qemu

Форк
0
/
stm32l4x5_rcc.c 
1474 строки · 44.4 Кб
1
/*
2
 * STM32L4X5 RCC (Reset and clock control)
3
 *
4
 * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
5
 * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
6
 *
7
 * SPDX-License-Identifier: GPL-2.0-or-later
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10
 * See the COPYING file in the top-level directory.
11
 *
12
 * The reference used is the STMicroElectronics RM0351 Reference manual
13
 * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
14
 *
15
 * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
16
 */
17

18
#include "qemu/osdep.h"
19
#include "qemu/log.h"
20
#include "qemu/module.h"
21
#include "qemu/timer.h"
22
#include "qapi/error.h"
23
#include "migration/vmstate.h"
24
#include "hw/misc/stm32l4x5_rcc.h"
25
#include "hw/misc/stm32l4x5_rcc_internals.h"
26
#include "hw/clock.h"
27
#include "hw/irq.h"
28
#include "hw/qdev-clock.h"
29
#include "hw/qdev-properties.h"
30
#include "hw/qdev-properties-system.h"
31
#include "hw/registerfields.h"
32
#include "trace.h"
33

34
#define HSE_DEFAULT_FRQ 48000000ULL
35
#define HSI_FRQ 16000000ULL
36
#define MSI_DEFAULT_FRQ 4000000ULL
37
#define LSE_FRQ 32768ULL
38
#define LSI_FRQ 32000ULL
39

40
/*
41
 * Function to simply acknowledge and propagate changes in a clock mux
42
 * frequency.
43
 * `bypass_source` allows to bypass the period of the current source and just
44
 * consider it equal to 0. This is useful during the hold phase of reset.
45
 */
46
static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
47
{
48
    uint64_t src_freq;
49
    Clock *current_source = mux->srcs[mux->src];
50
    uint32_t freq_multiplier = 0;
51
    bool clk_changed = false;
52

53
    /*
54
     * To avoid rounding errors, we use the clock period instead of the
55
     * frequency.
56
     * This means that the multiplier of the mux becomes the divider of
57
     * the clock and the divider of the mux becomes the multiplier of the
58
     * clock.
59
     */
60
    if (!bypass_source && mux->enabled && mux->divider) {
61
        freq_multiplier = mux->divider;
62
    }
63

64
    clk_changed |= clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
65
    clk_changed |= clock_set(mux->out, clock_get(current_source));
66
    if (clk_changed) {
67
        clock_propagate(mux->out);
68
    }
69

70
    src_freq = clock_get_hz(current_source);
71
    /* TODO: can we simply detect if the config changed so that we reduce log spam ? */
72
    trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
73
                                   mux->multiplier, mux->divider);
74
}
75

76
static void clock_mux_src_update(void *opaque, ClockEvent event)
77
{
78
    RccClockMuxState **backref = opaque;
79
    RccClockMuxState *s = *backref;
80
    /*
81
     * The backref value is equal to:
82
     * s->backref + (sizeof(RccClockMuxState *) * update_src).
83
     * By subtracting we can get back the index of the updated clock.
84
     */
85
    const uint32_t update_src = backref - s->backref;
86
    /* Only update if the clock that was updated is the current source */
87
    if (update_src == s->src) {
88
        clock_mux_update(s, false);
89
    }
90
}
91

92
static void clock_mux_init(Object *obj)
93
{
94
    RccClockMuxState *s = RCC_CLOCK_MUX(obj);
95
    size_t i;
96

97
    for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
98
        char *name = g_strdup_printf("srcs[%zu]", i);
99
        s->backref[i] = s;
100
        s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
101
                                        clock_mux_src_update,
102
                                        &s->backref[i],
103
                                        ClockUpdate);
104
        g_free(name);
105
    }
106

107
    s->out = qdev_init_clock_out(DEVICE(s), "out");
108
}
109

110
static void clock_mux_reset_enter(Object *obj, ResetType type)
111
{
112
    RccClockMuxState *s = RCC_CLOCK_MUX(obj);
113
    set_clock_mux_init_info(s, s->id);
114
}
115

116
static void clock_mux_reset_hold(Object *obj, ResetType type)
117
{
118
    RccClockMuxState *s = RCC_CLOCK_MUX(obj);
119
    clock_mux_update(s, true);
120
}
121

122
static void clock_mux_reset_exit(Object *obj, ResetType type)
123
{
124
    RccClockMuxState *s = RCC_CLOCK_MUX(obj);
125
    clock_mux_update(s, false);
126
}
127

128
static const VMStateDescription clock_mux_vmstate = {
129
    .name = TYPE_RCC_CLOCK_MUX,
130
    .version_id = 1,
131
    .minimum_version_id = 1,
132
    .fields = (VMStateField[]) {
133
        VMSTATE_UINT32(id, RccClockMuxState),
134
        VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
135
                            RCC_NUM_CLOCK_MUX_SRC),
136
        VMSTATE_BOOL(enabled, RccClockMuxState),
137
        VMSTATE_UINT32(src, RccClockMuxState),
138
        VMSTATE_UINT32(multiplier, RccClockMuxState),
139
        VMSTATE_UINT32(divider, RccClockMuxState),
140
        VMSTATE_END_OF_LIST()
141
    }
142
};
143

144
static void clock_mux_class_init(ObjectClass *klass, void *data)
145
{
146
    DeviceClass *dc = DEVICE_CLASS(klass);
147
    ResettableClass *rc = RESETTABLE_CLASS(klass);
148

149
    rc->phases.enter = clock_mux_reset_enter;
150
    rc->phases.hold = clock_mux_reset_hold;
151
    rc->phases.exit = clock_mux_reset_exit;
152
    dc->vmsd = &clock_mux_vmstate;
153
}
154

155
static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
156
{
157
    if (mux->enabled == enabled) {
158
        return;
159
    }
160

161
    if (enabled) {
162
        trace_stm32l4x5_rcc_mux_enable(mux->id);
163
    } else {
164
        trace_stm32l4x5_rcc_mux_disable(mux->id);
165
    }
166

167
    mux->enabled = enabled;
168
    clock_mux_update(mux, false);
169
}
170

171
static void clock_mux_set_factor(RccClockMuxState *mux,
172
                                 uint32_t multiplier, uint32_t divider)
173
{
174
    if (mux->multiplier == multiplier && mux->divider == divider) {
175
        return;
176
    }
177
    trace_stm32l4x5_rcc_mux_set_factor(mux->id,
178
        mux->multiplier, multiplier, mux->divider, divider);
179

