qemu

Форк
0
748 строк · 22.3 Кб
1
/*
2
 *  Emulation of Linux signals
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include "qemu/osdep.h"
20
#include "qemu.h"
21
#include "user-internals.h"
22
#include "signal-common.h"
23
#include "linux-user/trace.h"
24
#include "target/arm/cpu-features.h"
25

26
struct target_sigcontext {
27
    uint64_t fault_address;
28
    /* AArch64 registers */
29
    uint64_t regs[31];
30
    uint64_t sp;
31
    uint64_t pc;
32
    uint64_t pstate;
33
    /* 4K reserved for FP/SIMD state and future expansion */
34
    char __reserved[4096] __attribute__((__aligned__(16)));
35
};
36

37
struct target_ucontext {
38
    abi_ulong tuc_flags;
39
    abi_ulong tuc_link;
40
    target_stack_t tuc_stack;
41
    target_sigset_t tuc_sigmask;
42
    /* glibc uses a 1024-bit sigset_t */
43
    char __unused[1024 / 8 - sizeof(target_sigset_t)];
44
    /* last for future expansion */
45
    struct target_sigcontext tuc_mcontext;
46
};
47

48
/*
49
 * Header to be used at the beginning of structures extending the user
50
 * context. Such structures must be placed after the rt_sigframe on the stack
51
 * and be 16-byte aligned. The last structure must be a dummy one with the
52
 * magic and size set to 0.
53
 */
54
struct target_aarch64_ctx {
55
    uint32_t magic;
56
    uint32_t size;
57
};
58

59
#define TARGET_FPSIMD_MAGIC 0x46508001
60

61
struct target_fpsimd_context {
62
    struct target_aarch64_ctx head;
63
    uint32_t fpsr;
64
    uint32_t fpcr;
65
    uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */
66
};
67

68
#define TARGET_EXTRA_MAGIC  0x45585401
69

70
struct target_extra_context {
71
    struct target_aarch64_ctx head;
72
    uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */
73
    uint32_t size; /* size in bytes of the extra space */
74
    uint32_t reserved[3];
75
};
76

77
#define TARGET_SVE_MAGIC    0x53564501
78

79
struct target_sve_context {
80
    struct target_aarch64_ctx head;
81
    uint16_t vl;
82
    uint16_t flags;
83
    uint16_t reserved[2];
84
    /* The actual SVE data immediately follows.  It is laid out
85
     * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of
86
     * the original struct pointer.
87
     */
88
};
89

90
#define TARGET_SVE_VQ_BYTES  16
91

92
#define TARGET_SVE_SIG_ZREG_SIZE(VQ)  ((VQ) * TARGET_SVE_VQ_BYTES)
93
#define TARGET_SVE_SIG_PREG_SIZE(VQ)  ((VQ) * (TARGET_SVE_VQ_BYTES / 8))
94

95
#define TARGET_SVE_SIG_REGS_OFFSET \
96
    QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES)
97
#define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \
98
    (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N))
99
#define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \
100
    (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N))
101
#define TARGET_SVE_SIG_FFR_OFFSET(VQ) \
102
    (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16))
103
#define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \
104
    (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17))
105

106
#define TARGET_SVE_SIG_FLAG_SM  1
107

108
#define TARGET_ZA_MAGIC        0x54366345
109

110
struct target_za_context {
111
    struct target_aarch64_ctx head;
112
    uint16_t vl;
113
    uint16_t reserved[3];
114
    /* The actual ZA data immediately follows. */
115
};
116

117
#define TARGET_ZA_SIG_REGS_OFFSET \
118
    QEMU_ALIGN_UP(sizeof(struct target_za_context), TARGET_SVE_VQ_BYTES)
119
#define TARGET_ZA_SIG_ZAV_OFFSET(VQ, N) \
120
    (TARGET_ZA_SIG_REGS_OFFSET + (VQ) * TARGET_SVE_VQ_BYTES * (N))
121
#define TARGET_ZA_SIG_CONTEXT_SIZE(VQ) \
122
    TARGET_ZA_SIG_ZAV_OFFSET(VQ, VQ * TARGET_SVE_VQ_BYTES)
123

124
struct target_rt_sigframe {
125
    struct target_siginfo info;
126
    struct target_ucontext uc;
127
};
128

129
struct target_rt_frame_record {
130
    uint64_t fp;
131
    uint64_t lr;
132
};
133

