qemu

Форк
0
/
boot.c 
475 строк · 15.7 Кб
1
/*
2
 * QEMU RISC-V Boot Helper
3
 *
4
 * Copyright (c) 2017 SiFive, Inc.
5
 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
6
 *
7
 * This program is free software; you can redistribute it and/or modify it
8
 * under the terms and conditions of the GNU General Public License,
9
 * version 2 or later, as published by the Free Software Foundation.
10
 *
11
 * This program is distributed in the hope it will be useful, but WITHOUT
12
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14
 * more details.
15
 *
16
 * You should have received a copy of the GNU General Public License along with
17
 * this program.  If not, see <http://www.gnu.org/licenses/>.
18
 */
19

20
#include "qemu/osdep.h"
21
#include "qemu/datadir.h"
22
#include "qemu/units.h"
23
#include "qemu/error-report.h"
24
#include "exec/cpu-defs.h"
25
#include "hw/boards.h"
26
#include "hw/loader.h"
27
#include "hw/riscv/boot.h"
28
#include "hw/riscv/boot_opensbi.h"
29
#include "elf.h"
30
#include "sysemu/device_tree.h"
31
#include "sysemu/qtest.h"
32
#include "sysemu/kvm.h"
33
#include "sysemu/reset.h"
34

35
#include <libfdt.h>
36

37
bool riscv_is_32bit(RISCVHartArrayState *harts)
38
{
39
    RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]);
40
    return mcc->misa_mxl_max == MXL_RV32;
41
}
42

43
/*
44
 * Return the per-socket PLIC hart topology configuration string
45
 * (caller must free with g_free())
46
 */
47
char *riscv_plic_hart_config_string(int hart_count)
48
{
49
    g_autofree const char **vals = g_new(const char *, hart_count + 1);
50
    int i;
51

52
    for (i = 0; i < hart_count; i++) {
53
        CPUState *cs = qemu_get_cpu(i);
54
        CPURISCVState *env = &RISCV_CPU(cs)->env;
55

56
        if (kvm_enabled()) {
57
            vals[i] = "S";
58
        } else if (riscv_has_ext(env, RVS)) {
59
            vals[i] = "MS";
60
        } else {
61
            vals[i] = "M";
62
        }
63
    }
64
    vals[i] = NULL;
65

66
    /* g_strjoinv() obliges us to cast away const here */
67
    return g_strjoinv(",", (char **)vals);
68
}
69

70
target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
71
                                          target_ulong firmware_end_addr) {
72
    if (riscv_is_32bit(harts)) {
73
        return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
74
    } else {
75
        return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
76
    }
77
}
78

79
const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
80
{
81
    if (riscv_is_32bit(harts)) {
82
        return RISCV32_BIOS_BIN;
83
    }
84

85
    return RISCV64_BIOS_BIN;
86
}
87

88
static char *riscv_find_bios(const char *bios_filename)
89
{
90
    char *filename;
91

92
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
93
    if (filename == NULL) {
94
        if (!qtest_enabled()) {
95
            /*
96
             * We only ship OpenSBI binary bios images in the QEMU source.
97
             * For machines that use images other than the default bios,
98
             * running QEMU test will complain hence let's suppress the error
99
             * report for QEMU testing.
100
             */
101
            error_report("Unable to find the RISC-V BIOS \"%s\"",
102
                         bios_filename);
103
            exit(1);
104
        }
105
    }
106

107
    return filename;
108
}
109

110
char *riscv_find_firmware(const char *firmware_filename,
111
                          const char *default_machine_firmware)
112
{
113
    char *filename = NULL;
114

115
    if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
116
        /*
117
         * The user didn't specify -bios, or has specified "-bios default".
118
         * That means we are going to load the OpenSBI binary included in
119
         * the QEMU source.
120
         */
121
        filename = riscv_find_bios(default_machine_firmware);
122
    } else if (strcmp(firmware_filename, "none")) {
123
        filename = riscv_find_bios(firmware_filename);
124
    }
125

126
    return filename;
127
}
128

129
target_ulong riscv_find_and_load_firmware(MachineState *machine,
130
                                          const char *default_machine_firmware,
131
                                          hwaddr firmware_load_addr,
132
                                          symbol_fn_t sym_cb)
133
{
134
    char *firmware_filename;
135
    target_ulong firmware_end_addr = firmware_load_addr;
136

137
    firmware_filename = riscv_find_firmware(machine->firmware,
138
                                            default_machine_firmware);
139

140
    if (firmware_filename) {
141
        /* If not "none" load the firmware */
142
        firmware_end_addr = riscv_load_firmware(firmware_filename,
143
                                                firmware_load_addr, sym_cb);
144
        g_free(firmware_filename);
145
    }
146

147
    return firmware_end_addr;
148
}
149

150
target_ulong riscv_load_firmware(const char *firmware_filename,
151
                                 hwaddr firmware_load_addr,
152
                                 symbol_fn_t sym_cb)
153
{
154
    uint64_t firmware_entry, firmware_end;
155
    ssize_t firmware_size;
156