180
    mux->multiplier = multiplier;
181
    mux->divider = divider;
182
    clock_mux_update(mux, false);
183
}
184

185
static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
186
{
187
    if (mux->src == src) {
188
        return;
189
    }
190

191
    trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
192
    mux->src = src;
193
    clock_mux_update(mux, false);
194
}
195

196
/*
197
 * Acknowledge and propagate changes in a PLL frequency.
198
 * `bypass_source` allows to bypass the period of the current source and just
199
 * consider it equal to 0. This is useful during the hold phase of reset.
200
 */
201
static void pll_update(RccPllState *pll, bool bypass_source)
202
{
203
    uint64_t vco_freq, old_channel_freq, channel_freq;
204
    int i;
205

206
    /* The common PLLM factor is handled by the PLL mux */
207
    vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
208

209
    for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
210
        if (!pll->channel_exists[i]) {
211
            continue;
212
        }
213

214
        old_channel_freq = clock_get_hz(pll->channels[i]);
215
        if (bypass_source ||
216
            !pll->enabled ||
217
            !pll->channel_enabled[i] ||
218
            !pll->channel_divider[i]) {
219
            channel_freq = 0;
220
        } else {
221
            channel_freq = muldiv64(vco_freq,
222
                                    1,
223
                                    pll->channel_divider[i]);
224
        }
225

226
        /* No change, early continue to avoid log spam and useless propagation */
227
        if (old_channel_freq == channel_freq) {
228
            continue;
229
        }
230

231
        clock_update_hz(pll->channels[i], channel_freq);
232
        trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
233
            old_channel_freq, channel_freq);
234
    }
235
}
236

237
static void pll_src_update(void *opaque, ClockEvent event)
238
{
239
    RccPllState *s = opaque;
240
    pll_update(s, false);
241
}
242

243
static void pll_init(Object *obj)
244
{
245
    RccPllState *s = RCC_PLL(obj);
246
    size_t i;
247

248
    s->in = qdev_init_clock_in(DEVICE(s), "in",
249
                               pll_src_update, s, ClockUpdate);
250

251
    const char *names[] = {
252
        "out-p", "out-q", "out-r",
253
    };
254

255
    for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
256
        s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
257
    }
258
}
259

260
static void pll_reset_enter(Object *obj, ResetType type)
261
{
262
    RccPllState *s = RCC_PLL(obj);
263
    set_pll_init_info(s, s->id);
264
}
265

266
static void pll_reset_hold(Object *obj, ResetType type)
267
{
268
    RccPllState *s = RCC_PLL(obj);
269
    pll_update(s, true);
270
}
271

272
static void pll_reset_exit(Object *obj, ResetType type)
273
{
274
    RccPllState *s = RCC_PLL(obj);
275
    pll_update(s, false);
276
}
277

278
static const VMStateDescription pll_vmstate = {
279
    .name = TYPE_RCC_PLL,
280
    .version_id = 1,
281
    .minimum_version_id = 1,
282
    .fields = (VMStateField[]) {
283
        VMSTATE_UINT32(id, RccPllState),
284
        VMSTATE_CLOCK(in, RccPllState),
285
        VMSTATE_ARRAY_CLOCK(channels, RccPllState,
286
                            RCC_NUM_CHANNEL_PLL_OUT),
287
        VMSTATE_BOOL(enabled, RccPllState),
288
        VMSTATE_UINT32(vco_multiplier, RccPllState),
289
        VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
290
        VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
291
        VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
292
        VMSTATE_END_OF_LIST()
293
    }
294
};
295

296
static void pll_class_init(ObjectClass *klass, void *data)
297
{
298
    DeviceClass *dc = DEVICE_CLASS(klass);
299
    ResettableClass *rc = RESETTABLE_CLASS(klass);
300

301
    rc->phases.enter = pll_reset_enter;
302
    rc->phases.hold = pll_reset_hold;
303
    rc->phases.exit = pll_reset_exit;
304
    dc->vmsd = &pll_vmstate;
305
}
306

307
static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
308
{
309
    if (pll->vco_multiplier == vco_multiplier) {
310
        return;
311
    }
312

313
    if (vco_multiplier < 8 || vco_multiplier > 86) {
314
        qemu_log_mask(LOG_GUEST_ERROR,
315
            "%s: VCO multiplier is out of bound (%u) for PLL %u\n",
316
            __func__, vco_multiplier, pll->id);
317
        return;
318
    }
319

320
    trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
321
        pll->vco_multiplier, vco_multiplier);
322

323
    pll->vco_multiplier = vco_multiplier;
324
    pll_update(pll, false);
325
}
326

327
static void pll_set_enable(RccPllState *pll, bool enabled)
328
{
329
    if (pll->enabled == enabled) {
330
        return;
331
    }
332

333
    pll->enabled = enabled;
334
    pll_update(pll, false);
335
}
336

337
static void pll_set_channel_enable(RccPllState *pll,
338
                                   PllCommonChannels channel,
339
                                   bool enabled)
340
{
341
    if (pll->channel_enabled[channel] == enabled) {
342
        return;
343
    }
344

345
    if (enabled) {
346
        trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
347
    } else {
348
        trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
349
    }
350

351
    pll->channel_enabled[channel] = enabled;
352
    pll_update(pll, false);
353
}
354

355
static void pll_set_channel_divider(RccPllState *pll,
356
                                    PllCommonChannels channel,
357
                                    uint32_t divider)
358
{
359
    if (pll->channel_divider[channel] == divider) {
360
        return;
361
    }
362

363
    trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
364
        channel, pll->channel_divider[channel], divider);
365

366
    pll->channel_divider[channel] = divider;
367
    pll_update(pll, false);
368
}
369

370
static void rcc_update_irq(Stm32l4x5RccState *s)
371
{
372
    /*
373
     * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
374
     */
375
    if (s->cifr & CIFR_IRQ_MASK) {
376
        qemu_irq_raise(s->irq);
377
    } else {
378
        qemu_irq_lower(s->irq);
379
    }
380
}
381

382
static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
383
{
384
    uint32_t val;
385