134
static void target_setup_general_frame(struct target_rt_sigframe *sf,
135
                                       CPUARMState *env, target_sigset_t *set)
136
{
137
    int i;
138

139
    __put_user(0, &sf->uc.tuc_flags);
140
    __put_user(0, &sf->uc.tuc_link);
141

142
    target_save_altstack(&sf->uc.tuc_stack, env);
143

144
    for (i = 0; i < 31; i++) {
145
        __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]);
146
    }
147
    __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp);
148
    __put_user(env->pc, &sf->uc.tuc_mcontext.pc);
149
    __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate);
150

151
    __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address);
152

153
    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
154
        __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]);
155
    }
156
}
157

158
static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd,
159
                                       CPUARMState *env)
160
{
161
    int i;
162

163
    __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic);
164
    __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size);
165
    __put_user(vfp_get_fpsr(env), &fpsimd->fpsr);
166
    __put_user(vfp_get_fpcr(env), &fpsimd->fpcr);
167

168
    for (i = 0; i < 32; i++) {
169
        uint64_t *q = aa64_vfp_qreg(env, i);
170
#if TARGET_BIG_ENDIAN
171
        __put_user(q[0], &fpsimd->vregs[i * 2 + 1]);
172
        __put_user(q[1], &fpsimd->vregs[i * 2]);
173
#else
174
        __put_user(q[0], &fpsimd->vregs[i * 2]);
175
        __put_user(q[1], &fpsimd->vregs[i * 2 + 1]);
176
#endif
177
    }
178
}
179

180
static void target_setup_extra_record(struct target_extra_context *extra,
181
                                      uint64_t datap, uint32_t extra_size)
182
{
183
    __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic);
184
    __put_user(sizeof(struct target_extra_context), &extra->head.size);
185
    __put_user(datap, &extra->datap);
186
    __put_user(extra_size, &extra->size);
187
}
188

189
static void target_setup_end_record(struct target_aarch64_ctx *end)
190
{
191
    __put_user(0, &end->magic);
192
    __put_user(0, &end->size);
193
}
194

195
static void target_setup_sve_record(struct target_sve_context *sve,
196
                                    CPUARMState *env, int size)
197
{
198
    int i, j, vq = sve_vq(env);
199

200
    memset(sve, 0, sizeof(*sve));
201
    __put_user(TARGET_SVE_MAGIC, &sve->head.magic);
202
    __put_user(size, &sve->head.size);
203
    __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl);
204
    if (FIELD_EX64(env->svcr, SVCR, SM)) {
205
        __put_user(TARGET_SVE_SIG_FLAG_SM, &sve->flags);
206
    }
207

208
    /* Note that SVE regs are stored as a byte stream, with each byte element
209
     * at a subsequent address.  This corresponds to a little-endian store
210
     * of our 64-bit hunks.
211
     */
212
    for (i = 0; i < 32; ++i) {
213
        uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i);
214
        for (j = 0; j < vq * 2; ++j) {
215
            __put_user_e(env->vfp.zregs[i].d[j], z + j, le);
216
        }
217
    }
218
    for (i = 0; i <= 16; ++i) {
219
        uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i);
220
        for (j = 0; j < vq; ++j) {
221
            uint64_t r = env->vfp.pregs[i].p[j >> 2];
222
            __put_user_e(r >> ((j & 3) * 16), p + j, le);
223
        }
224
    }
225
}
226

227
static void target_setup_za_record(struct target_za_context *za,
228
                                   CPUARMState *env, int size)
229
{
230
    int vq = sme_vq(env);
231
    int vl = vq * TARGET_SVE_VQ_BYTES;
232
    int i, j;
233

234
    memset(za, 0, sizeof(*za));
235
    __put_user(TARGET_ZA_MAGIC, &za->head.magic);
236
    __put_user(size, &za->head.size);
237
    __put_user(vl, &za->vl);
238

239
    if (size == TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
240
        return;
241
    }
242
    assert(size == TARGET_ZA_SIG_CONTEXT_SIZE(vq));
243

244
    /*
245
     * Note that ZA vectors are stored as a byte stream,
246
     * with each byte element at a subsequent address.
247
     */
248
    for (i = 0; i < vl; ++i) {
249
        uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i);
250
        for (j = 0; j < vq * 2; ++j) {
251
            __put_user_e(env->zarray[i].d[j], z + j, le);
252
        }
253
    }
254
}
255

