libuv-svace-build

Форк
0
/
test-ipc-send-recv.c 
435 строк · 10.5 Кб
1
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2
 *
3
 * Permission is hereby granted, free of charge, to any person obtaining a copy
4
 * of this software and associated documentation files (the "Software"), to
5
 * deal in the Software without restriction, including without limitation the
6
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7
 * sell copies of the Software, and to permit persons to whom the Software is
8
 * furnished to do so, subject to the following conditions:
9
 *
10
 * The above copyright notice and this permission notice shall be included in
11
 * all copies or substantial portions of the Software.
12
 *
13
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
19
 * IN THE SOFTWARE.
20
 */
21

22
#include "uv.h"
23
#include "task.h"
24

25
#include <stdio.h>
26
#include <string.h>
27

28
/* See test-ipc.c */
29
void spawn_helper(uv_pipe_t* channel,
30
                  uv_process_t* process,
31
                  const char* helper);
32

33
void ipc_send_recv_helper_threadproc(void* arg);
34

35
union handles {
36
  uv_handle_t handle;
37
  uv_stream_t stream;
38
  uv_pipe_t pipe;
39
  uv_tcp_t tcp;
40
  uv_tty_t tty;
41
};
42

43
struct test_ctx {
44
  uv_pipe_t channel;
45
  uv_connect_t connect_req;
46
  uv_write_t write_req;
47
  uv_write_t write_req2;
48
  uv_handle_type expected_type;
49
  union handles send;
50
  union handles send2;
51
  union handles recv;
52
  union handles recv2;
53
};
54

55
struct echo_ctx {
56
  uv_pipe_t listen;
57
  uv_pipe_t channel;
58
  uv_write_t write_req;
59
  uv_write_t write_req2;
60
  uv_handle_type expected_type;
61
  union handles recv;
62
  union handles recv2;
63
};
64

65
static struct test_ctx ctx;
66
static struct echo_ctx ctx2;
67

68
/* Used in write2_cb to decide if we need to cleanup or not */
69
static int is_child_process;
70
static int is_in_process;
71
static int read_cb_count;
72
static int recv_cb_count;
73
static int write2_cb_called;
74

75

76
static void alloc_cb(uv_handle_t* handle,
77
                     size_t suggested_size,
78
                     uv_buf_t* buf) {
79
  /* We're not actually reading anything so a small buffer is okay
80
   * but it needs to be heap-allocated to appease TSan.
81
   */
82
  buf->len = 8;
83
  buf->base = malloc(buf->len);
84
  ASSERT_NOT_NULL(buf->base);
85
}
86

87

88
static void recv_cb(uv_stream_t* handle,
89
                    ssize_t nread,
90
                    const uv_buf_t* buf) {
91
  uv_handle_type pending;
92
  uv_pipe_t* pipe;
93
  int r;
94
  union handles* recv;
95

96
  free(buf->base);
97

98
  pipe = (uv_pipe_t*) handle;
99
  ASSERT_PTR_EQ(pipe, &ctx.channel);
100

101
  do {
102
    if (++recv_cb_count == 1) {
103
      recv = &ctx.recv;
104
    } else {
105
      recv = &ctx.recv2;
106
    }
107

108
    /* Depending on the OS, the final recv_cb can be called after
109
     * the child process has terminated which can result in nread
110
     * being UV_EOF instead of the number of bytes read.  Since
111
     * the other end of the pipe has closed this UV_EOF is an
112
     * acceptable value. */
113
    if (nread == UV_EOF) {
114
      /* UV_EOF is only acceptable for the final recv_cb call */
115
      ASSERT_EQ(2, recv_cb_count);
116
    } else {
117
      ASSERT_GE(nread, 0);
118
      ASSERT_GT(uv_pipe_pending_count(pipe), 0);
119

120
      pending = uv_pipe_pending_type(pipe);
121
      ASSERT_EQ(pending, ctx.expected_type);
122

123
      if (pending == UV_NAMED_PIPE)
124
        r = uv_pipe_init(ctx.channel.loop, &recv->pipe, 0);
125
      else if (pending == UV_TCP)
126
        r = uv_tcp_init(ctx.channel.loop, &recv->tcp);
127
      else
128
        abort();
129
      ASSERT_OK(r);
130

131
      r = uv_accept(handle, &recv->stream);
132
      ASSERT_OK(r);
133
    }
134
  } while (uv_pipe_pending_count(pipe) > 0);
135

136
  /* Close after two writes received */
137
  if (recv_cb_count == 2) {
138
    uv_close((uv_handle_t*)&ctx.channel, NULL);
139
  }
140
}
141

142
static void connect_cb(uv_connect_t* req, int status) {
143
  int r;
144
  uv_buf_t buf;
145

146
  ASSERT_PTR_EQ(req, &ctx.connect_req);
147
  ASSERT_OK(status);
148

149
  buf = uv_buf_init(".", 1);
150
  r = uv_write2(&ctx.write_req,
151
                (uv_stream_t*)&ctx.channel,
152
                &buf, 1,
153
                &ctx.send.stream,
154
                NULL);
155
  ASSERT_OK(r);
156