386
    static const uint32_t msirange[] = {
387
        100000, 200000, 400000, 800000, 1000000, 2000000,
388
        4000000, 8000000, 16000000, 24000000, 32000000, 48000000
389
    };
390
    /* MSIRANGE and MSIRGSEL */
391
    val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
392
    if (val) {
393
        /* MSIRGSEL is set, use the MSIRANGE field */
394
        val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
395
    } else {
396
        /* MSIRGSEL is not set, use the MSISRANGE field */
397
        val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
398
    }
399

400
    if (val < ARRAY_SIZE(msirange)) {
401
        clock_update_hz(s->msi_rc, msirange[val]);
402
    } else {
403
        /*
404
         * There is a hardware write protection if the value is out of bound.
405
         * Restore the previous value.
406
         */
407
        s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
408
                (previous_value & R_CSR_MSISRANGE_MASK);
409
    }
410
}
411

412
/*
413
 * TODO: Add write-protection for all registers:
414
 * DONE: CR
415
 */
416

417
static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
418
{
419
    int val;
420
    const RccClockMuxSource current_pll_src =
421
        CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
422
            s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
423

424
    /* PLLSAI2ON and update PLLSAI2RDY */
425
    val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
426
    pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
427
    s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
428
            (val << R_CR_PLLSAI2RDY_SHIFT);
429
    if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
430
        s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
431
    }
432

433
    /* PLLSAI1ON and update PLLSAI1RDY */
434
    val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
435
    pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
436
    s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
437
            (val << R_CR_PLLSAI1RDY_SHIFT);
438
    if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
439
        s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
440
    }
441

442
    /*
443
     * PLLON and update PLLRDY
444
     * PLLON cannot be reset if the PLL clock is used as the system clock.
445
     */
446
    val = FIELD_EX32(s->cr, CR, PLLON);
447
    if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
448
        pll_set_enable(&s->plls[RCC_PLL_PLL], val);
449
        s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
450
                (val << R_CR_PLLRDY_SHIFT);
451
        if (s->cier & R_CIER_PLLRDYIE_MASK) {
452
            s->cifr |= R_CIFR_PLLRDYF_MASK;
453
        }
454
    } else {
455
        s->cr |= R_CR_PLLON_MASK;
456
    }
457

458
    /* CSSON: TODO */
459
    /* HSEBYP: TODO */
460

461
    /*
462
     * HSEON and update HSERDY.
463
     * HSEON cannot be reset if the HSE oscillator is used directly or
464
     * indirectly as the system clock.
465
     */
466
    val = FIELD_EX32(s->cr, CR, HSEON);
467
    if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
468
        current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
469
        s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
470
                (val << R_CR_HSERDY_SHIFT);
471
        if (val) {
472
            clock_update_hz(s->hse, s->hse_frequency);
473
            if (s->cier & R_CIER_HSERDYIE_MASK) {
474
                s->cifr |= R_CIFR_HSERDYF_MASK;
475
            }
476
        } else {
477
            clock_update(s->hse, 0);
478
        }
479
    } else {
480
        s->cr |= R_CR_HSEON_MASK;
481
    }
482

483
    /* HSIAFS: TODO*/
484
    /* HSIKERON: TODO*/
485

486
    /*
487
     * HSION and update HSIRDY
488
     * HSION is set by hardware if the HSI16 is used directly
489
     * or indirectly as system clock.
490
     */
491
    if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
492
        current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
493
        s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
494
        clock_update_hz(s->hsi16_rc, HSI_FRQ);
495
        if (s->cier & R_CIER_HSIRDYIE_MASK) {
496
            s->cifr |= R_CIFR_HSIRDYF_MASK;
497
        }
498
    } else {
499
        val = FIELD_EX32(s->cr, CR, HSION);
500
        if (val) {
501
            clock_update_hz(s->hsi16_rc, HSI_FRQ);
502
            s->cr |= R_CR_HSIRDY_MASK;
503
            if (s->cier & R_CIER_HSIRDYIE_MASK) {
504
                s->cifr |= R_CIFR_HSIRDYF_MASK;
505
            }
506
        } else {
507
            clock_update(s->hsi16_rc, 0);
508
            s->cr &= ~R_CR_HSIRDY_MASK;
509
        }
510
    }
511

512
    /* MSIPLLEN: TODO */
513

514
    /*
515
     * MSION and update MSIRDY
516
     * Set by hardware when used directly or indirectly as system clock.
517
     */
518
    if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
519
        current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
520
            s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
521
            if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
522
                s->cifr |= R_CIFR_MSIRDYF_MASK;
523
            }
524
            rcc_update_msi(s, previous_value);
525
    } else {
526
        val = FIELD_EX32(s->cr, CR, MSION);
527
        if (val) {
528
            s->cr |= R_CR_MSIRDY_MASK;
529
            rcc_update_msi(s, previous_value);
530
            if (s->cier & R_CIER_MSIRDYIE_MASK) {
531
                s->cifr |= R_CIFR_MSIRDYF_MASK;
532
            }
533
        } else {
534
            s->cr &= ~R_CR_MSIRDY_MASK;
535
            clock_update(s->msi_rc, 0);
536
        }
537
    }
538
    rcc_update_irq(s);
539
}
540

541
static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
542
{
543
    uint32_t val;
544
    /* MCOPRE */
545
    val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
546
    if (val > 0b100) {
547
        qemu_log_mask(LOG_GUEST_ERROR,
548
                      "%s: Invalid MCOPRE value: 0x%"PRIx32"\n",
549
                      __func__, val);
550
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
551
    } else {
552
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
553
                             1, 1 << val);
554
    }
555

556
    /* MCOSEL */
557
    val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
558
    if (val > 0b111) {
559
        qemu_log_mask(LOG_GUEST_ERROR,
560
                      "%s: Invalid MCOSEL value: 0x%"PRIx32"\n",
561
                      __func__, val);
562
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
563
    } else {
564
        if (val == 0) {
565
            clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
566
        } else {
567
            clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
568
            clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
569
                                 val - 1);
570
        }
571
    }
572

573
    /* STOPWUCK */
574
    /* TODO */
575

576
    /* PPRE2 */
577
    val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
578
    if (val < 0b100) {
579
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
580
                             1, 1);
581
    } else {
582
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
583
                             1, 1 << (val - 0b11));
584
    }
585

586
    /* PPRE1 */
587
    val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
588
    if (val < 0b100) {
589
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
590
                             1, 1);
591
    } else {
592
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
593
                             1, 1 << (val - 0b11));
594
    }
595