256
static void target_restore_general_frame(CPUARMState *env,
257
                                         struct target_rt_sigframe *sf)
258
{
259
    sigset_t set;
260
    uint64_t pstate;
261
    int i;
262

263
    target_to_host_sigset(&set, &sf->uc.tuc_sigmask);
264
    set_sigmask(&set);
265

266
    for (i = 0; i < 31; i++) {
267
        __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]);
268
    }
269

270
    __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp);
271
    __get_user(env->pc, &sf->uc.tuc_mcontext.pc);
272
    __get_user(pstate, &sf->uc.tuc_mcontext.pstate);
273
    pstate_write(env, pstate);
274
}
275

276
static void target_restore_fpsimd_record(CPUARMState *env,
277
                                         struct target_fpsimd_context *fpsimd)
278
{
279
    uint32_t fpsr, fpcr;
280
    int i;
281

282
    __get_user(fpsr, &fpsimd->fpsr);
283
    vfp_set_fpsr(env, fpsr);
284
    __get_user(fpcr, &fpsimd->fpcr);
285
    vfp_set_fpcr(env, fpcr);
286

287
    for (i = 0; i < 32; i++) {
288
        uint64_t *q = aa64_vfp_qreg(env, i);
289
#if TARGET_BIG_ENDIAN
290
        __get_user(q[0], &fpsimd->vregs[i * 2 + 1]);
291
        __get_user(q[1], &fpsimd->vregs[i * 2]);
292
#else
293
        __get_user(q[0], &fpsimd->vregs[i * 2]);
294
        __get_user(q[1], &fpsimd->vregs[i * 2 + 1]);
295
#endif
296
    }
297
}
298

299
static bool target_restore_sve_record(CPUARMState *env,
300
                                      struct target_sve_context *sve,
301
                                      int size, int *svcr)
302
{
303
    int i, j, vl, vq, flags;
304
    bool sm;
305

306
    __get_user(vl, &sve->vl);
307
    __get_user(flags, &sve->flags);
308

309
    sm = flags & TARGET_SVE_SIG_FLAG_SM;
310

311
    /* The cpu must support Streaming or Non-streaming SVE. */
312
    if (sm
313
        ? !cpu_isar_feature(aa64_sme, env_archcpu(env))
314
        : !cpu_isar_feature(aa64_sve, env_archcpu(env))) {
315
        return false;
316
    }
317

318
    /*
319
     * Note that we cannot use sve_vq() because that depends on the
320
     * current setting of PSTATE.SM, not the state to be restored.
321
     */
322
    vq = sve_vqm1_for_el_sm(env, 0, sm) + 1;
323

324
    /* Reject mismatched VL. */
325
    if (vl != vq * TARGET_SVE_VQ_BYTES) {
326
        return false;
327
    }
328

329
    /* Accept empty record -- used to clear PSTATE.SM. */
330
    if (size <= sizeof(*sve)) {
331
        return true;
332
    }
333

334
    /* Reject non-empty but incomplete record. */
335
    if (size < TARGET_SVE_SIG_CONTEXT_SIZE(vq)) {
336
        return false;
337
    }
338

339
    *svcr = FIELD_DP64(*svcr, SVCR, SM, sm);
340

341
    /*
342
     * Note that SVE regs are stored as a byte stream, with each byte element
343
     * at a subsequent address.  This corresponds to a little-endian load
344
     * of our 64-bit hunks.
345
     */
346
    for (i = 0; i < 32; ++i) {
347
        uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i);
348
        for (j = 0; j < vq * 2; ++j) {
349
            __get_user_e(env->vfp.zregs[i].d[j], z + j, le);
350
        }
351
    }
352
    for (i = 0; i <= 16; ++i) {
353
        uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i);
354
        for (j = 0; j < vq; ++j) {
355
            uint16_t r;
356
            __get_user_e(r, p + j, le);
357
            if (j & 3) {
358
                env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16);
359
            } else {
360
                env->vfp.pregs[i].p[j >> 2] = r;
361
            }
362
        }
363
    }
364
    return true;
365
}
366

367
static bool target_restore_za_record(CPUARMState *env,
368
                                     struct target_za_context *za,
369
                                     int size, int *svcr)
370
{
371
    int i, j, vl, vq;
372

373
    if (!cpu_isar_feature(aa64_sme, env_archcpu(env))) {
374
        return false;
375
    }
376