157
  /* Perform two writes to the same pipe to make sure that on Windows we are
158
   * not running into issue 505:
159
   *   https://github.com/libuv/libuv/issues/505 */
160
  buf = uv_buf_init(".", 1);
161
  r = uv_write2(&ctx.write_req2,
162
                (uv_stream_t*)&ctx.channel,
163
                &buf, 1,
164
                &ctx.send2.stream,
165
                NULL);
166
  ASSERT_OK(r);
167

168
  r = uv_read_start((uv_stream_t*)&ctx.channel, alloc_cb, recv_cb);
169
  ASSERT_OK(r);
170
}
171

172
static int run_test(int inprocess) {
173
  uv_process_t process;
174
  uv_thread_t tid;
175
  int r;
176

177
  if (inprocess) {
178
    r = uv_thread_create(&tid, ipc_send_recv_helper_threadproc, (void *) 42);
179
    ASSERT_OK(r);
180

181
    uv_sleep(1000);
182

183
    r = uv_pipe_init(uv_default_loop(), &ctx.channel, 1);
184
    ASSERT_OK(r);
185

186
    uv_pipe_connect(&ctx.connect_req, &ctx.channel, TEST_PIPENAME_3, connect_cb);
187
  } else {
188
    spawn_helper(&ctx.channel, &process, "ipc_send_recv_helper");
189

190
    connect_cb(&ctx.connect_req, 0);
191
  }
192

193
  r = uv_run(uv_default_loop(), UV_RUN_DEFAULT);
194
  ASSERT_OK(r);
195

196
  ASSERT_EQ(2, recv_cb_count);
197

198
  if (inprocess) {
199
    r = uv_thread_join(&tid);
200
    ASSERT_OK(r);
201
  }
202

203
  return 0;
204
}
205

206
static int run_ipc_send_recv_pipe(int inprocess) {
207
  int r;
208

209
  ctx.expected_type = UV_NAMED_PIPE;
210

211
  r = uv_pipe_init(uv_default_loop(), &ctx.send.pipe, 1);
212
  ASSERT_OK(r);
213

214
  r = uv_pipe_bind(&ctx.send.pipe, TEST_PIPENAME);
215
  ASSERT_OK(r);
216

217
  r = uv_pipe_init(uv_default_loop(), &ctx.send2.pipe, 1);
218
  ASSERT_OK(r);
219

220
  r = uv_pipe_bind(&ctx.send2.pipe, TEST_PIPENAME_2);
221
  ASSERT_OK(r);
222

223
  r = run_test(inprocess);
224
  ASSERT_OK(r);
225

226
  MAKE_VALGRIND_HAPPY(uv_default_loop());
227
  return 0;
228
}
229

230
TEST_IMPL(ipc_send_recv_pipe) {
231
#if defined(NO_SEND_HANDLE_ON_PIPE)
232
  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
233
#endif
234
  return run_ipc_send_recv_pipe(0);
235
}
236

237
TEST_IMPL(ipc_send_recv_pipe_inprocess) {
238
#if defined(NO_SEND_HANDLE_ON_PIPE)
239
  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
240
#endif
241
  return run_ipc_send_recv_pipe(1);
242
}
243

244
static int run_ipc_send_recv_tcp(int inprocess) {
245
  struct sockaddr_in addr;
246
  int r;
247

248
  ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT, &addr));
249

250
  ctx.expected_type = UV_TCP;
251

252
  r = uv_tcp_init(uv_default_loop(), &ctx.send.tcp);
253
  ASSERT_OK(r);
254

255
  r = uv_tcp_init(uv_default_loop(), &ctx.send2.tcp);
256
  ASSERT_OK(r);
257

258
  r = uv_tcp_bind(&ctx.send.tcp, (const struct sockaddr*) &addr, 0);
259
  ASSERT_OK(r);
260

261
  r = uv_tcp_bind(&ctx.send2.tcp, (const struct sockaddr*) &addr, 0);
262
  ASSERT_OK(r);
263

264
  r = run_test(inprocess);
265
  ASSERT_OK(r);
266

267
  MAKE_VALGRIND_HAPPY(uv_default_loop());
268
  return 0;
269
}
270

271
TEST_IMPL(ipc_send_recv_tcp) {
272
#if defined(NO_SEND_HANDLE_ON_PIPE)
273
  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
274
#endif
275
  return run_ipc_send_recv_tcp(0);
276
}
277

278
TEST_IMPL(ipc_send_recv_tcp_inprocess) {
279
#if defined(NO_SEND_HANDLE_ON_PIPE)
280
  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
281
#endif
282
  return run_ipc_send_recv_tcp(1);
283
}
284

285

286
/* Everything here runs in a child process or second thread. */
287

288
static void write2_cb(uv_write_t* req, int status) {
289
  ASSERT_OK(status);
290

291
  /* After two successful writes in the child process, allow the child
292
   * process to be closed. */
293
  if (++write2_cb_called == 2 && (is_child_process || is_in_process)) {
294
    uv_close(&ctx2.recv.handle, NULL);
295
    uv_close(&ctx2.recv2.handle, NULL);
296
    uv_close((uv_handle_t*)&ctx2.channel, NULL);
297
    uv_close((uv_handle_t*)&ctx2.listen, NULL);
298
  }
299
}
300