596
    /* HPRE */
597
    val = FIELD_EX32(s->cfgr, CFGR, HPRE);
598
    if (val < 0b1000) {
599
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
600
                             1, 1);
601
    } else {
602
        clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
603
                             1, 1 << (val - 0b111));
604
    }
605

606
    /* Update SWS */
607
    val = FIELD_EX32(s->cfgr, CFGR, SW);
608
    clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
609
                         val);
610
    s->cfgr &= ~R_CFGR_SWS_MASK;
611
    s->cfgr |= val << R_CFGR_SWS_SHIFT;
612
}
613

614
static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
615
{
616
    #define AHB1ENR_SET_ENABLE(_peripheral_name) \
617
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
618
            FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
619

620
    /* DMA2DEN: reserved for STM32L475xx */
621
    AHB1ENR_SET_ENABLE(TSC);
622
    AHB1ENR_SET_ENABLE(CRC);
623
    AHB1ENR_SET_ENABLE(FLASH);
624
    AHB1ENR_SET_ENABLE(DMA2);
625
    AHB1ENR_SET_ENABLE(DMA1);
626

627
    #undef AHB1ENR_SET_ENABLE
628
}
629

630
static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
631
{
632
    #define AHB2ENR_SET_ENABLE(_peripheral_name) \
633
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
634
            FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
635

636
    AHB2ENR_SET_ENABLE(RNG);
637
    /* HASHEN: reserved for STM32L475xx */
638
    AHB2ENR_SET_ENABLE(AES);
639
    /* DCMIEN: reserved for STM32L475xx */
640
    AHB2ENR_SET_ENABLE(ADC);
641
    AHB2ENR_SET_ENABLE(OTGFS);
642
    /* GPIOIEN: reserved for STM32L475xx */
643
    AHB2ENR_SET_ENABLE(GPIOA);
644
    AHB2ENR_SET_ENABLE(GPIOB);
645
    AHB2ENR_SET_ENABLE(GPIOC);
646
    AHB2ENR_SET_ENABLE(GPIOD);
647
    AHB2ENR_SET_ENABLE(GPIOE);
648
    AHB2ENR_SET_ENABLE(GPIOF);
649
    AHB2ENR_SET_ENABLE(GPIOG);
650
    AHB2ENR_SET_ENABLE(GPIOH);
651

652
    #undef AHB2ENR_SET_ENABLE
653
}
654

655
static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
656
{
657
    #define AHB3ENR_SET_ENABLE(_peripheral_name) \
658
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
659
            FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
660

661
    AHB3ENR_SET_ENABLE(QSPI);
662
    AHB3ENR_SET_ENABLE(FMC);
663

664
    #undef AHB3ENR_SET_ENABLE
665
}
666

667
static void rcc_update_apb1enr(Stm32l4x5RccState *s)
668
{
669
    #define APB1ENR1_SET_ENABLE(_peripheral_name) \
670
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
671
            FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
672
    #define APB1ENR2_SET_ENABLE(_peripheral_name) \
673
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
674
            FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
675

676
    /* APB1ENR1 */
677
    APB1ENR1_SET_ENABLE(LPTIM1);
678
    APB1ENR1_SET_ENABLE(OPAMP);
679
    APB1ENR1_SET_ENABLE(DAC1);
680
    APB1ENR1_SET_ENABLE(PWR);
681
    /* CAN2: reserved for STM32L4x5 */
682
    APB1ENR1_SET_ENABLE(CAN1);
683
    /* CRSEN: reserved for STM32L4x5 */
684
    APB1ENR1_SET_ENABLE(I2C3);
685
    APB1ENR1_SET_ENABLE(I2C2);
686
    APB1ENR1_SET_ENABLE(I2C1);
687
    APB1ENR1_SET_ENABLE(UART5);
688
    APB1ENR1_SET_ENABLE(UART4);
689
    APB1ENR1_SET_ENABLE(USART3);
690
    APB1ENR1_SET_ENABLE(USART2);
691
    APB1ENR1_SET_ENABLE(SPI3);
692
    APB1ENR1_SET_ENABLE(SPI2);
693
    APB1ENR1_SET_ENABLE(WWDG);
694
    /* RTCAPB: reserved for STM32L4x5 */
695
    APB1ENR1_SET_ENABLE(LCD);
696
    APB1ENR1_SET_ENABLE(TIM7);
697
    APB1ENR1_SET_ENABLE(TIM6);
698
    APB1ENR1_SET_ENABLE(TIM5);
699
    APB1ENR1_SET_ENABLE(TIM4);
700
    APB1ENR1_SET_ENABLE(TIM3);
701
    APB1ENR1_SET_ENABLE(TIM2);
702

703
    /* APB1ENR2 */
704
    APB1ENR2_SET_ENABLE(LPTIM2);
705
    APB1ENR2_SET_ENABLE(SWPMI1);
706
    /* I2C4EN: reserved for STM32L4x5 */
707
    APB1ENR2_SET_ENABLE(LPUART1);
708

709
    #undef APB1ENR1_SET_ENABLE
710
    #undef APB1ENR2_SET_ENABLE
711
}
712

713
static void rcc_update_apb2enr(Stm32l4x5RccState *s)
714
{
715
    #define APB2ENR_SET_ENABLE(_peripheral_name) \
716
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
717
            FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
718

719
    APB2ENR_SET_ENABLE(DFSDM1);
720
    APB2ENR_SET_ENABLE(SAI2);
721
    APB2ENR_SET_ENABLE(SAI1);
722
    APB2ENR_SET_ENABLE(TIM17);
723
    APB2ENR_SET_ENABLE(TIM16);
724
    APB2ENR_SET_ENABLE(TIM15);
725
    APB2ENR_SET_ENABLE(USART1);
726
    APB2ENR_SET_ENABLE(TIM8);
727
    APB2ENR_SET_ENABLE(SPI1);
728
    APB2ENR_SET_ENABLE(TIM1);
729
    APB2ENR_SET_ENABLE(SDMMC1);
730
    APB2ENR_SET_ENABLE(FW);
731
    APB2ENR_SET_ENABLE(SYSCFG);
732