377
    __get_user(vl, &za->vl);
378
    vq = sme_vq(env);
379

380
    /* Reject mismatched VL. */
381
    if (vl != vq * TARGET_SVE_VQ_BYTES) {
382
        return false;
383
    }
384

385
    /* Accept empty record -- used to clear PSTATE.ZA. */
386
    if (size <= TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
387
        return true;
388
    }
389

390
    /* Reject non-empty but incomplete record. */
391
    if (size < TARGET_ZA_SIG_CONTEXT_SIZE(vq)) {
392
        return false;
393
    }
394

395
    *svcr = FIELD_DP64(*svcr, SVCR, ZA, 1);
396

397
    for (i = 0; i < vl; ++i) {
398
        uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i);
399
        for (j = 0; j < vq * 2; ++j) {
400
            __get_user_e(env->zarray[i].d[j], z + j, le);
401
        }
402
    }
403
    return true;
404
}
405

406
static int target_restore_sigframe(CPUARMState *env,
407
                                   struct target_rt_sigframe *sf)
408
{
409
    struct target_aarch64_ctx *ctx, *extra = NULL;
410
    struct target_fpsimd_context *fpsimd = NULL;
411
    struct target_sve_context *sve = NULL;
412
    struct target_za_context *za = NULL;
413
    uint64_t extra_datap = 0;
414
    bool used_extra = false;
415
    int sve_size = 0;
416
    int za_size = 0;
417
    int svcr = 0;
418

419
    target_restore_general_frame(env, sf);
420

421
    ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved;
422
    while (ctx) {
423
        uint32_t magic, size, extra_size;
424

425
        __get_user(magic, &ctx->magic);
426
        __get_user(size, &ctx->size);
427
        switch (magic) {
428
        case 0:
429
            if (size != 0) {
430
                goto err;
431
            }
432
            if (used_extra) {
433
                ctx = NULL;
434
            } else {
435
                ctx = extra;
436
                used_extra = true;
437
            }
438
            continue;
439

440
        case TARGET_FPSIMD_MAGIC:
441
            if (fpsimd || size != sizeof(struct target_fpsimd_context)) {
442
                goto err;
443
            }
444
            fpsimd = (struct target_fpsimd_context *)ctx;
445
            break;
446

447
        case TARGET_SVE_MAGIC:
448
            if (sve || size < sizeof(struct target_sve_context)) {
449
                goto err;
450
            }
451
            sve = (struct target_sve_context *)ctx;
452
            sve_size = size;
453
            break;
454

455
        case TARGET_ZA_MAGIC:
456
            if (za || size < sizeof(struct target_za_context)) {
457
                goto err;
458
            }
459
            za = (struct target_za_context *)ctx;
460
            za_size = size;
461
            break;
462

463
        case TARGET_EXTRA_MAGIC:
464
            if (extra || size != sizeof(struct target_extra_context)) {
465
                goto err;
466
            }
467
            __get_user(extra_datap,
468
                       &((struct target_extra_context *)ctx)->datap);
469
            __get_user(extra_size,
470
                       &((struct target_extra_context *)ctx)->size);
471
            extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0);
472
            if (!extra) {
473
                return 1;
474
            }
475
            break;
476

477
        default:
478
            /* Unknown record -- we certainly didn't generate it.
479
             * Did we in fact get out of sync?
480
             */
481
            goto err;
482
        }
483
        ctx = (void *)ctx + size;
484
    }
485

486
    /* Require FPSIMD always.  */
487
    if (fpsimd) {
488
        target_restore_fpsimd_record(env, fpsimd);
489
    } else {
490
        goto err;
491
    }
492

493
    /* SVE data, if present, overwrites FPSIMD data.  */
494
    if (sve && !target_restore_sve_record(env, sve, sve_size, &svcr)) {
495
        goto err;
496
    }
497
    if (za && !target_restore_za_record(env, za, za_size, &svcr)) {
498
        goto err;
499
    }
500
    if (env->svcr != svcr) {
501
        env->svcr = svcr;
502
        arm_rebuild_hflags(env);
503
    }
504
    unlock_user(extra, extra_datap, 0);
505
    return 0;
506

507
 err:
508
    unlock_user(extra, extra_datap, 0);
509
    return 1;
510
}
511

512
static abi_ulong get_sigframe(struct target_sigaction *ka,
513
                              CPUARMState *env, int size)
514
{
515
    abi_ulong sp;
516

