qemu

Форк
0
/
leon3.c 
445 строк · 15.3 Кб
1
/*
2
 * QEMU Leon3 System Emulator
3
 *
4
 * SPDX-License-Identifier: MIT
5
 *
6
 * Copyright (c) 2010-2024 AdaCore
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 */
26

27
#include "qemu/osdep.h"
28
#include "qemu/units.h"
29
#include "qemu/error-report.h"
30
#include "qapi/error.h"
31
#include "qemu/datadir.h"
32
#include "cpu.h"
33
#include "hw/irq.h"
34
#include "qemu/timer.h"
35
#include "hw/ptimer.h"
36
#include "hw/qdev-properties.h"
37
#include "sysemu/sysemu.h"
38
#include "sysemu/qtest.h"
39
#include "sysemu/reset.h"
40
#include "hw/boards.h"
41
#include "hw/loader.h"
42
#include "elf.h"
43
#include "trace.h"
44

45
#include "hw/timer/grlib_gptimer.h"
46
#include "hw/char/grlib_uart.h"
47
#include "hw/intc/grlib_irqmp.h"
48
#include "hw/misc/grlib_ahb_apb_pnp.h"
49

50
/* Default system clock.  */
51
#define CPU_CLK (40 * 1000 * 1000)
52

53
#define LEON3_PROM_FILENAME "u-boot.bin"
54
#define LEON3_PROM_OFFSET    (0x00000000)
55
#define LEON3_RAM_OFFSET     (0x40000000)
56

57
#define MAX_CPUS  4
58

59
#define LEON3_UART_OFFSET  (0x80000100)
60
#define LEON3_UART_IRQ     (3)
61

62
#define LEON3_IRQMP_OFFSET (0x80000200)
63

64
#define LEON3_TIMER_OFFSET (0x80000300)
65
#define LEON3_TIMER_IRQ    (6)
66
#define LEON3_TIMER_COUNT  (2)
67

68
#define LEON3_APB_PNP_OFFSET (0x800FF000)
69
#define LEON3_AHB_PNP_OFFSET (0xFFFFF000)
70

71
typedef struct ResetData {
72
    struct CPUResetData {
73
        int id;
74
        SPARCCPU *cpu;
75
    } info[MAX_CPUS];
76
    uint32_t entry;             /* save kernel entry in case of reset */
77
} ResetData;
78

79
static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val)
80
{
81
    stl_p(code++, 0x82100000); /* mov %g0, %g1                */
82
    stl_p(code++, 0x84100000); /* mov %g0, %g2                */
83
    stl_p(code++, 0x03000000 +
84
      extract32(addr, 10, 22));
85
                               /* sethi %hi(addr), %g1        */
86
    stl_p(code++, 0x82106000 +
87
      extract32(addr, 0, 10));
88
                               /* or %g1, addr, %g1           */
89
    stl_p(code++, 0x05000000 +
90
      extract32(val, 10, 22));
91
                               /* sethi %hi(val), %g2         */
92
    stl_p(code++, 0x8410a000 +
93
      extract32(val, 0, 10));
94
                               /* or %g2, val, %g2            */
95
    stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ]             */
96

97
    return code;
98
}
99

100
/*
101
 * When loading a kernel in RAM the machine is expected to be in a different
102
 * state (eg: initialized by the bootloader).  This little code reproduces
103
 * this behavior.  Also this code can be executed by the secondary cpus as
104
 * well since it looks at the %asr17 register before doing any
105
 * initialization, it allows to use the same reset address for all the
106
 * cpus.
107
 */
108
static void write_bootloader(void *ptr, hwaddr kernel_addr)
109
{
110
    uint32_t *p = ptr;
111
    uint32_t *sec_cpu_branch_p = NULL;
112

113
    /* If we are running on a secondary CPU, jump directly to the kernel.  */
114

115
    stl_p(p++, 0x85444000); /* rd %asr17, %g2      */
116
    stl_p(p++, 0x8530a01c); /* srl  %g2, 0x1c, %g2 */
117
    stl_p(p++, 0x80908000); /* tst  %g2            */
118
    /* Filled below.  */
119
    sec_cpu_branch_p = p;
120
    stl_p(p++, 0x0BADC0DE); /* bne xxx             */
121
    stl_p(p++, 0x01000000); /* nop */
122

