qemu

Форк
0
/
vm86.c 
492 строки · 15.9 Кб
1
/*
2
 *  vm86 linux syscall support
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include "qemu/osdep.h"
20

21
#include "qemu.h"
22
#include "user-internals.h"
23

24
//#define DEBUG_VM86
25

26
#ifdef DEBUG_VM86
27
#  define LOG_VM86(...) qemu_log(__VA_ARGS__);
28
#else
29
#  define LOG_VM86(...) do { } while (0)
30
#endif
31

32

33
#define set_flags(X,new,mask) \
34
((X) = ((X) & ~(mask)) | ((new) & (mask)))
35

36
#define SAFE_MASK	(0xDD5)
37
#define RETURN_MASK	(0xDFF)
38

39
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
40
{
41
    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
42
}
43

44
static inline void vm_putw(CPUX86State *env, uint32_t segptr,
45
                           unsigned int reg16, unsigned int val)
46
{
47
    cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
48
}
49

50
static inline void vm_putl(CPUX86State *env, uint32_t segptr,
51
                           unsigned int reg16, unsigned int val)
52
{
53
    cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
54
}
55

56
static inline unsigned int vm_getb(CPUX86State *env,
57
                                   uint32_t segptr, unsigned int reg16)
58
{
59
    return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
60
}
61

62
static inline unsigned int vm_getw(CPUX86State *env,
63
                                   uint32_t segptr, unsigned int reg16)
64
{
65
    return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
66
}
67

68
static inline unsigned int vm_getl(CPUX86State *env,
69
                                   uint32_t segptr, unsigned int reg16)
70
{
71
    return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
72
}
73

74
void save_v86_state(CPUX86State *env)
75
{
76
    CPUState *cs = env_cpu(env);
77
    TaskState *ts = get_task_state(cs);
78
    struct target_vm86plus_struct * target_v86;
79

80
    if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
81
        /* FIXME - should return an error */
82
        return;
83
    /* put the VM86 registers in the userspace register structure */
84
    target_v86->regs.eax = tswap32(env->regs[R_EAX]);
85
    target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
86
    target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
87
    target_v86->regs.edx = tswap32(env->regs[R_EDX]);
88
    target_v86->regs.esi = tswap32(env->regs[R_ESI]);
89
    target_v86->regs.edi = tswap32(env->regs[R_EDI]);
90
    target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
91
    target_v86->regs.esp = tswap32(env->regs[R_ESP]);
92
    target_v86->regs.eip = tswap32(env->eip);
93
    target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
94
    target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
95
    target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
96
    target_v86->regs.es = tswap16(env->segs[R_ES].selector);
97
    target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
98
    target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
99
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
100
    target_v86->regs.eflags = tswap32(env->eflags);
101
    unlock_user_struct(target_v86, ts->target_v86, 1);
102
    LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
103
             env->eflags, env->segs[R_CS].selector, env->eip);
104

105
    /* restore 32 bit registers */
106
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
107
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
108
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
109
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
110
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
111
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
112
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
113
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
114
    env->eflags = ts->vm86_saved_regs.eflags;
115
    env->eip = ts->vm86_saved_regs.eip;
116

117
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
118
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
119
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
120
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
121
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
122
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
123
}
124

125
/* return from vm86 mode to 32 bit. The vm86() syscall will return
126
   'retval' */
127
static inline void return_to_32bit(CPUX86State *env, int retval)
128
{
129
    LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
130
    save_v86_state(env);
131
    env->regs[R_EAX] = retval;
132
}
133

134
static inline int set_IF(CPUX86State *env)
135
{
136
    CPUState *cs = env_cpu(env);
137
    TaskState *ts = get_task_state(cs);
138

139
    ts->v86flags |= VIF_MASK;
140
    if (ts->v86flags & VIP_MASK) {
141
        return_to_32bit(env, TARGET_VM86_STI);
142
        return 1;
143
    }
144
    return 0;
145
}
146

147
static inline void clear_IF(CPUX86State *env)
148
{
149
    CPUState *cs = env_cpu(env);
150
    TaskState *ts = get_task_state(cs);
151

152
    ts->v86flags &= ~VIF_MASK;
153
}
154

155
static inline void clear_TF(CPUX86State *env)
156
{
157
    env->eflags &= ~TF_MASK;
158
}
159

160
static inline void clear_AC(CPUX86State *env)
161
{
162
    env->eflags &= ~AC_MASK;
163
}
164

165
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
166
{
167
    CPUState *cs = env_cpu(env);
168
    TaskState *ts = get_task_state(cs);
169

170
    set_flags(ts->v86flags, eflags, ts->v86mask);
171
    set_flags(env->eflags, eflags, SAFE_MASK);
172
    if (eflags & IF_MASK)
173
        return set_IF(env);
174
    else
175
        clear_IF(env);
176
    return 0;
177
}
178

179
static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
180
{
181
    CPUState *cs = env_cpu(env);
182
    TaskState *ts = get_task_state(cs);
183