517
    sp = target_sigsp(get_sp_from_cpustate(env), ka);
518

519
    sp = (sp - size) & ~15;
520

521
    return sp;
522
}
523

524
typedef struct {
525
    int total_size;
526
    int extra_base;
527
    int extra_size;
528
    int std_end_ofs;
529
    int extra_ofs;
530
    int extra_end_ofs;
531
} target_sigframe_layout;
532

533
static int alloc_sigframe_space(int this_size, target_sigframe_layout *l)
534
{
535
    /* Make sure there will always be space for the end marker.  */
536
    const int std_size = sizeof(struct target_rt_sigframe)
537
                         - sizeof(struct target_aarch64_ctx);
538
    int this_loc = l->total_size;
539

540
    if (l->extra_base) {
541
        /* Once we have begun an extra space, all allocations go there.  */
542
        l->extra_size += this_size;
543
    } else if (this_size + this_loc > std_size) {
544
        /* This allocation does not fit in the standard space.  */
545
        /* Allocate the extra record.  */
546
        l->extra_ofs = this_loc;
547
        l->total_size += sizeof(struct target_extra_context);
548

549
        /* Allocate the standard end record.  */
550
        l->std_end_ofs = l->total_size;
551
        l->total_size += sizeof(struct target_aarch64_ctx);
552

553
        /* Allocate the requested record.  */
554
        l->extra_base = this_loc = l->total_size;
555
        l->extra_size = this_size;
556
    }
557
    l->total_size += this_size;
558

559
    return this_loc;
560
}
561

562
static void target_setup_frame(int usig, struct target_sigaction *ka,
563
                               target_siginfo_t *info, target_sigset_t *set,
564
                               CPUARMState *env)
565
{
566
    target_sigframe_layout layout = {
567
        /* Begin with the size pointing to the reserved space.  */
568
        .total_size = offsetof(struct target_rt_sigframe,
569
                               uc.tuc_mcontext.__reserved),
570
    };
571
    int fpsimd_ofs, fr_ofs, sve_ofs = 0, za_ofs = 0;
572
    int sve_size = 0, za_size = 0;
573
    struct target_rt_sigframe *frame;
574
    struct target_rt_frame_record *fr;
575
    abi_ulong frame_addr, return_addr;
576

577
    /* FPSIMD record is always in the standard space.  */
578
    fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context),
579
                                      &layout);
580

581
    /* SVE state needs saving only if it exists.  */
582
    if (cpu_isar_feature(aa64_sve, env_archcpu(env)) ||
583
        cpu_isar_feature(aa64_sme, env_archcpu(env))) {
584
        sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(sve_vq(env)), 16);
585
        sve_ofs = alloc_sigframe_space(sve_size, &layout);
586
    }
587
    if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
588
        /* ZA state needs saving only if it is enabled.  */
589
        if (FIELD_EX64(env->svcr, SVCR, ZA)) {
590
            za_size = TARGET_ZA_SIG_CONTEXT_SIZE(sme_vq(env));
591
        } else {
592
            za_size = TARGET_ZA_SIG_CONTEXT_SIZE(0);
593
        }
594
        za_ofs = alloc_sigframe_space(za_size, &layout);
595
    }
596

597
    if (layout.extra_ofs) {
598
        /* Reserve space for the extra end marker.  The standard end marker
599
         * will have been allocated when we allocated the extra record.
600
         */
601
        layout.extra_end_ofs
602
            = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout);
603
    } else {
604
        /* Reserve space for the standard end marker.
605
         * Do not use alloc_sigframe_space because we cheat
606
         * std_size therein to reserve space for this.
607
         */
608
        layout.std_end_ofs = layout.total_size;
609
        layout.total_size += sizeof(struct target_aarch64_ctx);
610
    }
611

612
    /* We must always provide at least the standard 4K reserved space,
613
     * even if we don't use all of it (this is part of the ABI)
614
     */
615
    layout.total_size = MAX(layout.total_size,
616
                            sizeof(struct target_rt_sigframe));
617

618
    /*
619
     * Reserve space for the standard frame unwind pair: fp, lr.
620
     * Despite the name this is not a "real" record within the frame.
621
     */
622
    fr_ofs = layout.total_size;
623
    layout.total_size += sizeof(struct target_rt_frame_record);
624