301
static void read_cb(uv_stream_t* handle,
302
                    ssize_t nread,
303
                    const uv_buf_t* rdbuf) {
304
  uv_buf_t wrbuf;
305
  uv_pipe_t* pipe;
306
  uv_handle_type pending;
307
  int r;
308
  union handles* recv;
309
  uv_write_t* write_req;
310

311
  free(rdbuf->base);
312

313
  if (nread == UV_EOF || nread == UV_ECONNABORTED) {
314
    return;
315
  }
316

317
  ASSERT_GE(nread, 0);
318

319
  pipe = (uv_pipe_t*) handle;
320
  ASSERT_PTR_EQ(pipe, &ctx2.channel);
321

322
  while (uv_pipe_pending_count(pipe) > 0) {
323
    if (++read_cb_count == 2) {
324
      recv = &ctx2.recv;
325
      write_req = &ctx2.write_req;
326
    } else {
327
      recv = &ctx2.recv2;
328
      write_req = &ctx2.write_req2;
329
    }
330

331
    pending = uv_pipe_pending_type(pipe);
332
    ASSERT(pending == UV_NAMED_PIPE || pending == UV_TCP);
333

334
    if (pending == UV_NAMED_PIPE)
335
      r = uv_pipe_init(ctx2.channel.loop, &recv->pipe, 0);
336
    else if (pending == UV_TCP)
337
      r = uv_tcp_init(ctx2.channel.loop, &recv->tcp);
338
    else
339
      abort();
340
    ASSERT_OK(r);
341

342
    r = uv_accept(handle, &recv->stream);
343
    ASSERT_OK(r);
344

345
    wrbuf = uv_buf_init(".", 1);
346
    r = uv_write2(write_req,
347
                  (uv_stream_t*)&ctx2.channel,
348
                  &wrbuf,
349
                  1,
350
                  &recv->stream,
351
                  write2_cb);
352
    ASSERT_OK(r);
353
  }
354
}
355

356
static void send_recv_start(void) {
357
  int r;
358
  ASSERT_EQ(1, uv_is_readable((uv_stream_t*)&ctx2.channel));
359
  ASSERT_EQ(1, uv_is_writable((uv_stream_t*)&ctx2.channel));
360
  ASSERT_OK(uv_is_closing((uv_handle_t*)&ctx2.channel));
361

362
  r = uv_read_start((uv_stream_t*)&ctx2.channel, alloc_cb, read_cb);
363
  ASSERT_OK(r);
364
}
365

366
static void listen_cb(uv_stream_t* handle, int status) {
367
  int r;
368
  ASSERT_PTR_EQ(handle, (uv_stream_t*)&ctx2.listen);
369
  ASSERT_OK(status);
370

371
  r = uv_accept((uv_stream_t*)&ctx2.listen, (uv_stream_t*)&ctx2.channel);
372
  ASSERT_OK(r);
373

374
  send_recv_start();
375
}
376

377
int run_ipc_send_recv_helper(uv_loop_t* loop, int inprocess) {
378
  int r;
379

380
  is_in_process = inprocess;
381

382
  memset(&ctx2, 0, sizeof(ctx2));
383

384
  r = uv_pipe_init(loop, &ctx2.listen, 0);
385
  ASSERT_OK(r);
386

387
  r = uv_pipe_init(loop, &ctx2.channel, 1);
388
  ASSERT_OK(r);
389

390
  if (inprocess) {
391
    r = uv_pipe_bind(&ctx2.listen, TEST_PIPENAME_3);
392
    ASSERT_OK(r);
393

394
    r = uv_listen((uv_stream_t*)&ctx2.listen, SOMAXCONN, listen_cb);
395
    ASSERT_OK(r);
396
  } else {
397
    r = uv_pipe_open(&ctx2.channel, 0);
398
    ASSERT_OK(r);
399

400
    send_recv_start();
401
  }
402

403
  notify_parent_process();
404
  r = uv_run(loop, UV_RUN_DEFAULT);
405
  ASSERT_OK(r);
406

407
  return 0;
408
}
409

410
/* stdin is a duplex channel over which a handle is sent.
411
 * We receive it and send it back where it came from.
412
 */
413
int ipc_send_recv_helper(void) {
414
  int r;
415

416
  r = run_ipc_send_recv_helper(uv_default_loop(), 0);
417
  ASSERT_OK(r);
418

419
  MAKE_VALGRIND_HAPPY(uv_default_loop());
420
  return 0;
421
}
422

423
void ipc_send_recv_helper_threadproc(void* arg) {
424
  int r;
425
  uv_loop_t loop;
426

427
  r = uv_loop_init(&loop);
428
  ASSERT_OK(r);
429

430
  r = run_ipc_send_recv_helper(&loop, 1);
431
  ASSERT_OK(r);
432

433
  r = uv_loop_close(&loop);
434
  ASSERT_OK(r);
435
}
436

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.