184
    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
185
    set_flags(env->eflags, flags, SAFE_MASK);
186
    if (flags & IF_MASK)
187
        return set_IF(env);
188
    else
189
        clear_IF(env);
190
    return 0;
191
}
192

193
static inline unsigned int get_vflags(CPUX86State *env)
194
{
195
    CPUState *cs = env_cpu(env);
196
    TaskState *ts = get_task_state(cs);
197
    unsigned int flags;
198

199
    flags = env->eflags & RETURN_MASK;
200
    if (ts->v86flags & VIF_MASK)
201
        flags |= IF_MASK;
202
    flags |= IOPL_MASK;
203
    return flags | (ts->v86flags & ts->v86mask);
204
}
205

206
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
207

208
/* handle VM86 interrupt (NOTE: the CPU core currently does not
209
   support TSS interrupt revectoring, so this code is always executed) */
210
static void do_int(CPUX86State *env, int intno)
211
{
212
    CPUState *cs = env_cpu(env);
213
    TaskState *ts = get_task_state(cs);
214
    uint32_t int_addr, segoffs, ssp;
215
    unsigned int sp;
216

217
    if (env->segs[R_CS].selector == TARGET_BIOSSEG)
218
        goto cannot_handle;
219
    if (is_revectored(intno, &ts->vm86plus.int_revectored))
220
        goto cannot_handle;
221
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
222
                                       &ts->vm86plus.int21_revectored))
223
        goto cannot_handle;
224
    int_addr = (intno << 2);
225
    segoffs = cpu_ldl_data(env, int_addr);
226
    if ((segoffs >> 16) == TARGET_BIOSSEG)
227
        goto cannot_handle;
228
    LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
229
             intno, segoffs >> 16, segoffs & 0xffff);
230
    /* save old state */
231
    ssp = env->segs[R_SS].selector << 4;
232
    sp = env->regs[R_ESP] & 0xffff;
233
    vm_putw(env, ssp, sp - 2, get_vflags(env));
234
    vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
235
    vm_putw(env, ssp, sp - 6, env->eip);
236
    ADD16(env->regs[R_ESP], -6);
237
    /* goto interrupt handler */
238
    env->eip = segoffs & 0xffff;
239
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
240
    clear_TF(env);
241
    clear_IF(env);
242
    clear_AC(env);
243
    return;
244
 cannot_handle:
245
    LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
246
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
247
}
248

249
void handle_vm86_trap(CPUX86State *env, int trapno)
250
{
251
    if (trapno == 1 || trapno == 3) {
252
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
253
    } else {
254
        do_int(env, trapno);
255
    }
256
}
257

258
#define CHECK_IF_IN_TRAP() \
259
      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
260
          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
261
                newflags |= TF_MASK
262

263
#define VM86_FAULT_RETURN \
264
        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
265
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
266
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
267
        return
268

269
void handle_vm86_fault(CPUX86State *env)
270
{
271
    CPUState *cs = env_cpu(env);
272
    TaskState *ts = get_task_state(cs);
273
    uint32_t csp, ssp;
274
    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
275
    int data32, pref_done;
276

277
    csp = env->segs[R_CS].selector << 4;
278
    ip = env->eip & 0xffff;
279

280
    ssp = env->segs[R_SS].selector << 4;
281
    sp = env->regs[R_ESP] & 0xffff;
282

283
    LOG_VM86("VM86 exception %04x:%08x\n",
284
             env->segs[R_CS].selector, env->eip);
285

286
    data32 = 0;
287
    pref_done = 0;
288
    do {
289
        opcode = vm_getb(env, csp, ip);
290
        ADD16(ip, 1);
291
        switch (opcode) {
292
        case 0x66:      /* 32-bit data */     data32=1; break;
293
        case 0x67:      /* 32-bit address */  break;
294
        case 0x2e:      /* CS */              break;
295
        case 0x3e:      /* DS */              break;
296
        case 0x26:      /* ES */              break;
297
        case 0x36:      /* SS */              break;
298
        case 0x65:      /* GS */              break;
299
        case 0x64:      /* FS */              break;
300
        case 0xf2:      /* repnz */	      break;
301
        case 0xf3:      /* rep */             break;
302
        default: pref_done = 1;
303
        }
304
    } while (!pref_done);
305

306
    /* VM86 mode */
307
    switch(opcode) {
308
    case 0x9c: /* pushf */
309
        if (data32) {
310
            vm_putl(env, ssp, sp - 4, get_vflags(env));
311
            ADD16(env->regs[R_ESP], -4);
312
        } else {
313
            vm_putw(env, ssp, sp - 2, get_vflags(env));
314
            ADD16(env->regs[R_ESP], -2);
315
        }
316
        env->eip = ip;
317
        VM86_FAULT_RETURN;
318