625
    frame_addr = get_sigframe(ka, env, layout.total_size);
626
    trace_user_setup_frame(env, frame_addr);
627
    frame = lock_user(VERIFY_WRITE, frame_addr, layout.total_size, 0);
628
    if (!frame) {
629
        goto give_sigsegv;
630
    }
631

632
    target_setup_general_frame(frame, env, set);
633
    target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env);
634
    target_setup_end_record((void *)frame + layout.std_end_ofs);
635
    if (layout.extra_ofs) {
636
        target_setup_extra_record((void *)frame + layout.extra_ofs,
637
                                  frame_addr + layout.extra_base,
638
                                  layout.extra_size);
639
        target_setup_end_record((void *)frame + layout.extra_end_ofs);
640
    }
641
    if (sve_ofs) {
642
        target_setup_sve_record((void *)frame + sve_ofs, env, sve_size);
643
    }
644
    if (za_ofs) {
645
        target_setup_za_record((void *)frame + za_ofs, env, za_size);
646
    }
647

648
    /* Set up the stack frame for unwinding.  */
649
    fr = (void *)frame + fr_ofs;
650
    __put_user(env->xregs[29], &fr->fp);
651
    __put_user(env->xregs[30], &fr->lr);
652

653
    if (ka->sa_flags & TARGET_SA_RESTORER) {
654
        return_addr = ka->sa_restorer;
655
    } else {
656
        return_addr = default_rt_sigreturn;
657
    }
658
    env->xregs[0] = usig;
659
    env->xregs[29] = frame_addr + fr_ofs;
660
    env->xregs[30] = return_addr;
661
    env->xregs[31] = frame_addr;
662
    env->pc = ka->_sa_handler;
663

664
    /* Invoke the signal handler as if by indirect call.  */
665
    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
666
        env->btype = 2;
667
    }
668

669
    /* Invoke the signal handler with both SM and ZA disabled. */
670
    aarch64_set_svcr(env, 0, R_SVCR_SM_MASK | R_SVCR_ZA_MASK);
671

672
    if (info) {
673
        frame->info = *info;
674
        env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info);
675
        env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc);
676
    }
677

678
    unlock_user(frame, frame_addr, layout.total_size);
679
    return;
680

681
 give_sigsegv:
682
    unlock_user(frame, frame_addr, layout.total_size);
683
    force_sigsegv(usig);
684
}
685

686
void setup_rt_frame(int sig, struct target_sigaction *ka,
687
                    target_siginfo_t *info, target_sigset_t *set,
688
                    CPUARMState *env)
689
{
690
    target_setup_frame(sig, ka, info, set, env);
691
}
692

693
void setup_frame(int sig, struct target_sigaction *ka,
694
                 target_sigset_t *set, CPUARMState *env)
695
{
696
    target_setup_frame(sig, ka, 0, set, env);
697
}
698

699
long do_rt_sigreturn(CPUARMState *env)
700
{
701
    struct target_rt_sigframe *frame = NULL;
702
    abi_ulong frame_addr = env->xregs[31];
703

704
    trace_user_do_rt_sigreturn(env, frame_addr);
705
    if (frame_addr & 15) {
706
        goto badframe;
707
    }
708

709
    if  (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) {
710
        goto badframe;
711
    }
712

713
    if (target_restore_sigframe(env, frame)) {
714
        goto badframe;
715
    }
716

717
    target_restore_altstack(&frame->uc.tuc_stack, env);
718

719
    unlock_user_struct(frame, frame_addr, 0);
720
    return -QEMU_ESIGRETURN;
721

722
 badframe:
723
    unlock_user_struct(frame, frame_addr, 0);
724
    force_sig(TARGET_SIGSEGV);
725
    return -QEMU_ESIGRETURN;
726
}
727

728
long do_sigreturn(CPUARMState *env)
729
{
730
    return do_rt_sigreturn(env);
731
}
732

733
void setup_sigtramp(abi_ulong sigtramp_page)
734
{
735
    uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 8, 0);
736
    assert(tramp != NULL);
737

738
    /*
739
     * mov x8,#__NR_rt_sigreturn; svc #0
740
     * Since these are instructions they need to be put as little-endian
741
     * regardless of target default or current CPU endianness.
742
     */
743
    __put_user_e(0xd2801168, &tramp[0], le);
744
    __put_user_e(0xd4000001, &tramp[1], le);
745

746
    default_rt_sigreturn = sigtramp_page;
747
    unlock_user(tramp, sigtramp_page, 8);
748
}
749

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.