123
    /* Initialize the UARTs                                        */
124
    /* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */
125
    p = gen_store_u32(p, 0x80000108, 3);
126

127
    /* Initialize the TIMER 0                                      */
128
    /* *GPTIMER_SCALER_RELOAD = 40 - 1;                            */
129
    p = gen_store_u32(p, 0x80000304, 39);
130
    /* *GPTIMER0_COUNTER_RELOAD = 0xFFFE;                          */
131
    p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE);
132
    /* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART;        */
133
    p = gen_store_u32(p, 0x80000318, 3);
134

135
    /* Now, the relative branch above can be computed.  */
136
    stl_p(sec_cpu_branch_p, 0x12800000
137
          + (p - sec_cpu_branch_p));
138

139
    /* JUMP to the entry point                                     */
140
    stl_p(p++, 0x82100000); /* mov %g0, %g1 */
141
    stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22));
142
                            /* sethi %hi(kernel_addr), %g1 */
143
    stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10));
144
                            /* or kernel_addr, %g1 */
145
    stl_p(p++, 0x81c04000); /* jmp  %g1 */
146
    stl_p(p++, 0x01000000); /* nop */
147
}
148

149
static void leon3_cpu_reset(void *opaque)
150
{
151
    struct CPUResetData *info = (struct CPUResetData *) opaque;
152
    int id = info->id;
153
    ResetData *s = container_of(info, ResetData, info[id]);
154
    CPUState *cpu = CPU(s->info[id].cpu);
155
    CPUSPARCState *env = cpu_env(cpu);
156

157
    cpu_reset(cpu);
158

159
    cpu->halted = cpu->cpu_index != 0;
160
    env->pc = s->entry;
161
    env->npc = s->entry + 4;
162
}
163

164
static void leon3_cache_control_int(CPUSPARCState *env)
165
{
166
    uint32_t state = 0;
167

168
    if (env->cache_control & CACHE_CTRL_IF) {
169
        /* Instruction cache state */
170
        state = env->cache_control & CACHE_STATE_MASK;
171
        if (state == CACHE_ENABLED) {
172
            state = CACHE_FROZEN;
173
            trace_int_helper_icache_freeze();
174
        }
175

176
        env->cache_control &= ~CACHE_STATE_MASK;
177
        env->cache_control |= state;
178
    }
179

180
    if (env->cache_control & CACHE_CTRL_DF) {
181
        /* Data cache state */
182
        state = (env->cache_control >> 2) & CACHE_STATE_MASK;
183
        if (state == CACHE_ENABLED) {
184
            state = CACHE_FROZEN;
185
            trace_int_helper_dcache_freeze();
186
        }
187

188
        env->cache_control &= ~(CACHE_STATE_MASK << 2);
189
        env->cache_control |= (state << 2);
190
    }
191
}
192

193
static void leon3_irq_ack(CPUSPARCState *env, int intno)
194
{
195
    CPUState *cpu = CPU(env_cpu(env));
196
    grlib_irqmp_ack(env->irq_manager, cpu->cpu_index, intno);
197
}
198

199
/*
200
 * This device assumes that the incoming 'level' value on the
201
 * qemu_irq is the interrupt number, not just a simple 0/1 level.
202
 */
203
static void leon3_set_pil_in(void *opaque, int n, int level)
204
{
205
    DeviceState *cpu = opaque;
206
    CPUState *cs = CPU(cpu);
207
    CPUSPARCState *env = cpu_env(cs);
208
    uint32_t pil_in = level;
209

210
    assert(env != NULL);
211

212
    env->pil_in = pil_in;
213

214
    if (env->pil_in && (env->interrupt_index == 0 ||
215
                        (env->interrupt_index & ~15) == TT_EXTINT)) {
216
        unsigned int i;
217

218
        for (i = 15; i > 0; i--) {
219
            if (env->pil_in & (1 << i)) {
220
                int old_interrupt = env->interrupt_index;
221

222
                env->interrupt_index = TT_EXTINT | i;
223
                if (old_interrupt != env->interrupt_index) {
224
                    trace_leon3_set_irq(i);
225
                    cpu_interrupt(cs, CPU_INTERRUPT_HARD);
226
                }
227
                break;
228
            }
229
        }
230
    } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
231
        trace_leon3_reset_irq(env->interrupt_index & 15);
232
        env->interrupt_index = 0;
233
        cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
234
    }
235
}
236