319
    case 0x9d: /* popf */
320
        if (data32) {
321
            newflags = vm_getl(env, ssp, sp);
322
            ADD16(env->regs[R_ESP], 4);
323
        } else {
324
            newflags = vm_getw(env, ssp, sp);
325
            ADD16(env->regs[R_ESP], 2);
326
        }
327
        env->eip = ip;
328
        CHECK_IF_IN_TRAP();
329
        if (data32) {
330
            if (set_vflags_long(newflags, env))
331
                return;
332
        } else {
333
            if (set_vflags_short(newflags, env))
334
                return;
335
        }
336
        VM86_FAULT_RETURN;
337

338
    case 0xcd: /* int */
339
        intno = vm_getb(env, csp, ip);
340
        ADD16(ip, 1);
341
        env->eip = ip;
342
        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
343
            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
344
                  (intno &7)) & 1) {
345
                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
346
                return;
347
            }
348
        }
349
        do_int(env, intno);
350
        break;
351

352
    case 0xcf: /* iret */
353
        if (data32) {
354
            newip = vm_getl(env, ssp, sp) & 0xffff;
355
            newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
356
            newflags = vm_getl(env, ssp, sp + 8);
357
            ADD16(env->regs[R_ESP], 12);
358
        } else {
359
            newip = vm_getw(env, ssp, sp);
360
            newcs = vm_getw(env, ssp, sp + 2);
361
            newflags = vm_getw(env, ssp, sp + 4);
362
            ADD16(env->regs[R_ESP], 6);
363
        }
364
        env->eip = newip;
365
        cpu_x86_load_seg(env, R_CS, newcs);
366
        CHECK_IF_IN_TRAP();
367
        if (data32) {
368
            if (set_vflags_long(newflags, env))
369
                return;
370
        } else {
371
            if (set_vflags_short(newflags, env))
372
                return;
373
        }
374
        VM86_FAULT_RETURN;
375

376
    case 0xfa: /* cli */
377
        env->eip = ip;
378
        clear_IF(env);
379
        VM86_FAULT_RETURN;
380

381
    case 0xfb: /* sti */
382
        env->eip = ip;
383
        if (set_IF(env))
384
            return;
385
        VM86_FAULT_RETURN;
386

387
    default:
388
        /* real VM86 GPF exception */
389
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
390
        break;
391
    }
392
}
393

394
int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
395
{
396
    CPUState *cs = env_cpu(env);
397
    TaskState *ts = get_task_state(cs);
398
    struct target_vm86plus_struct * target_v86;
399
    int ret;
400

401
    switch (subfunction) {
402
    case TARGET_VM86_REQUEST_IRQ:
403
    case TARGET_VM86_FREE_IRQ:
404
    case TARGET_VM86_GET_IRQ_BITS:
405
    case TARGET_VM86_GET_AND_RESET_IRQ:
406
        qemu_log_mask(LOG_UNIMP, "qemu: unsupported vm86 subfunction (%ld)\n",
407
                      subfunction);
408
        ret = -TARGET_EINVAL;
409
        goto out;
410
    case TARGET_VM86_PLUS_INSTALL_CHECK:
411
        /* NOTE: on old vm86 stuff this will return the error
412
           from verify_area(), because the subfunction is
413
           interpreted as (invalid) address to vm86_struct.
414
           So the installation check works.
415
            */
416
        ret = 0;
417
        goto out;
418
    }
419

420
    /* save current CPU regs */
421
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
422
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
423
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
424
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
425
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
426
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
427
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
428
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
429
    ts->vm86_saved_regs.eflags = env->eflags;
430
    ts->vm86_saved_regs.eip  = env->eip;
431
    ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
432
    ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
433
    ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
434
    ts->vm86_saved_regs.es = env->segs[R_ES].selector;
435
    ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
436
    ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
437

438
    ts->target_v86 = vm86_addr;
439
    if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
440
        return -TARGET_EFAULT;
441
    /* build vm86 CPU state */
442
    ts->v86flags = tswap32(target_v86->regs.eflags);
443
    env->eflags = (env->eflags & ~SAFE_MASK) |
444
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
445

446
    ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
447
    switch (ts->vm86plus.cpu_type) {
448
    case TARGET_CPU_286:
449
        ts->v86mask = 0;
450
        break;
451
    case TARGET_CPU_386:
452
        ts->v86mask = NT_MASK | IOPL_MASK;
453
        break;
454
    case TARGET_CPU_486:
455
        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
456
        break;
457
    default:
458
        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
459
        break;
460
    }
461

462
    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
463
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
464
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
465
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
466
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
467
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
468
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
469
    env->eip = tswap32(target_v86->regs.eip);
470
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
471
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
472
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
473
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
474
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
475
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
476
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
477
                                            the end of the syscall */
478
    memcpy(&ts->vm86plus.int_revectored,
479
           &target_v86->int_revectored, 32);
480
    memcpy(&ts->vm86plus.int21_revectored,
481
           &target_v86->int21_revectored, 32);
482
    ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
483
    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
484
           target_v86->vm86plus.vm86dbg_intxxtab, 32);
485
    unlock_user_struct(target_v86, vm86_addr, 0);
486

487
    LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
488
             env->segs[R_CS].selector, env->eip);
489
    /* now the virtual CPU is ready for vm86 execution ! */
490
 out:
491
    return ret;
492
}
493

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.