157
    g_assert(firmware_filename != NULL);
158

159
    if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
160
                         &firmware_entry, NULL, &firmware_end, NULL,
161
                         0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
162
        return firmware_end;
163
    }
164

165
    firmware_size = load_image_targphys_as(firmware_filename,
166
                                           firmware_load_addr,
167
                                           current_machine->ram_size, NULL);
168

169
    if (firmware_size > 0) {
170
        return firmware_load_addr + firmware_size;
171
    }
172

173
    error_report("could not load firmware '%s'", firmware_filename);
174
    exit(1);
175
}
176

177
static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
178
{
179
    const char *filename = machine->initrd_filename;
180
    uint64_t mem_size = machine->ram_size;
181
    void *fdt = machine->fdt;
182
    hwaddr start, end;
183
    ssize_t size;
184

185
    g_assert(filename != NULL);
186

187
    /*
188
     * We want to put the initrd far enough into RAM that when the
189
     * kernel is uncompressed it will not clobber the initrd. However
190
     * on boards without much RAM we must ensure that we still leave
191
     * enough room for a decent sized initrd, and on boards with large
192
     * amounts of RAM, we put the initrd at 512MB to allow large kernels
193
     * to boot.
194
     * So for boards with less than 1GB of RAM we put the initrd
195
     * halfway into RAM, and for boards with 1GB of RAM or more we put
196
     * the initrd at 512MB.
197
     */
198
    start = kernel_entry + MIN(mem_size / 2, 512 * MiB);
199

200
    size = load_ramdisk(filename, start, mem_size - start);
201
    if (size == -1) {
202
        size = load_image_targphys(filename, start, mem_size - start);
203
        if (size == -1) {
204
            error_report("could not load ramdisk '%s'", filename);
205
            exit(1);
206
        }
207
    }
208

209
    /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
210
    if (fdt) {
211
        end = start + size;
212
        qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-start", start);
213
        qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-end", end);
214
    }
215
}
216

217
target_ulong riscv_load_kernel(MachineState *machine,
218
                               RISCVHartArrayState *harts,
219
                               target_ulong kernel_start_addr,
220
                               bool load_initrd,
221
                               symbol_fn_t sym_cb)
222
{
223
    const char *kernel_filename = machine->kernel_filename;
224
    uint64_t kernel_load_base, kernel_entry;
225
    void *fdt = machine->fdt;
226

227
    g_assert(kernel_filename != NULL);
228

229
    /*
230
     * NB: Use low address not ELF entry point to ensure that the fw_dynamic
231
     * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
232
     * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
233
     * the (expected) load address load address. This allows kernels to have
234
     * separate SBI and ELF entry points (used by FreeBSD, for example).
235
     */
236
    if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
237
                         NULL, &kernel_load_base, NULL, NULL, 0,
238
                         EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
239
        kernel_entry = kernel_load_base;
240
        goto out;
241
    }
242

243
    if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
244
                       NULL, NULL, NULL) > 0) {
245
        goto out;
246
    }
247

248
    if (load_image_targphys_as(kernel_filename, kernel_start_addr,
249
                               current_machine->ram_size, NULL) > 0) {
250
        kernel_entry = kernel_start_addr;
251
        goto out;
252
    }
253

254
    error_report("could not load kernel '%s'", kernel_filename);
255
    exit(1);
256

257
out:
258
    /*
259
     * For 32 bit CPUs 'kernel_entry' can be sign-extended by
260
     * load_elf_ram_sym().
261
     */
262
    if (riscv_is_32bit(harts)) {
263
        kernel_entry = extract64(kernel_entry, 0, 32);
264
    }
265

266
    if (load_initrd && machine->initrd_filename) {
267
        riscv_load_initrd(machine, kernel_entry);
268
    }
269

270
    if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
271
        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
272
                                machine->kernel_cmdline);
273
    }
274

275
    return kernel_entry;
276
}
277

278
/*
279
 * This function makes an assumption that the DRAM interval
280
 * 'dram_base' + 'dram_size' is contiguous.
281
 *
282
 * Considering that 'dram_end' is the lowest value between
283
 * the end of the DRAM block and MachineState->ram_size, the
284
 * FDT location will vary according to 'dram_base':
285
 *
286
 * - if 'dram_base' is less that 3072 MiB, the FDT will be
287
 * put at the lowest value between 3072 MiB and 'dram_end';
288
 *
289
 * - if 'dram_base' is higher than 3072 MiB, the FDT will be
290
 * put at 'dram_end'.
291
 *
292
 * The FDT is fdt_packed() during the calculation.
293
 */
294
uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
295
                                MachineState *ms)
296
{
297
    int ret = fdt_pack(ms->fdt);
298
    hwaddr dram_end, temp;
299
    int fdtsize;
300

301
    /* Should only fail if we've built a corrupted tree */
302
    g_assert(ret == 0);
303

304
    fdtsize = fdt_totalsize(ms->fdt);
305
    if (fdtsize <= 0) {
306
        error_report("invalid device-tree");
307
        exit(1);
308
    }
309

310
    /*
311
     * A dram_size == 0, usually from a MemMapEntry[].size element,
312
     * means that the DRAM block goes all the way to ms->ram_size.
313
     */
314
    dram_end = dram_base;
315
    dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
316

