qemu

Форк
0
/
rcu.c 
472 строки · 13.3 Кб
1
/*
2
 * urcu-mb.c
3
 *
4
 * Userspace RCU library with explicit memory barriers
5
 *
6
 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7
 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8
 * Copyright 2015 Red Hat, Inc.
9
 *
10
 * Ported to QEMU by Paolo Bonzini  <pbonzini@redhat.com>
11
 *
12
 * This library is free software; you can redistribute it and/or
13
 * modify it under the terms of the GNU Lesser General Public
14
 * License as published by the Free Software Foundation; either
15
 * version 2.1 of the License, or (at your option) any later version.
16
 *
17
 * This library is distributed in the hope that it will be useful,
18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
 * Lesser General Public License for more details.
21
 *
22
 * You should have received a copy of the GNU Lesser General Public
23
 * License along with this library; if not, write to the Free Software
24
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25
 *
26
 * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27
 */
28

29
#include "qemu/osdep.h"
30
#include "qemu/rcu.h"
31
#include "qemu/atomic.h"
32
#include "qemu/thread.h"
33
#include "qemu/main-loop.h"
34
#include "qemu/lockable.h"
35
#if defined(CONFIG_MALLOC_TRIM)
36
#include <malloc.h>
37
#endif
38

39
/*
40
 * Global grace period counter.  Bit 0 is always one in rcu_gp_ctr.
41
 * Bits 1 and above are defined in synchronize_rcu.
42
 */
43
#define RCU_GP_LOCKED           (1UL << 0)
44
#define RCU_GP_CTR              (1UL << 1)
45

46
unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
47

48
QemuEvent rcu_gp_event;
49
static int in_drain_call_rcu;
50
static QemuMutex rcu_registry_lock;
51
static QemuMutex rcu_sync_lock;
52

53
/*
54
 * Check whether a quiescent state was crossed between the beginning of
55
 * update_counter_and_wait and now.
56
 */
57
static inline int rcu_gp_ongoing(unsigned long *ctr)
58
{
59
    unsigned long v;
60

61
    v = qatomic_read(ctr);
62
    return v && (v != rcu_gp_ctr);
63
}
64

65
/* Written to only by each individual reader. Read by both the reader and the
66
 * writers.
67
 */
68
QEMU_DEFINE_CO_TLS(struct rcu_reader_data, rcu_reader)
69

70
/* Protected by rcu_registry_lock.  */
71
typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
72
static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
73

74
/* Wait for previous parity/grace period to be empty of readers.  */
75
static void wait_for_readers(void)
76
{
77
    ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
78
    struct rcu_reader_data *index, *tmp;
79

80
    for (;;) {
81
        /* We want to be notified of changes made to rcu_gp_ongoing
82
         * while we walk the list.
83
         */
84
        qemu_event_reset(&rcu_gp_event);
85

86
        QLIST_FOREACH(index, &registry, node) {
87
            qatomic_set(&index->waiting, true);
88
        }
89

90
        /* Here, order the stores to index->waiting before the loads of
91
         * index->ctr.  Pairs with smp_mb_placeholder() in rcu_read_unlock(),
92
         * ensuring that the loads of index->ctr are sequentially consistent.
93
         *
94
         * If this is the last iteration, this barrier also prevents
95
         * frees from seeping upwards, and orders the two wait phases
96
         * on architectures with 32-bit longs; see synchronize_rcu().
97
         */
98
        smp_mb_global();
99

100
        QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
101
            if (!rcu_gp_ongoing(&index->ctr)) {
102
                QLIST_REMOVE(index, node);
103
                QLIST_INSERT_HEAD(&qsreaders, index, node);
104

105
                /* No need for memory barriers here, worst of all we
106
                 * get some extra futex wakeups.
107
                 */
108
                qatomic_set(&index->waiting, false);
109
            } else if (qatomic_read(&in_drain_call_rcu)) {
110
                notifier_list_notify(&index->force_rcu, NULL);
111
            }
112
        }
113