733
    #undef APB2ENR_SET_ENABLE
734
}
735

736
/*
737
 * The 3 PLLs share the same register layout
738
 * so we can use the same function for all of them
739
 * Note: no frequency bounds checking is done here.
740
 */
741
static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
742
{
743
    uint32_t reg, val;
744
    switch (pll_id) {
745
    case RCC_PLL_PLL:
746
        reg = s->pllcfgr;
747
        break;
748
    case RCC_PLL_PLLSAI1:
749
        reg = s->pllsai1cfgr;
750
        break;
751
    case RCC_PLL_PLLSAI2:
752
        reg = s->pllsai2cfgr;
753
        break;
754
    default:
755
        qemu_log_mask(LOG_GUEST_ERROR,
756
                      "%s: Invalid PLL ID: %u\n", __func__, pll_id);
757
        return;
758
    }
759

760
    /* PLLPDIV */
761
    val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
762
    /* 1 is a reserved value */
763
    if (val == 0) {
764
        /* Get PLLP value */
765
        val = FIELD_EX32(reg, PLLCFGR, PLLP);
766
        pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
767
            (val ? 17 : 7));
768
    } else if (val > 1) {
769
        pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
770
            val);
771
    }
772

773

774
    /* PLLR */
775
    val = FIELD_EX32(reg, PLLCFGR, PLLR);
776
    pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
777
        2 * (val + 1));
778

779
    /* PLLREN */
780
    val = FIELD_EX32(reg, PLLCFGR, PLLREN);
781
    pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
782

783
    /* PLLQ */
784
    val = FIELD_EX32(reg, PLLCFGR, PLLQ);
785
    pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
786
        2 * (val + 1));
787

788
    /* PLLQEN */
789
    val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
790
    pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
791

792
    /* PLLPEN */
793
    val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
794
    pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
795

796
    /* PLLN */
797
    val = FIELD_EX32(reg, PLLCFGR, PLLN);
798
    pll_set_vco_multiplier(&s->plls[pll_id], val);
799
}
800

801
static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
802
{
803
    int val;
804

805
    /* Use common layout */
806
    rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
807

808
    /* Fetch specific fields for pllcfgr */
809

810
    /* PLLM */
811
    val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
812
    clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
813

814
    /* PLLSRC */
815
    val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
816
    if (val == 0) {
817
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
818
    } else {
819
        clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
820
        clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
821
    }
822
}
823

824
static void rcc_update_ccipr(Stm32l4x5RccState *s)
825
{
826
    #define CCIPR_SET_SOURCE(_peripheral_name) \
827
        clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
828
            FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
829

830
    CCIPR_SET_SOURCE(DFSDM1);
831
    CCIPR_SET_SOURCE(SWPMI1);
832
    CCIPR_SET_SOURCE(ADC);
833
    CCIPR_SET_SOURCE(CLK48);
834
    CCIPR_SET_SOURCE(SAI2);
835
    CCIPR_SET_SOURCE(SAI1);
836
    CCIPR_SET_SOURCE(LPTIM2);
837
    CCIPR_SET_SOURCE(LPTIM1);
838
    CCIPR_SET_SOURCE(I2C3);
839
    CCIPR_SET_SOURCE(I2C2);
840
    CCIPR_SET_SOURCE(I2C1);
841
    CCIPR_SET_SOURCE(LPUART1);
842
    CCIPR_SET_SOURCE(UART5);
843
    CCIPR_SET_SOURCE(UART4);
844
    CCIPR_SET_SOURCE(USART3);
845
    CCIPR_SET_SOURCE(USART2);
846
    CCIPR_SET_SOURCE(USART1);
847

848
    #undef CCIPR_SET_SOURCE
849
}
850

851
static void rcc_update_bdcr(Stm32l4x5RccState *s)
852
{
853
    int val;
854

855
    /* LSCOSEL */
856
    val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
857
    clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
858

859
    val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
860
    clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
861

862
    /* BDRST */
863
    /*
864
     * The documentation is not clear if the RTCEN flag disables the RTC and
865
     * the LCD common mux or if it only affects the RTC.
866
     * As the LCDEN flag exists, we assume here that it only affects the RTC.
867
     */
868
    val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
869
    clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
870
    /* LCD and RTC share the same clock */
871
    val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
872
    clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
873

874
    /* LSECSSON */
875
    /* LSEDRV[1:0] */
876
    /* LSEBYP */
877

878
    /* LSEON: Update LSERDY at the same time */
879
    val = FIELD_EX32(s->bdcr, BDCR, LSEON);
880
    if (val) {
881
        clock_update_hz(s->lse_crystal, LSE_FRQ);
882
        s->bdcr |= R_BDCR_LSERDY_MASK;
883
        if (s->cier & R_CIER_LSERDYIE_MASK) {
884
            s->cifr |= R_CIFR_LSERDYF_MASK;
885
        }
886
    } else {
887
        clock_update(s->lse_crystal, 0);
888
        s->bdcr &= ~R_BDCR_LSERDY_MASK;
889
    }
890

891
    rcc_update_irq(s);
892
}
893

894
static void rcc_update_csr(Stm32l4x5RccState *s)
895
{
896
    int val;
897

898
    /* Reset flags: Not implemented */
899
    /* MSISRANGE: Not implemented after reset */
900

901
    /* LSION: Update LSIRDY at the same time */
902
    val = FIELD_EX32(s->csr, CSR, LSION);
903
    if (val) {
904
        clock_update_hz(s->lsi_rc, LSI_FRQ);
905
        s->csr |= R_CSR_LSIRDY_MASK;
906
        if (s->cier & R_CIER_LSIRDYIE_MASK) {
907
            s->cifr |= R_CIFR_LSIRDYF_MASK;
908
        }
909
    } else {
910
        /*
911
         * TODO: Handle when the LSI is set independently of LSION.
912
         * E.g. when the LSI is set by the RTC.
913
         * See the reference manual for more details.
914
         */
915
        clock_update(s->lsi_rc, 0);
916
        s->csr &= ~R_CSR_LSIRDY_MASK;
917
    }
918