237
static void leon3_start_cpu_async_work(CPUState *cpu, run_on_cpu_data data)
238
{
239
    cpu->halted = 0;
240
}
241

242
static void leon3_start_cpu(void *opaque, int n, int level)
243
{
244
    DeviceState *cpu = opaque;
245
    CPUState *cs = CPU(cpu);
246

247
    assert(level == 1);
248
    async_run_on_cpu(cs, leon3_start_cpu_async_work, RUN_ON_CPU_NULL);
249
}
250

251
static void leon3_irq_manager(CPUSPARCState *env, int intno)
252
{
253
    leon3_irq_ack(env, intno);
254
    leon3_cache_control_int(env);
255
}
256

257
static void leon3_generic_hw_init(MachineState *machine)
258
{
259
    ram_addr_t ram_size = machine->ram_size;
260
    const char *bios_name = machine->firmware ?: LEON3_PROM_FILENAME;
261
    const char *kernel_filename = machine->kernel_filename;
262
    SPARCCPU *cpu;
263
    CPUSPARCState   *env;
264
    MemoryRegion *address_space_mem = get_system_memory();
265
    MemoryRegion *prom = g_new(MemoryRegion, 1);
266
    int         ret;
267
    char       *filename;
268
    int         bios_size;
269
    int         prom_size;
270
    ResetData  *reset_info;
271
    DeviceState *dev, *irqmpdev;
272
    int i;
273
    AHBPnp *ahb_pnp;
274
    APBPnp *apb_pnp;
275

276
    reset_info = g_malloc0(sizeof(ResetData));
277

278
    for (i = 0; i < machine->smp.cpus; i++) {
279
        /* Init CPU */
280
        cpu = SPARC_CPU(object_new(machine->cpu_type));
281
        qdev_init_gpio_in_named(DEVICE(cpu), leon3_start_cpu, "start_cpu", 1);
282
        qdev_init_gpio_in_named(DEVICE(cpu), leon3_set_pil_in, "pil", 1);
283
        qdev_realize(DEVICE(cpu), NULL, &error_fatal);
284
        env = &cpu->env;
285

286
        cpu_sparc_set_id(env, i);
287

288
        /* Reset data */
289
        reset_info->info[i].id = i;
290
        reset_info->info[i].cpu = cpu;
291
        qemu_register_reset(leon3_cpu_reset, &reset_info->info[i]);
292
    }
293

294
    ahb_pnp = GRLIB_AHB_PNP(qdev_new(TYPE_GRLIB_AHB_PNP));
295
    sysbus_realize_and_unref(SYS_BUS_DEVICE(ahb_pnp), &error_fatal);
296
    sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET);
297
    grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER,
298
                            GRLIB_LEON3_DEV, GRLIB_AHB_MASTER,
299
                            GRLIB_CPU_AREA);
300

301
    apb_pnp = GRLIB_APB_PNP(qdev_new(TYPE_GRLIB_APB_PNP));
302
    sysbus_realize_and_unref(SYS_BUS_DEVICE(apb_pnp), &error_fatal);
303
    sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET);
304
    grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF,
305
                            GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV,
306
                            GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA);
307

308
    /* Allocate IRQ manager */
309
    irqmpdev = qdev_new(TYPE_GRLIB_IRQMP);
310
    object_property_set_int(OBJECT(irqmpdev), "ncpus", machine->smp.cpus,
311
                            &error_fatal);
312
    sysbus_realize_and_unref(SYS_BUS_DEVICE(irqmpdev), &error_fatal);
313

314
    for (i = 0; i < machine->smp.cpus; i++) {
315
        cpu = reset_info->info[i].cpu;
316
        env = &cpu->env;
317
        qdev_connect_gpio_out_named(irqmpdev, "grlib-start-cpu", i,
318
                                    qdev_get_gpio_in_named(DEVICE(cpu),
319
                                                           "start_cpu", 0));
320
        qdev_connect_gpio_out_named(irqmpdev, "grlib-irq", i,
321
                                    qdev_get_gpio_in_named(DEVICE(cpu),
322
                                                           "pil", 0));
323
        env->irq_manager = irqmpdev;
324
        env->qemu_irq_ack = leon3_irq_manager;
325
    }
326

