed under MIT License.

Report creating

For making certification

xlsx
- file with bot responses, you can use
xlsx_responder.py
script by executing

docker-compose -f docker-compose.yml -f dev.yml exec -T -u $(id -u) agent python3 \
utils/xlsx_responder.py --url http://0.0.0.0:4242 \
--input 'tests/dream/test_questions.xlsx' \
--output 'tests/dream/output/test_questions_output.xlsx'\
--cache tests/dream/output/test_questions_output_$(date --iso-8601=seconds).json

Make sure all services are deployed.

--input
-
xlsx
file with certification questions,
--output
-
xlsx
file with bot responses,
--cache
-
json
, that contains a detailed markup and is used for a cache.

Описание

DeepPavlov Dream is a free, open-source Multiskill AI Assistant Platform built using DeepPavlov Conversational AI Stack. It is built on top of DeepPavlov Agent running as container in Docker. It runs on x86_64 machines, and prefers having NVIDIA GPUs on the machine.

Языки

Python

  • Jupyter Notebook
  • Dockerfile
  • HTML
  • JavaScript
  • Shell
  • Perl
  • Batchfile
  • CSS
Сообщить о нарушении

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.