919
    rcc_update_irq(s);
920
}
921

922
static void stm32l4x5_rcc_reset_hold(Object *obj, ResetType type)
923
{
924
    Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
925
    s->cr = 0x00000063;
926
    /*
927
     * Factory-programmed calibration data
928
     * From the reference manual: 0x10XX 00XX
929
     * Value taken from a real card.
930
     */
931
    s->icscr = 0x106E0082;
932
    s->cfgr = 0x0;
933
    s->pllcfgr = 0x00001000;
934
    s->pllsai1cfgr = 0x00001000;
935
    s->pllsai2cfgr = 0x00001000;
936
    s->cier = 0x0;
937
    s->cifr = 0x0;
938
    s->ahb1rstr = 0x0;
939
    s->ahb2rstr = 0x0;
940
    s->ahb3rstr = 0x0;
941
    s->apb1rstr1 = 0x0;
942
    s->apb1rstr2 = 0x0;
943
    s->apb2rstr = 0x0;
944
    s->ahb1enr = 0x00000100;
945
    s->ahb2enr = 0x0;
946
    s->ahb3enr = 0x0;
947
    s->apb1enr1 = 0x0;
948
    s->apb1enr2 = 0x0;
949
    s->apb2enr = 0x0;
950
    s->ahb1smenr = 0x00011303;
951
    s->ahb2smenr = 0x000532FF;
952
    s->ahb3smenr =  0x00000101;
953
    s->apb1smenr1 = 0xF2FECA3F;
954
    s->apb1smenr2 = 0x00000025;
955
    s->apb2smenr = 0x01677C01;
956
    s->ccipr = 0x0;
957
    s->bdcr = 0x0;
958
    s->csr = 0x0C000600;
959
}
960

961
static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
962
                                     unsigned int size)
963
{
964
    Stm32l4x5RccState *s = opaque;
965
    uint64_t retvalue = 0;
966

967
    switch (addr) {
968
    case A_CR:
969
        retvalue = s->cr;
970
        break;
971
    case A_ICSCR:
972
        retvalue = s->icscr;
973
        break;
974
    case A_CFGR:
975
        retvalue = s->cfgr;
976
        break;
977
    case A_PLLCFGR:
978
        retvalue = s->pllcfgr;
979
        break;
980
    case A_PLLSAI1CFGR:
981
        retvalue = s->pllsai1cfgr;
982
        break;
983
    case A_PLLSAI2CFGR:
984
        retvalue = s->pllsai2cfgr;
985
        break;
986
    case A_CIER:
987
        retvalue = s->cier;
988
        break;
989
    case A_CIFR:
990
        retvalue = s->cifr;
991
        break;
992
    case A_CICR:
993
        /* CICR is write only, return the reset value = 0 */
994
        break;
995
    case A_AHB1RSTR:
996
        retvalue = s->ahb1rstr;
997
        break;
998
    case A_AHB2RSTR:
999
        retvalue = s->ahb2rstr;
1000
        break;
1001
    case A_AHB3RSTR:
1002
        retvalue = s->ahb3rstr;
1003
        break;
1004
    case A_APB1RSTR1:
1005
        retvalue = s->apb1rstr1;
1006
        break;
1007
    case A_APB1RSTR2:
1008
        retvalue = s->apb1rstr2;
1009
        break;
1010
    case A_APB2RSTR:
1011
        retvalue = s->apb2rstr;
1012
        break;
1013
    case A_AHB1ENR:
1014
        retvalue = s->ahb1enr;
1015
        break;
1016
    case A_AHB2ENR:
1017
        retvalue = s->ahb2enr;
1018
        break;
1019
    case A_AHB3ENR:
1020
        retvalue = s->ahb3enr;
1021
        break;
1022
    case A_APB1ENR1:
1023
        retvalue = s->apb1enr1;
1024
        break;
1025
    case A_APB1ENR2:
1026
        retvalue = s->apb1enr2;
1027
        break;
1028
    case A_APB2ENR:
1029
        retvalue = s->apb2enr;
1030
        break;
1031
    case A_AHB1SMENR:
1032
        retvalue = s->ahb1smenr;
1033
        break;
1034
    case A_AHB2SMENR:
1035
        retvalue = s->ahb2smenr;
1036
        break;
1037
    case A_AHB3SMENR:
1038
        retvalue = s->ahb3smenr;
1039
        break;
1040
    case A_APB1SMENR1:
1041
        retvalue = s->apb1smenr1;
1042
        break;
1043
    case A_APB1SMENR2:
1044
        retvalue = s->apb1smenr2;
1045
        break;
1046
    case A_APB2SMENR:
1047
        retvalue = s->apb2smenr;
1048
        break;
1049
    case A_CCIPR:
1050
        retvalue = s->ccipr;
1051
        break;
1052
    case A_BDCR:
1053
        retvalue = s->bdcr;
1054
        break;
1055
    case A_CSR:
1056
        retvalue = s->csr;
1057
        break;
1058
    default:
1059
        qemu_log_mask(LOG_GUEST_ERROR,
1060
                      "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1061
        break;
1062
    }
1063

1064
    trace_stm32l4x5_rcc_read(addr, retvalue);
1065

1066
    return retvalue;
1067
}
1068

1069
static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
1070
                                  uint64_t val64, unsigned int size)
1071
{
1072
    Stm32l4x5RccState *s = opaque;
1073
    uint32_t previous_value = 0;
1074
    const uint32_t value = val64;
1075