114
        if (QLIST_EMPTY(&registry)) {
115
            break;
116
        }
117

118
        /* Wait for one thread to report a quiescent state and try again.
119
         * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't
120
         * wait too much time.
121
         *
122
         * rcu_register_thread() may add nodes to &registry; it will not
123
         * wake up synchronize_rcu, but that is okay because at least another
124
         * thread must exit its RCU read-side critical section before
125
         * synchronize_rcu is done.  The next iteration of the loop will
126
         * move the new thread's rcu_reader from &registry to &qsreaders,
127
         * because rcu_gp_ongoing() will return false.
128
         *
129
         * rcu_unregister_thread() may remove nodes from &qsreaders instead
130
         * of &registry if it runs during qemu_event_wait.  That's okay;
131
         * the node then will not be added back to &registry by QLIST_SWAP
132
         * below.  The invariant is that the node is part of one list when
133
         * rcu_registry_lock is released.
134
         */
135
        qemu_mutex_unlock(&rcu_registry_lock);
136
        qemu_event_wait(&rcu_gp_event);
137
        qemu_mutex_lock(&rcu_registry_lock);
138
    }
139

140
    /* put back the reader list in the registry */
141
    QLIST_SWAP(&registry, &qsreaders, node);
142
}
143

144
void synchronize_rcu(void)
145
{
146
    QEMU_LOCK_GUARD(&rcu_sync_lock);
147

148
    /* Write RCU-protected pointers before reading p_rcu_reader->ctr.
149
     * Pairs with smp_mb_placeholder() in rcu_read_lock().
150
     *
151
     * Also orders write to RCU-protected pointers before
152
     * write to rcu_gp_ctr.
153
     */
154
    smp_mb_global();
155

156
    QEMU_LOCK_GUARD(&rcu_registry_lock);
157
    if (!QLIST_EMPTY(&registry)) {
158
        if (sizeof(rcu_gp_ctr) < 8) {
159
            /* For architectures with 32-bit longs, a two-subphases algorithm
160
             * ensures we do not encounter overflow bugs.
161
             *
162
             * Switch parity: 0 -> 1, 1 -> 0.
163
             */
164
            qatomic_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
165
            wait_for_readers();
166
            qatomic_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
167
        } else {
168
            /* Increment current grace period.  */
169
            qatomic_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
170
        }
171

172
        wait_for_readers();
173
    }
174
}
175

176

177
#define RCU_CALL_MIN_SIZE        30
178

179
/* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
180
 * from liburcu.  Note that head is only used by the consumer.
181
 */
182
static struct rcu_head dummy;
183
static struct rcu_head *head = &dummy, **tail = &dummy.next;
184
static int rcu_call_count;
185
static QemuEvent rcu_call_ready_event;
186

187
static void enqueue(struct rcu_head *node)
188
{
189
    struct rcu_head **old_tail;
190

191
    node->next = NULL;
192

193
    /*
194
     * Make this node the tail of the list.  The node will be
195
     * used by further enqueue operations, but it will not
196
     * be dequeued yet...
197
     */
198
    old_tail = qatomic_xchg(&tail, &node->next);
199

200
    /*
201
     * ... until it is pointed to from another item in the list.
202
     * In the meantime, try_dequeue() will find a NULL next pointer
203
     * and loop.
204
     *
205
     * Synchronizes with qatomic_load_acquire() in try_dequeue().
206
     */
207
    qatomic_store_release(old_tail, node);
208
}
209

210
static struct rcu_head *try_dequeue(void)
211
{
212
    struct rcu_head *node, *next;
213

214
retry:
215
    /* Head is only written by this thread, so no need for barriers.  */
216
    node = head;
217

218
    /*
219
     * If the head node has NULL in its next pointer, the value is
220
     * wrong and we need to wait until its enqueuer finishes the update.
221
     */
222
    next = qatomic_load_acquire(&node->next);
223
    if (!next) {
224
        return NULL;
225
    }
226

