style_transfer
/
vgg16.prototxt
291 строка · 4.0 Кб
1name: "VGG_ILSVRC_16_layers"
2force_backward: true
3layer {
4top: "data"
5name: "input"
6type: "Input"
7input_param {
8shape {
9dim: 1
10dim: 3
11dim: 224
12dim: 224
13}
14}
15}
16layer {
17bottom: "data"
18top: "conv1_1"
19name: "conv1_1"
20type: "Convolution"
21convolution_param {
22num_output: 64
23pad: 1
24kernel_size: 3
25}
26}
27layer {
28bottom: "conv1_1"
29top: "conv1_1"
30name: "relu1_1"
31type: "ReLU"
32}
33layer {
34bottom: "conv1_1"
35top: "conv1_2"
36name: "conv1_2"
37type: "Convolution"
38convolution_param {
39num_output: 64
40pad: 1
41kernel_size: 3
42}
43}
44layer {
45bottom: "conv1_2"
46top: "conv1_2"
47name: "relu1_2"
48type: "ReLU"
49}
50layer {
51bottom: "conv1_2"
52top: "pool1"
53name: "pool1"
54type: "Pooling"
55pooling_param {
56pool: MAX
57kernel_size: 2
58stride: 2
59}
60}
61layer {
62bottom: "pool1"
63top: "conv2_1"
64name: "conv2_1"
65type: "Convolution"
66convolution_param {
67num_output: 128
68pad: 1
69kernel_size: 3
70}
71}
72layer {
73bottom: "conv2_1"
74top: "conv2_1"
75name: "relu2_1"
76type: "ReLU"
77}
78layer {
79bottom: "conv2_1"
80top: "conv2_2"
81name: "conv2_2"
82type: "Convolution"
83convolution_param {
84num_output: 128
85pad: 1
86kernel_size: 3
87}
88}
89layer {
90bottom: "conv2_2"
91top: "conv2_2"
92name: "relu2_2"
93type: "ReLU"
94}
95layer {
96bottom: "conv2_2"
97top: "pool2"
98name: "pool2"
99type: "Pooling"
100pooling_param {
101pool: MAX
102kernel_size: 2
103stride: 2
104}
105}
106layer {
107bottom: "pool2"
108top: "conv3_1"
109name: "conv3_1"
110type: "Convolution"
111convolution_param {
112num_output: 256
113pad: 1
114kernel_size: 3
115}
116}
117layer {
118bottom: "conv3_1"
119top: "conv3_1"
120name: "relu3_1"
121type: "ReLU"
122}
123layer {
124bottom: "conv3_1"
125top: "conv3_2"
126name: "conv3_2"
127type: "Convolution"
128convolution_param {
129num_output: 256
130pad: 1
131kernel_size: 3
132}
133}
134layer {
135bottom: "conv3_2"
136top: "conv3_2"
137name: "relu3_2"
138type: "ReLU"
139}
140layer {
141bottom: "conv3_2"
142top: "conv3_3"
143name: "conv3_3"
144type: "Convolution"
145convolution_param {
146num_output: 256
147pad: 1
148kernel_size: 3
149}
150}
151layer {
152bottom: "conv3_3"
153top: "conv3_3"
154name: "relu3_3"
155type: "ReLU"
156}
157layer {
158bottom: "conv3_3"
159top: "pool3"
160name: "pool3"
161type: "Pooling"
162pooling_param {
163pool: MAX
164kernel_size: 2
165stride: 2
166}
167}
168layer {
169bottom: "pool3"
170top: "conv4_1"
171name: "conv4_1"
172type: "Convolution"
173convolution_param {
174num_output: 512
175pad: 1
176kernel_size: 3
177}
178}
179layer {
180bottom: "conv4_1"
181top: "conv4_1"
182name: "relu4_1"
183type: "ReLU"
184}
185layer {
186bottom: "conv4_1"
187top: "conv4_2"
188name: "conv4_2"
189type: "Convolution"
190convolution_param {
191num_output: 512
192pad: 1
193kernel_size: 3
194}
195}
196layer {
197bottom: "conv4_2"
198top: "conv4_2"
199name: "relu4_2"
200type: "ReLU"
201}
202layer {
203bottom: "conv4_2"
204top: "conv4_3"
205name: "conv4_3"
206type: "Convolution"
207convolution_param {
208num_output: 512
209pad: 1
210kernel_size: 3
211}
212}
213layer {
214bottom: "conv4_3"
215top: "conv4_3"
216name: "relu4_3"
217type: "ReLU"
218}
219layer {
220bottom: "conv4_3"
221top: "pool4"
222name: "pool4"
223type: "Pooling"
224pooling_param {
225pool: MAX
226kernel_size: 2
227stride: 2
228}
229}
230layer {
231bottom: "pool4"
232top: "conv5_1"
233name: "conv5_1"
234type: "Convolution"
235convolution_param {
236num_output: 512
237pad: 1
238kernel_size: 3
239}
240}
241layer {
242bottom: "conv5_1"
243top: "conv5_1"
244name: "relu5_1"
245type: "ReLU"
246}
247layer {
248bottom: "conv5_1"
249top: "conv5_2"
250name: "conv5_2"
251type: "Convolution"
252convolution_param {
253num_output: 512
254pad: 1
255kernel_size: 3
256}
257}
258layer {
259bottom: "conv5_2"
260top: "conv5_2"
261name: "relu5_2"
262type: "ReLU"
263}
264layer {
265bottom: "conv5_2"
266top: "conv5_3"
267name: "conv5_3"
268type: "Convolution"
269convolution_param {
270num_output: 512
271pad: 1
272kernel_size: 3
273}
274}
275layer {
276bottom: "conv5_3"
277top: "conv5_3"
278name: "relu5_3"
279type: "ReLU"
280}
281layer {
282bottom: "conv5_3"
283top: "pool5"
284name: "pool5"
285type: "Pooling"
286pooling_param {
287pool: MAX
288kernel_size: 2
289stride: 2
290}
291}
292