qemu

Форк
0
/
omap_gpmc.c 
898 строк · 28.3 Кб
1
/*
2
 * TI OMAP general purpose memory controller emulation.
3
 *
4
 * Copyright (C) 2007-2009 Nokia Corporation
5
 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6
 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License as
10
 * published by the Free Software Foundation; either version 2 or
11
 * (at your option) any later version of the License.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License along
19
 * with this program; if not, see <http://www.gnu.org/licenses/>.
20
 */
21

22
#include "qemu/osdep.h"
23
#include "hw/irq.h"
24
#include "hw/block/flash.h"
25
#include "hw/arm/omap.h"
26
#include "exec/memory.h"
27
#include "exec/address-spaces.h"
28

29
/* General-Purpose Memory Controller */
30
struct omap_gpmc_s {
31
    qemu_irq irq;
32
    qemu_irq drq;
33
    MemoryRegion iomem;
34
    int accept_256;
35

36
    uint8_t revision;
37
    uint8_t sysconfig;
38
    uint16_t irqst;
39
    uint16_t irqen;
40
    uint16_t lastirq;
41
    uint16_t timeout;
42
    uint16_t config;
43
    struct omap_gpmc_cs_file_s {
44
        uint32_t config[7];
45
        MemoryRegion *iomem;
46
        MemoryRegion container;
47
        MemoryRegion nandiomem;
48
        DeviceState *dev;
49
    } cs_file[8];
50
    int ecc_cs;
51
    int ecc_ptr;
52
    uint32_t ecc_cfg;
53
    ECCState ecc[9];
54
    struct prefetch {
55
        uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
56
        uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
57
        int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
58
        int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
59
        int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
60
        MemoryRegion iomem;
61
        uint8_t fifo[64];
62
    } prefetch;
63
};
64

65
#define OMAP_GPMC_8BIT 0
66
#define OMAP_GPMC_16BIT 1
67
#define OMAP_GPMC_NOR 0
68
#define OMAP_GPMC_NAND 2
69

70
static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
71
{
72
    return (f->config[0] >> 10) & 3;
73
}
74

75
static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
76
{
77
    /* devsize field is really 2 bits but we ignore the high
78
     * bit to ensure consistent behaviour if the guest sets
79
     * it (values 2 and 3 are reserved in the TRM)
80
     */
81
    return (f->config[0] >> 12) & 1;
82
}
83

84
/* Extract the chip-select value from the prefetch config1 register */
85
static int prefetch_cs(uint32_t config1)
86
{
87
    return (config1 >> 24) & 7;
88
}
89

90
static int prefetch_threshold(uint32_t config1)
91
{
92
    return (config1 >> 8) & 0x7f;
93
}
94

95
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
96
{
97
    /* The TRM is a bit unclear, but it seems to say that
98
     * the TERMINALCOUNTSTATUS bit is set only on the
99
     * transition when the prefetch engine goes from
100
     * active to inactive, whereas the FIFOEVENTSTATUS
101
     * bit is held high as long as the fifo has at
102
     * least THRESHOLD bytes available.
103
     * So we do the latter here, but TERMINALCOUNTSTATUS
104
     * is set elsewhere.
105
     */
106
    if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
107
        s->irqst |= 1;
108
    }
109
    if ((s->irqen & s->irqst) != s->lastirq) {
110
        s->lastirq = s->irqen & s->irqst;
111
        qemu_set_irq(s->irq, s->lastirq);
112
    }
113
}
114

115
static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
116
{
117
    if (s->prefetch.config1 & 4) {
118
        qemu_set_irq(s->drq, value);
119
    }
120
}
121

122
/* Access functions for when a NAND-like device is mapped into memory:
123
 * all addresses in the region behave like accesses to the relevant
124
 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
125
 */
126
static uint64_t omap_nand_read(void *opaque, hwaddr addr,
127
                               unsigned size)
128
{
129
    struct omap_gpmc_cs_file_s *f = opaque;
130
    uint64_t v;
131
    nand_setpins(f->dev, 0, 0, 0, 1, 0);
132
    switch (omap_gpmc_devsize(f)) {
133
    case OMAP_GPMC_8BIT:
134
        v = nand_getio(f->dev);
135
        if (size == 1) {
136
            return v;
137
        }
138
        v |= (nand_getio(f->dev) << 8);
139
        if (size == 2) {
140
            return v;
141
        }
142
        v |= (nand_getio(f->dev) << 16);
143
        v |= (nand_getio(f->dev) << 24);
144
        return v;
145
    case OMAP_GPMC_16BIT:
146
        v = nand_getio(f->dev);
147
        if (size == 1) {
148
            /* 8 bit read from 16 bit device : probably a guest bug */
149
            return v & 0xff;
150
        }
151
        if (size == 2) {
152
            return v;
153
        }
154
        v |= (nand_getio(f->dev) << 16);
155
        return v;
156
    default:
157
        abort();
158
    }
159
}
160