227
    /*
228
     * Test for an empty list, which we do not expect.  Note that for
229
     * the consumer head and tail are always consistent.  The head
230
     * is consistent because only the consumer reads/writes it.
231
     * The tail, because it is the first step in the enqueuing.
232
     * It is only the next pointers that might be inconsistent.
233
     */
234
    if (head == &dummy && qatomic_read(&tail) == &dummy.next) {
235
        abort();
236
    }
237

238
    /*
239
     * Since we are the sole consumer, and we excluded the empty case
240
     * above, the queue will always have at least two nodes: the
241
     * dummy node, and the one being removed.  So we do not need to update
242
     * the tail pointer.
243
     */
244
    head = next;
245

246
    /* If we dequeued the dummy node, add it back at the end and retry.  */
247
    if (node == &dummy) {
248
        enqueue(node);
249
        goto retry;
250
    }
251

252
    return node;
253
}
254

255
static void *call_rcu_thread(void *opaque)
256
{
257
    struct rcu_head *node;
258

259
    rcu_register_thread();
260

261
    for (;;) {
262
        int tries = 0;
263
        int n = qatomic_read(&rcu_call_count);
264

265
        /* Heuristically wait for a decent number of callbacks to pile up.
266
         * Fetch rcu_call_count now, we only must process elements that were
267
         * added before synchronize_rcu() starts.
268
         */
269
        while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
270
            g_usleep(10000);
271
            if (n == 0) {
272
                qemu_event_reset(&rcu_call_ready_event);
273
                n = qatomic_read(&rcu_call_count);
274
                if (n == 0) {
275
#if defined(CONFIG_MALLOC_TRIM)
276
                    malloc_trim(4 * 1024 * 1024);
277
#endif
278
                    qemu_event_wait(&rcu_call_ready_event);
279
                }
280
            }
281
            n = qatomic_read(&rcu_call_count);
282
        }
283

284
        qatomic_sub(&rcu_call_count, n);
285
        synchronize_rcu();
286
        bql_lock();
287
        while (n > 0) {
288
            node = try_dequeue();
289
            while (!node) {
290
                bql_unlock();
291
                qemu_event_reset(&rcu_call_ready_event);
292
                node = try_dequeue();
293
                if (!node) {
294
                    qemu_event_wait(&rcu_call_ready_event);
295
                    node = try_dequeue();
296
                }
297
                bql_lock();
298
            }
299

300
            n--;
301
            node->func(node);
302
        }
303
        bql_unlock();
304
    }
305
    abort();
306
}
307

308
void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
309
{
310
    node->func = func;
311
    enqueue(node);
312
    qatomic_inc(&rcu_call_count);
313
    qemu_event_set(&rcu_call_ready_event);
314
}
315

316

317
struct rcu_drain {
318
    struct rcu_head rcu;
319
    QemuEvent drain_complete_event;
320
};
321

322
static void drain_rcu_callback(struct rcu_head *node)
323
{
324
    struct rcu_drain *event = (struct rcu_drain *)node;
325
    qemu_event_set(&event->drain_complete_event);
326
}
327

328
/*
329
 * This function ensures that all pending RCU callbacks
330
 * on the current thread are done executing
331

332
 * drops big qemu lock during the wait to allow RCU thread
333
 * to process the callbacks
334
 *
335
 */
336

337
void drain_call_rcu(void)
338
{
339
    struct rcu_drain rcu_drain;
340
    bool locked = bql_locked();
341

342
    memset(&rcu_drain, 0, sizeof(struct rcu_drain));
343
    qemu_event_init(&rcu_drain.drain_complete_event, false);
344