1076
    trace_stm32l4x5_rcc_write(addr, value);
1077

1078
    switch (addr) {
1079
    case A_CR:
1080
        previous_value = s->cr;
1081
        s->cr = (s->cr & CR_READ_SET_MASK) |
1082
                (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
1083
        rcc_update_cr_register(s, previous_value);
1084
        break;
1085
    case A_ICSCR:
1086
        s->icscr = value & ~ICSCR_READ_ONLY_MASK;
1087
        qemu_log_mask(LOG_UNIMP,
1088
                "%s: Side-effects not implemented for ICSCR\n", __func__);
1089
        break;
1090
    case A_CFGR:
1091
        s->cfgr = value & ~CFGR_READ_ONLY_MASK;
1092
        rcc_update_cfgr_register(s);
1093
        break;
1094
    case A_PLLCFGR:
1095
        s->pllcfgr = value;
1096
        rcc_update_pllcfgr(s);
1097
        break;
1098
    case A_PLLSAI1CFGR:
1099
        s->pllsai1cfgr = value;
1100
        rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
1101
        break;
1102
    case A_PLLSAI2CFGR:
1103
        s->pllsai2cfgr = value;
1104
        rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
1105
        break;
1106
    case A_CIER:
1107
        s->cier = value;
1108
        qemu_log_mask(LOG_UNIMP,
1109
                "%s: Side-effects not implemented for CIER\n", __func__);
1110
        break;
1111
    case A_CIFR:
1112
        qemu_log_mask(LOG_GUEST_ERROR,
1113
            "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
1114
            __func__, value);
1115
        break;
1116
    case A_CICR:
1117
        /* Clear interrupt flags by writing a 1 to the CICR register */
1118
        s->cifr &= ~value;
1119
        rcc_update_irq(s);
1120
        break;
1121
    /* Reset behaviors are not implemented */
1122
    case A_AHB1RSTR:
1123
        s->ahb1rstr = value;
1124
        qemu_log_mask(LOG_UNIMP,
1125
                "%s: Side-effects not implemented for AHB1RSTR\n", __func__);
1126
        break;
1127
    case A_AHB2RSTR:
1128
        s->ahb2rstr = value;
1129
        qemu_log_mask(LOG_UNIMP,
1130
                "%s: Side-effects not implemented for AHB2RSTR\n", __func__);
1131
        break;
1132
    case A_AHB3RSTR:
1133
        s->ahb3rstr = value;
1134
        qemu_log_mask(LOG_UNIMP,
1135
                "%s: Side-effects not implemented for AHB3RSTR\n", __func__);
1136
        break;
1137
    case A_APB1RSTR1:
1138
        s->apb1rstr1 = value;
1139
        qemu_log_mask(LOG_UNIMP,
1140
                "%s: Side-effects not implemented for APB1RSTR1\n", __func__);
1141
        break;
1142
    case A_APB1RSTR2:
1143
        s->apb1rstr2 = value;
1144
        qemu_log_mask(LOG_UNIMP,
1145
                "%s: Side-effects not implemented for APB1RSTR2\n", __func__);
1146
        break;
1147
    case A_APB2RSTR:
1148
        s->apb2rstr = value;
1149
        qemu_log_mask(LOG_UNIMP,
1150
                "%s: Side-effects not implemented for APB2RSTR\n", __func__);
1151
        break;
1152
    case A_AHB1ENR:
1153
        s->ahb1enr = value;
1154
        rcc_update_ahb1enr(s);
1155
        break;
1156
    case A_AHB2ENR:
1157
        s->ahb2enr = value;
1158
        rcc_update_ahb2enr(s);
1159
        break;
1160
    case A_AHB3ENR:
1161
        s->ahb3enr = value;
1162
        rcc_update_ahb3enr(s);
1163
        break;
1164
    case A_APB1ENR1:
1165
        s->apb1enr1 = value;
1166
        rcc_update_apb1enr(s);
1167
        break;
1168
    case A_APB1ENR2:
1169
        s->apb1enr2 = value;
1170
        rcc_update_apb1enr(s);
1171
        break;
1172
    case A_APB2ENR:
1173
        s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
1174
        rcc_update_apb2enr(s);
1175
        break;
1176
    /* Behaviors for Sleep and Stop modes are not implemented */
1177
    case A_AHB1SMENR:
1178
        s->ahb1smenr = value;
1179
        qemu_log_mask(LOG_UNIMP,
1180
                "%s: Side-effects not implemented for AHB1SMENR\n", __func__);
1181
        break;
1182
    case A_AHB2SMENR:
1183
        s->ahb2smenr = value;
1184
        qemu_log_mask(LOG_UNIMP,
1185
                "%s: Side-effects not implemented for AHB2SMENR\n", __func__);
1186
        break;
1187
    case A_AHB3SMENR:
1188
        s->ahb3smenr = value;
1189
        qemu_log_mask(LOG_UNIMP,
1190
                "%s: Side-effects not implemented for AHB3SMENR\n", __func__);
1191
        break;
1192
    case A_APB1SMENR1:
1193
        s->apb1smenr1 = value;
1194
        qemu_log_mask(LOG_UNIMP,
1195
                "%s: Side-effects not implemented for APB1SMENR1\n", __func__);
1196
        break;
1197
    case A_APB1SMENR2:
1198
        s->apb1smenr2 = value;
1199
        qemu_log_mask(LOG_UNIMP,
1200
                "%s: Side-effects not implemented for APB1SMENR2\n", __func__);
1201
        break;
1202
    case A_APB2SMENR:
1203
        s->apb2smenr = value;
1204
        qemu_log_mask(LOG_UNIMP,
1205
                "%s: Side-effects not implemented for APB2SMENR\n", __func__);
1206
        break;
1207
    case A_CCIPR:
1208
        s->ccipr = value;
1209
        rcc_update_ccipr(s);
1210
        break;
1211
    case A_BDCR:
1212
        s->bdcr = value & ~BDCR_READ_ONLY_MASK;
1213
        rcc_update_bdcr(s);
1214
        break;
1215
    case A_CSR:
1216
        s->csr = value & ~CSR_READ_ONLY_MASK;
1217
        rcc_update_csr(s);
1218
        break;
1219
    default:
1220
        qemu_log_mask(LOG_GUEST_ERROR,
1221
                      "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1222
    }
1223
}
1224

1225
static const MemoryRegionOps stm32l4x5_rcc_ops = {
1226
    .read = stm32l4x5_rcc_read,
1227
    .write = stm32l4x5_rcc_write,
1228
    .endianness = DEVICE_NATIVE_ENDIAN,
1229
    .valid = {
1230
        .max_access_size = 4,
1231
        .min_access_size = 4,
1232
        .unaligned = false
1233
    },
1234
    .impl = {
1235
        .max_access_size = 4,
1236
        .min_access_size = 4,
1237
        .unaligned = false
1238
    },
1239
};
1240

1241
static const ClockPortInitArray stm32l4x5_rcc_clocks = {
1242
    QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
1243
    QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
1244
    QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
1245
    QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
1246
    QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
1247
    QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
1248
    QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
1249
    QDEV_CLOCK_END
1250
};
1251

1252

1253
static void stm32l4x5_rcc_init(Object *obj)
1254
{
1255
    Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
1256
    size_t i;
1257

1258
    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
1259

1260
    memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
1261
                          TYPE_STM32L4X5_RCC, 0x400);
1262
    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
1263

1264
    qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
1265

1266
    for (i = 0; i < RCC_NUM_PLL; i++) {
1267
        object_initialize_child(obj, PLL_INIT_INFO[i].name,
1268
                                &s->plls[i], TYPE_RCC_PLL);
1269
        set_pll_init_info(&s->plls[i], i);
1270
    }
1271

1272
    for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1273
        char *alias;
1274

1275
        object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
1276
                                &s->clock_muxes[i],
1277
                                TYPE_RCC_CLOCK_MUX);
1278
        set_clock_mux_init_info(&s->clock_muxes[i], i);
1279