161
static void omap_nand_setio(DeviceState *dev, uint64_t value,
162
                            int nandsize, int size)
163
{
164
    /* Write the specified value to the NAND device, respecting
165
     * both size of the NAND device and size of the write access.
166
     */
167
    switch (nandsize) {
168
    case OMAP_GPMC_8BIT:
169
        switch (size) {
170
        case 1:
171
            nand_setio(dev, value & 0xff);
172
            break;
173
        case 2:
174
            nand_setio(dev, value & 0xff);
175
            nand_setio(dev, (value >> 8) & 0xff);
176
            break;
177
        case 4:
178
        default:
179
            nand_setio(dev, value & 0xff);
180
            nand_setio(dev, (value >> 8) & 0xff);
181
            nand_setio(dev, (value >> 16) & 0xff);
182
            nand_setio(dev, (value >> 24) & 0xff);
183
            break;
184
        }
185
        break;
186
    case OMAP_GPMC_16BIT:
187
        switch (size) {
188
        case 1:
189
            /* writing to a 16bit device with 8bit access is probably a guest
190
             * bug; pass the value through anyway.
191
             */
192
        case 2:
193
            nand_setio(dev, value & 0xffff);
194
            break;
195
        case 4:
196
        default:
197
            nand_setio(dev, value & 0xffff);
198
            nand_setio(dev, (value >> 16) & 0xffff);
199
            break;
200
        }
201
        break;
202
    }
203
}
204

205
static void omap_nand_write(void *opaque, hwaddr addr,
206
                            uint64_t value, unsigned size)
207
{
208
    struct omap_gpmc_cs_file_s *f = opaque;
209
    nand_setpins(f->dev, 0, 0, 0, 1, 0);
210
    omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
211
}
212

213
static const MemoryRegionOps omap_nand_ops = {
214
    .read = omap_nand_read,
215
    .write = omap_nand_write,
216
    .endianness = DEVICE_NATIVE_ENDIAN,
217
};
218

219
static void fill_prefetch_fifo(struct omap_gpmc_s *s)
220
{
221
    /* Fill the prefetch FIFO by reading data from NAND.
222
     * We do this synchronously, unlike the hardware which
223
     * will do this asynchronously. We refill when the
224
     * FIFO has THRESHOLD bytes free, and we always refill
225
     * as much data as possible starting at the top end
226
     * of the FIFO.
227
     * (We have to refill at THRESHOLD rather than waiting
228
     * for the FIFO to empty to allow for the case where
229
     * the FIFO size isn't an exact multiple of THRESHOLD
230
     * and we're doing DMA transfers.)
231
     * This means we never need to handle wrap-around in
232
     * the fifo-reading code, and the next byte of data
233
     * to read is always fifo[63 - fifopointer].
234
     */
235
    int fptr;
236
    int cs = prefetch_cs(s->prefetch.config1);
237
    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
238
    int bytes;
239
    /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
240
     * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
241
     * Instead believe the bit that says it is always a byte count.
242
     */
243
    bytes = 64 - s->prefetch.fifopointer;
244
    if (bytes > s->prefetch.count) {
245
        bytes = s->prefetch.count;
246
    }
247
    if (is16bit) {
248
        bytes &= ~1;
249
    }
250

251
    s->prefetch.count -= bytes;
252
    s->prefetch.fifopointer += bytes;
253
    fptr = 64 - s->prefetch.fifopointer;
254
    /* Move the existing data in the FIFO so it sits just
255
     * before what we're about to read in
256
     */
257
    while (fptr < (64 - bytes)) {
258
        s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
259
        fptr++;
260
    }
261
    while (fptr < 64) {
262
        if (is16bit) {
263
            uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
264
            s->prefetch.fifo[fptr++] = v & 0xff;
265
            s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
266
        } else {
267
            s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
268
        }
269
    }
270
    if (s->prefetch.startengine && (s->prefetch.count == 0)) {
271
        /* This was the final transfer: raise TERMINALCOUNTSTATUS */
272
        s->irqst |= 2;
273
        s->prefetch.startengine = 0;
274
    }
275
    /* If there are any bytes in the FIFO at this point then
276
     * we must raise a DMA request (either this is a final part
277
     * transfer, or we filled the FIFO in which case we certainly
278
     * have THRESHOLD bytes available)
279
     */
280
    if (s->prefetch.fifopointer != 0) {
281
        omap_gpmc_dma_update(s, 1);
282
    }
283
    omap_gpmc_int_update(s);
284
}
285