327
    sysbus_mmio_map(SYS_BUS_DEVICE(irqmpdev), 0, LEON3_IRQMP_OFFSET);
328
    grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF,
329
                            GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV,
330
                            2, 0, GRLIB_APBIO_AREA);
331

332
    /* Allocate RAM */
333
    if (ram_size > 1 * GiB) {
334
        error_report("Too much memory for this machine: %" PRId64 "MB,"
335
                     " maximum 1G",
336
                     ram_size / MiB);
337
        exit(1);
338
    }
339

340
    memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET,
341
                                machine->ram);
342

343
    /* Allocate BIOS */
344
    prom_size = 8 * MiB;
345
    memory_region_init_rom(prom, NULL, "Leon3.bios", prom_size, &error_fatal);
346
    memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom);
347

348
    /* Load boot prom */
349
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
350

351
    if (filename) {
352
        bios_size = get_image_size(filename);
353
    } else {
354
        bios_size = -1;
355
    }
356

357
    if (bios_size > prom_size) {
358
        error_report("could not load prom '%s': file too big", filename);
359
        exit(1);
360
    }
361

362
    if (bios_size > 0) {
363
        ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size);
364
        if (ret < 0 || ret > prom_size) {
365
            error_report("could not load prom '%s'", filename);
366
            exit(1);
367
        }
368
    } else if (kernel_filename == NULL && !qtest_enabled()) {
369
        error_report("Can't read bios image '%s'", filename
370
                                                   ? filename
371
                                                   : LEON3_PROM_FILENAME);
372
        exit(1);
373
    }
374
    g_free(filename);
375

376
    /* Can directly load an application. */
377
    if (kernel_filename != NULL) {
378
        long     kernel_size;
379
        uint64_t entry;
380

381
        kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
382
                               &entry, NULL, NULL, NULL,
383
                               1 /* big endian */, EM_SPARC, 0, 0);
384
        if (kernel_size < 0) {
385
            kernel_size = load_uimage(kernel_filename, NULL, &entry,
386
                                      NULL, NULL, NULL);
387
        }
388
        if (kernel_size < 0) {
389
            error_report("could not load kernel '%s'", kernel_filename);
390
            exit(1);
391
        }
392
        if (bios_size <= 0) {
393
            /*
394
             * If there is no bios/monitor just start the application but put
395
             * the machine in an initialized state through a little
396
             * bootloader.
397
             */
398
            write_bootloader(memory_region_get_ram_ptr(prom), entry);
399
            reset_info->entry = LEON3_PROM_OFFSET;
400
            for (i = 0; i < machine->smp.cpus; i++) {
401
                reset_info->info[i].cpu->env.pc = LEON3_PROM_OFFSET;
402
                reset_info->info[i].cpu->env.npc = LEON3_PROM_OFFSET + 4;
403
            }
404
        }
405
    }
406

407
    /* Allocate timers */
408
    dev = qdev_new(TYPE_GRLIB_GPTIMER);
409
    qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT);
410
    qdev_prop_set_uint32(dev, "frequency", CPU_CLK);
411
    qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ);
412
    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
413

414
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET);
415
    for (i = 0; i < LEON3_TIMER_COUNT; i++) {
416
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
417
                           qdev_get_gpio_in(irqmpdev, LEON3_TIMER_IRQ + i));
418
    }
419

420
    grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF,
421
                            GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV,
422
                            0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA);
423

424
    /* Allocate uart */
425
    dev = qdev_new(TYPE_GRLIB_APB_UART);
426
    qdev_prop_set_chr(dev, "chrdev", serial_hd(0));
427
    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
428
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET);
429
    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
430
                       qdev_get_gpio_in(irqmpdev, LEON3_UART_IRQ));
431
    grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF,
432
                            GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1,
433
                            LEON3_UART_IRQ, GRLIB_APBIO_AREA);
434
}
435

436
static void leon3_generic_machine_init(MachineClass *mc)
437
{
438
    mc->desc = "Leon-3 generic";
439
    mc->init = leon3_generic_hw_init;
440
    mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3");
441
    mc->default_ram_id = "leon3.ram";
442
    mc->max_cpus = MAX_CPUS;
443
}
444

445
DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init)
446

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.