1280
        if (!CLOCK_MUX_INIT_INFO[i].hidden) {
1281
            /* Expose muxes output as RCC outputs */
1282
            alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
1283
            qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
1284
            g_free(alias);
1285
        }
1286
    }
1287

1288
    s->gnd = clock_new(obj, "gnd");
1289
}
1290

1291
static void connect_mux_sources(Stm32l4x5RccState *s,
1292
                                RccClockMuxState *mux,
1293
                                const RccClockMuxSource *clk_mapping)
1294
{
1295
    size_t i;
1296

1297
    Clock * const CLK_SRC_MAPPING[] = {
1298
        [RCC_CLOCK_MUX_SRC_GND] = s->gnd,
1299
        [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
1300
        [RCC_CLOCK_MUX_SRC_HSE] = s->hse,
1301
        [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
1302
        [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
1303
        [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
1304
        [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
1305
        [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
1306
        [RCC_CLOCK_MUX_SRC_PLL] =
1307
            s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
1308
        [RCC_CLOCK_MUX_SRC_PLLSAI1] =
1309
            s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
1310
        [RCC_CLOCK_MUX_SRC_PLLSAI2] =
1311
            s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
1312
        [RCC_CLOCK_MUX_SRC_PLLSAI3] =
1313
            s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
1314
        [RCC_CLOCK_MUX_SRC_PLL48M1] =
1315
            s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
1316
        [RCC_CLOCK_MUX_SRC_PLL48M2] =
1317
            s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
1318
        [RCC_CLOCK_MUX_SRC_PLLADC1] =
1319
            s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
1320
        [RCC_CLOCK_MUX_SRC_PLLADC2] =
1321
            s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
1322
        [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
1323
        [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
1324
        [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
1325
        [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
1326
        [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
1327
        [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
1328
            s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
1329
    };
1330

1331
    assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
1332

1333
    for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
1334
        RccClockMuxSource mapping = clk_mapping[i];
1335
        clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
1336
    }
1337
}
1338

1339

1340
static const VMStateDescription vmstate_stm32l4x5_rcc = {
1341
    .name = TYPE_STM32L4X5_RCC,
1342
    .version_id = 1,
1343
    .minimum_version_id = 1,
1344
    .fields = (VMStateField[]) {
1345
        VMSTATE_UINT32(cr, Stm32l4x5RccState),
1346
        VMSTATE_UINT32(icscr, Stm32l4x5RccState),
1347
        VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
1348
        VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
1349
        VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
1350
        VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
1351
        VMSTATE_UINT32(cier, Stm32l4x5RccState),
1352
        VMSTATE_UINT32(cifr, Stm32l4x5RccState),
1353
        VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
1354
        VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
1355
        VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
1356
        VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
1357
        VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
1358
        VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
1359
        VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
1360
        VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
1361
        VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
1362
        VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
1363
        VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
1364
        VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
1365
        VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
1366
        VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
1367
        VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
1368
        VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
1369
        VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
1370
        VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
1371
        VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
1372
        VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
1373
        VMSTATE_UINT32(csr, Stm32l4x5RccState),
1374
        VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
1375
        VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
1376
        VMSTATE_CLOCK(hse, Stm32l4x5RccState),
1377
        VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
1378
        VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
1379
        VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
1380
        VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
1381
        VMSTATE_END_OF_LIST()
1382
    }
1383
};
1384

1385

1386
static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
1387
{
1388
    Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
1389
    size_t i;
1390

1391
    if (s->hse_frequency <  4000000ULL ||
1392
        s->hse_frequency > 48000000ULL) {
1393
            error_setg(errp,
1394
                "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
1395
                s->hse_frequency);
1396
            return;
1397
        }
1398

1399
    for (i = 0; i < RCC_NUM_PLL; i++) {
1400
        RccPllState *pll = &s->plls[i];
1401

1402
        clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
1403

1404
        if (!qdev_realize(DEVICE(pll), NULL, errp)) {
1405
            return;
1406
        }
1407
    }
1408

1409
    for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1410
        RccClockMuxState *clock_mux = &s->clock_muxes[i];
1411

1412
        connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
1413

1414
        if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
1415
            return;
1416
        }
1417
    }
1418

1419
    /*
1420
     * Start clocks after everything is connected
1421
     * to propagate the frequencies along the tree.
1422
     */
1423
    clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
1424
    clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
1425
    clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
1426
    clock_update(s->gnd, 0);
1427
}
1428

1429
static Property stm32l4x5_rcc_properties[] = {
1430
    DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
1431
        hse_frequency, HSE_DEFAULT_FRQ),
1432
    DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
1433
        sai1_extclk_frequency, 0),
1434
    DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
1435
        sai2_extclk_frequency, 0),
1436
    DEFINE_PROP_END_OF_LIST(),
1437
};
1438

1439
static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
1440
{
1441
    DeviceClass *dc = DEVICE_CLASS(klass);
1442
    ResettableClass *rc = RESETTABLE_CLASS(klass);
1443

1444
    assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
1445

1446
    rc->phases.hold = stm32l4x5_rcc_reset_hold;
1447
    device_class_set_props(dc, stm32l4x5_rcc_properties);
1448
    dc->realize = stm32l4x5_rcc_realize;
1449
    dc->vmsd = &vmstate_stm32l4x5_rcc;
1450
}
1451

1452
static const TypeInfo stm32l4x5_rcc_types[] = {
1453
    {
1454
        .name           = TYPE_STM32L4X5_RCC,
1455
        .parent         = TYPE_SYS_BUS_DEVICE,
1456
        .instance_size  = sizeof(Stm32l4x5RccState),
1457
        .instance_init  = stm32l4x5_rcc_init,
1458
        .class_init     = stm32l4x5_rcc_class_init,
1459
    }, {
1460
        .name = TYPE_RCC_CLOCK_MUX,
1461
        .parent = TYPE_DEVICE,
1462
        .instance_size = sizeof(RccClockMuxState),
1463
        .instance_init = clock_mux_init,
1464
        .class_init = clock_mux_class_init,
1465
    }, {
1466
        .name = TYPE_RCC_PLL,
1467
        .parent = TYPE_DEVICE,
1468
        .instance_size = sizeof(RccPllState),
1469
        .instance_init = pll_init,
1470
        .class_init = pll_class_init,
1471
    }
1472
};
1473

1474
DEFINE_TYPES(stm32l4x5_rcc_types)
1475

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.