Помоги сделать GitVerse лучше — пройди опрос
/
vgg16.prototxt 
291 строка · 4.0 Кб
1
name: "VGG_ILSVRC_16_layers"
2
force_backward: true
3
layer {
4
  top: "data"
5
  name: "input"
6
  type: "Input"
7
  input_param {
8
    shape {
9
      dim: 1
10
      dim: 3
11
      dim: 224
12
      dim: 224
13
    }
14
  }
15
}
16
layer {
17
  bottom: "data"
18
  top: "conv1_1"
19
  name: "conv1_1"
20
  type: "Convolution"
21
  convolution_param {
22
    num_output: 64
23
    pad: 1
24
    kernel_size: 3
25
  }
26
}
27
layer {
28
  bottom: "conv1_1"
29
  top: "conv1_1"
30
  name: "relu1_1"
31
  type: "ReLU"
32
}
33
layer {
34
  bottom: "conv1_1"
35
  top: "conv1_2"
36
  name: "conv1_2"
37
  type: "Convolution"
38
  convolution_param {
39
    num_output: 64
40
    pad: 1
41
    kernel_size: 3
42
  }
43
}
44
layer {
45
  bottom: "conv1_2"
46
  top: "conv1_2"
47
  name: "relu1_2"
48
  type: "ReLU"
49
}
50
layer {
51
  bottom: "conv1_2"
52
  top: "pool1"
53
  name: "pool1"
54
  type: "Pooling"
55
  pooling_param {
56
    pool: MAX
57
    kernel_size: 2
58
    stride: 2
59
  }
60
}
61
layer {
62
  bottom: "pool1"
63
  top: "conv2_1"
64
  name: "conv2_1"
65
  type: "Convolution"
66
  convolution_param {
67
    num_output: 128
68
    pad: 1
69
    kernel_size: 3
70
  }
71
}
72
layer {
73
  bottom: "conv2_1"
74
  top: "conv2_1"
75
  name: "relu2_1"
76
  type: "ReLU"
77
}
78
layer {
79
  bottom: "conv2_1"
80
  top: "conv2_2"
81
  name: "conv2_2"
82
  type: "Convolution"
83
  convolution_param {
84
    num_output: 128
85
    pad: 1
86
    kernel_size: 3
87
  }
88
}
89
layer {
90
  bottom: "conv2_2"
91
  top: "conv2_2"
92
  name: "relu2_2"
93
  type: "ReLU"
94
}
95
layer {
96
  bottom: "conv2_2"
97
  top: "pool2"
98
  name: "pool2"
99
  type: "Pooling"
100
  pooling_param {
101
    pool: MAX
102
    kernel_size: 2
103
    stride: 2
104
  }
105
}
106
layer {
107
  bottom: "pool2"
108
  top: "conv3_1"
109
  name: "conv3_1"
110
  type: "Convolution"
111
  convolution_param {
112
    num_output: 256
113
    pad: 1
114
    kernel_size: 3
115
  }
116
}
117
layer {
118
  bottom: "conv3_1"
119
  top: "conv3_1"
120
  name: "relu3_1"
121
  type: "ReLU"
122
}
123
layer {
124
  bottom: "conv3_1"
125
  top: "conv3_2"
126
  name: "conv3_2"
127
  type: "Convolution"
128
  convolution_param {
129
    num_output: 256
130
    pad: 1
131
    kernel_size: 3
132
  }
133
}
134
layer {
135
  bottom: "conv3_2"
136
  top: "conv3_2"
137
  name: "relu3_2"
138
  type: "ReLU"
139
}
140
layer {
141
  bottom: "conv3_2"
142
  top: "conv3_3"
143
  name: "conv3_3"
144
  type: "Convolution"
145
  convolution_param {
146
    num_output: 256
147
    pad: 1
148
    kernel_size: 3
149
  }
150
}
151
layer {
152
  bottom: "conv3_3"
153
  top: "conv3_3"
154
  name: "relu3_3"
155
  type: "ReLU"
156
}
157
layer {
158
  bottom: "conv3_3"
159
  top: "pool3"
160
  name: "pool3"
161
  type: "Pooling"
162
  pooling_param {
163
    pool: MAX
164
    kernel_size: 2
165
    stride: 2
166
  }
167
}
168
layer {
169
  bottom: "pool3"
170
  top: "conv4_1"
171
  name: "conv4_1"
172
  type: "Convolution"
173
  convolution_param {
174
    num_output: 512
175
    pad: 1
176
    kernel_size: 3
177
  }
178
}
179
layer {
180
  bottom: "conv4_1"
181
  top: "conv4_1"
182
  name: "relu4_1"
183
  type: "ReLU"
184
}
185
layer {
186
  bottom: "conv4_1"
187
  top: "conv4_2"
188
  name: "conv4_2"
189
  type: "Convolution"
190
  convolution_param {
191
    num_output: 512
192
    pad: 1
193
    kernel_size: 3
194
  }
195
}
196
layer {
197
  bottom: "conv4_2"
198
  top: "conv4_2"
199
  name: "relu4_2"
200
  type: "ReLU"
201
}
202
layer {
203
  bottom: "conv4_2"
204
  top: "conv4_3"
205
  name: "conv4_3"
206
  type: "Convolution"
207
  convolution_param {
208
    num_output: 512
209
    pad: 1
210
    kernel_size: 3
211
  }
212
}
213
layer {
214
  bottom: "conv4_3"
215
  top: "conv4_3"
216
  name: "relu4_3"
217
  type: "ReLU"
218
}
219
layer {
220
  bottom: "conv4_3"
221
  top: "pool4"
222
  name: "pool4"
223
  type: "Pooling"
224
  pooling_param {
225
    pool: MAX
226
    kernel_size: 2
227
    stride: 2
228
  }
229
}
230
layer {
231
  bottom: "pool4"
232
  top: "conv5_1"
233
  name: "conv5_1"
234
  type: "Convolution"
235
  convolution_param {
236
    num_output: 512
237
    pad: 1
238
    kernel_size: 3
239
  }
240
}
241
layer {
242
  bottom: "conv5_1"
243
  top: "conv5_1"
244
  name: "relu5_1"
245
  type: "ReLU"
246
}
247
layer {
248
  bottom: "conv5_1"
249
  top: "conv5_2"
250
  name: "conv5_2"
251
  type: "Convolution"
252
  convolution_param {
253
    num_output: 512
254
    pad: 1
255
    kernel_size: 3
256
  }
257
}
258
layer {
259
  bottom: "conv5_2"
260
  top: "conv5_2"
261
  name: "relu5_2"
262
  type: "ReLU"
263
}
264
layer {
265
  bottom: "conv5_2"
266
  top: "conv5_3"
267
  name: "conv5_3"
268
  type: "Convolution"
269
  convolution_param {
270
    num_output: 512
271
    pad: 1
272
    kernel_size: 3
273
  }
274
}
275
layer {
276
  bottom: "conv5_3"
277
  top: "conv5_3"
278
  name: "relu5_3"
279
  type: "ReLU"
280
}
281
layer {
282
  bottom: "conv5_3"
283
  top: "pool5"
284
  name: "pool5"
285
  type: "Pooling"
286
  pooling_param {
287
    pool: MAX
288
    kernel_size: 2
289
    stride: 2
290
  }
291
}
292

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.