317
    /*
318
     * We should put fdt as far as possible to avoid kernel/initrd overwriting
319
     * its content. But it should be addressable by 32 bit system as well.
320
     * Thus, put it at an 2MB aligned address that less than fdt size from the
321
     * end of dram or 3GB whichever is lesser.
322
     */
323
    temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
324

325
    return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
326
}
327

328
/*
329
 * 'fdt_addr' is received as hwaddr because boards might put
330
 * the FDT beyond 32-bit addressing boundary.
331
 */
332
void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
333
{
334
    uint32_t fdtsize = fdt_totalsize(fdt);
335

336
    /* copy in the device tree */
337
    qemu_fdt_dumpdtb(fdt, fdtsize);
338

339
    rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
340
                          &address_space_memory);
341
    qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
342
                        rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
343
}
344

345
void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
346
                                  hwaddr rom_size, uint32_t reset_vec_size,
347
                                  uint64_t kernel_entry)
348
{
349
    struct fw_dynamic_info dinfo;
350
    size_t dinfo_len;
351

352
    if (sizeof(dinfo.magic) == 4) {
353
        dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
354
        dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
355
        dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
356
        dinfo.next_addr = cpu_to_le32(kernel_entry);
357
    } else {
358
        dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
359
        dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
360
        dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
361
        dinfo.next_addr = cpu_to_le64(kernel_entry);
362
    }
363
    dinfo.options = 0;
364
    dinfo.boot_hart = 0;
365
    dinfo_len = sizeof(dinfo);
366

367
    /**
368
     * copy the dynamic firmware info. This information is specific to
369
     * OpenSBI but doesn't break any other firmware as long as they don't
370
     * expect any certain value in "a2" register.
371
     */
372
    if (dinfo_len > (rom_size - reset_vec_size)) {
373
        error_report("not enough space to store dynamic firmware info");
374
        exit(1);
375
    }
376

377
    rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
378
                           rom_base + reset_vec_size,
379
                           &address_space_memory);
380
}
381

382
void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
383
                               hwaddr start_addr,
384
                               hwaddr rom_base, hwaddr rom_size,
385
                               uint64_t kernel_entry,
386
                               uint64_t fdt_load_addr)
387
{
388
    int i;
389
    uint32_t start_addr_hi32 = 0x00000000;
390
    uint32_t fdt_load_addr_hi32 = 0x00000000;
391

392
    if (!riscv_is_32bit(harts)) {
393
        start_addr_hi32 = start_addr >> 32;
394
        fdt_load_addr_hi32 = fdt_load_addr >> 32;
395
    }
396
    /* reset vector */
397
    uint32_t reset_vec[10] = {
398
        0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
399
        0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
400
        0xf1402573,                  /*     csrr   a0, mhartid  */
401
        0,
402
        0,
403
        0x00028067,                  /*     jr     t0 */
404
        start_addr,                  /* start: .dword */
405
        start_addr_hi32,
406
        fdt_load_addr,               /* fdt_laddr: .dword */
407
        fdt_load_addr_hi32,
408
                                     /* fw_dyn: */
409
    };
410
    if (riscv_is_32bit(harts)) {
411
        reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
412
        reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
413
    } else {
414
        reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
415
        reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
416
    }
417

418
    if (!harts->harts[0].cfg.ext_zicsr) {
419
        /*
420
         * The Zicsr extension has been disabled, so let's ensure we don't
421
         * run the CSR instruction. Let's fill the address with a non
422
         * compressed nop.
423
         */
424
        reset_vec[2] = 0x00000013;   /*     addi   x0, x0, 0 */
425
    }
426

427
    /* copy in the reset vector in little_endian byte order */
428
    for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
429
        reset_vec[i] = cpu_to_le32(reset_vec[i]);
430
    }
431
    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
432
                          rom_base, &address_space_memory);
433
    riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
434
                                 kernel_entry);
435
}
436

437
void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
438
{
439
    CPUState *cs;
440

441
    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
442
        RISCVCPU *riscv_cpu = RISCV_CPU(cs);
443
        riscv_cpu->env.kernel_addr = kernel_addr;
444
        riscv_cpu->env.fdt_addr = fdt_addr;
445
    }
446
}
447

448
void riscv_setup_firmware_boot(MachineState *machine)
449
{
450
    if (machine->kernel_filename) {
451
        FWCfgState *fw_cfg;
452
        fw_cfg = fw_cfg_find();
453

454
        assert(fw_cfg);
455
        /*
456
         * Expose the kernel, the command line, and the initrd in fw_cfg.
457
         * We don't process them here at all, it's all left to the
458
         * firmware.
459
         */
460
        load_image_to_fw_cfg(fw_cfg,
461
                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
462
                             machine->kernel_filename,
463
                             true);
464
        load_image_to_fw_cfg(fw_cfg,
465
                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
466
                             machine->initrd_filename, false);
467

468
        if (machine->kernel_cmdline) {
469
            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
470
                           strlen(machine->kernel_cmdline) + 1);
471
            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
472
                              machine->kernel_cmdline);
473
        }
474
    }
475
}
476

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.