345
    if (locked) {
346
        bql_unlock();
347
    }
348

349

350
    /*
351
     * RCU callbacks are invoked in the same order as in which they
352
     * are registered, thus we can be sure that when 'drain_rcu_callback'
353
     * is called, all RCU callbacks that were registered on this thread
354
     * prior to calling this function are completed.
355
     *
356
     * Note that since we have only one global queue of the RCU callbacks,
357
     * we also end up waiting for most of RCU callbacks that were registered
358
     * on the other threads, but this is a side effect that shouldn't be
359
     * assumed.
360
     */
361

362
    qatomic_inc(&in_drain_call_rcu);
363
    call_rcu1(&rcu_drain.rcu, drain_rcu_callback);
364
    qemu_event_wait(&rcu_drain.drain_complete_event);
365
    qatomic_dec(&in_drain_call_rcu);
366

367
    if (locked) {
368
        bql_lock();
369
    }
370

371
}
372

373
void rcu_register_thread(void)
374
{
375
    assert(get_ptr_rcu_reader()->ctr == 0);
376
    qemu_mutex_lock(&rcu_registry_lock);
377
    QLIST_INSERT_HEAD(&registry, get_ptr_rcu_reader(), node);
378
    qemu_mutex_unlock(&rcu_registry_lock);
379
}
380

381
void rcu_unregister_thread(void)
382
{
383
    qemu_mutex_lock(&rcu_registry_lock);
384
    QLIST_REMOVE(get_ptr_rcu_reader(), node);
385
    qemu_mutex_unlock(&rcu_registry_lock);
386
}
387

388
void rcu_add_force_rcu_notifier(Notifier *n)
389
{
390
    qemu_mutex_lock(&rcu_registry_lock);
391
    notifier_list_add(&get_ptr_rcu_reader()->force_rcu, n);
392
    qemu_mutex_unlock(&rcu_registry_lock);
393
}
394

395
void rcu_remove_force_rcu_notifier(Notifier *n)
396
{
397
    qemu_mutex_lock(&rcu_registry_lock);
398
    notifier_remove(n);
399
    qemu_mutex_unlock(&rcu_registry_lock);
400
}
401

402
static void rcu_init_complete(void)
403
{
404
    QemuThread thread;
405

406
    qemu_mutex_init(&rcu_registry_lock);
407
    qemu_mutex_init(&rcu_sync_lock);
408
    qemu_event_init(&rcu_gp_event, true);
409

410
    qemu_event_init(&rcu_call_ready_event, false);
411

412
    /* The caller is assumed to have BQL, so the call_rcu thread
413
     * must have been quiescent even after forking, just recreate it.
414
     */
415
    qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
416
                       NULL, QEMU_THREAD_DETACHED);
417

418
    rcu_register_thread();
419
}
420

421
static int atfork_depth = 1;
422

423
void rcu_enable_atfork(void)
424
{
425
    atfork_depth++;
426
}
427

428
void rcu_disable_atfork(void)
429
{
430
    atfork_depth--;
431
}
432

433
#ifdef CONFIG_POSIX
434
static void rcu_init_lock(void)
435
{
436
    if (atfork_depth < 1) {
437
        return;
438
    }
439

440
    qemu_mutex_lock(&rcu_sync_lock);
441
    qemu_mutex_lock(&rcu_registry_lock);
442
}
443

444
static void rcu_init_unlock(void)
445
{
446
    if (atfork_depth < 1) {
447
        return;
448
    }
449

450
    qemu_mutex_unlock(&rcu_registry_lock);
451
    qemu_mutex_unlock(&rcu_sync_lock);
452
}
453

454
static void rcu_init_child(void)
455
{
456
    if (atfork_depth < 1) {
457
        return;
458
    }
459

460
    memset(&registry, 0, sizeof(registry));
461
    rcu_init_complete();
462
}
463
#endif
464

465
static void __attribute__((__constructor__)) rcu_init(void)
466
{
467
    smp_mb_global_init();
468
#ifdef CONFIG_POSIX
469
    pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_child);
470
#endif
471
    rcu_init_complete();
472
}
473

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.