286
/* Access functions for a NAND-like device when the prefetch/postwrite
287
 * engine is enabled -- all addresses in the region behave alike:
288
 * data is read or written to the FIFO.
289
 */
290
static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
291
                                        unsigned size)
292
{
293
    struct omap_gpmc_s *s = opaque;
294
    uint32_t data;
295
    if (s->prefetch.config1 & 1) {
296
        /* The TRM doesn't define the behaviour if you read from the
297
         * FIFO when the prefetch engine is in write mode. We choose
298
         * to always return zero.
299
         */
300
        return 0;
301
    }
302
    /* Note that trying to read an empty fifo repeats the last byte */
303
    if (s->prefetch.fifopointer) {
304
        s->prefetch.fifopointer--;
305
    }
306
    data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
307
    if (s->prefetch.fifopointer ==
308
        (64 - prefetch_threshold(s->prefetch.config1))) {
309
        /* We've drained THRESHOLD bytes now. So deassert the
310
         * DMA request, then refill the FIFO (which will probably
311
         * assert it again.)
312
         */
313
        omap_gpmc_dma_update(s, 0);
314
        fill_prefetch_fifo(s);
315
    }
316
    omap_gpmc_int_update(s);
317
    return data;
318
}
319

320
static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
321
                                     uint64_t value, unsigned size)
322
{
323
    struct omap_gpmc_s *s = opaque;
324
    int cs = prefetch_cs(s->prefetch.config1);
325
    if ((s->prefetch.config1 & 1) == 0) {
326
        /* The TRM doesn't define the behaviour of writing to the
327
         * FIFO when the prefetch engine is in read mode. We
328
         * choose to ignore the write.
329
         */
330
        return;
331
    }
332
    if (s->prefetch.count == 0) {
333
        /* The TRM doesn't define the behaviour of writing to the
334
         * FIFO if the transfer is complete. We choose to ignore.
335
         */
336
        return;
337
    }
338
    /* The only reason we do any data buffering in postwrite
339
     * mode is if we are talking to a 16 bit NAND device, in
340
     * which case we need to buffer the first byte of the
341
     * 16 bit word until the other byte arrives.
342
     */
343
    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
344
    if (is16bit) {
345
        /* fifopointer alternates between 64 (waiting for first
346
         * byte of word) and 63 (waiting for second byte)
347
         */
348
        if (s->prefetch.fifopointer == 64) {
349
            s->prefetch.fifo[0] = value;
350
            s->prefetch.fifopointer--;
351
        } else {
352
            value = (value << 8) | s->prefetch.fifo[0];
353
            omap_nand_write(&s->cs_file[cs], 0, value, 2);
354
            s->prefetch.count--;
355
            s->prefetch.fifopointer = 64;
356
        }
357
    } else {
358
        /* Just write the byte : fifopointer remains 64 at all times */
359
        omap_nand_write(&s->cs_file[cs], 0, value, 1);
360
        s->prefetch.count--;
361
    }
362
    if (s->prefetch.count == 0) {
363
        /* Final transfer: raise TERMINALCOUNTSTATUS */
364
        s->irqst |= 2;
365
        s->prefetch.startengine = 0;
366
    }
367
    omap_gpmc_int_update(s);
368
}
369

370
static const MemoryRegionOps omap_prefetch_ops = {
371
    .read = omap_gpmc_prefetch_read,
372
    .write = omap_gpmc_prefetch_write,
373
    .endianness = DEVICE_NATIVE_ENDIAN,
374
    .impl.min_access_size = 1,
375
    .impl.max_access_size = 1,
376
};
377

378
static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
379
{
380
    /* Return the MemoryRegion* to map/unmap for this chipselect */
381
    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
382
    if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
383
        return f->iomem;
384
    }
385
    if ((s->prefetch.config1 & 0x80) &&
386
        (prefetch_cs(s->prefetch.config1) == cs)) {
387
        /* The prefetch engine is enabled for this CS: map the FIFO */
388
        return &s->prefetch.iomem;
389
    }
390
    return &f->nandiomem;
391
}
392

393
static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
394
{
395
    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
396
    uint32_t mask = (f->config[6] >> 8) & 0xf;
397
    uint32_t base = f->config[6] & 0x3f;
398
    uint32_t size;
399

400
    if (!f->iomem && !f->dev) {
401
        return;
402
    }
403

404
    if (!(f->config[6] & (1 << 6))) {
405
        /* Do nothing unless CSVALID */
406
        return;
407
    }
408

409
    /* TODO: check for overlapping regions and report access errors */
410
    if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
411
         && !(s->accept_256 && !mask)) {
412
        fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
413
                 __func__, mask);
414
    }
415

416
    base <<= 24;
417
    size = (0x0fffffff & ~(mask << 24)) + 1;
418
    /* TODO: rather than setting the size of the mapping (which should be
419
     * constant), the mask should cause wrapping of the address space, so
420
     * that the same memory becomes accessible at every <i>size</i> bytes
421
     * starting from <i>base</i>.  */
422
    memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
423
    memory_region_add_subregion(&f->container, 0,
424
                                omap_gpmc_cs_memregion(s, cs));
425
    memory_region_add_subregion(get_system_memory(), base,
426
                                &f->container);
427
}
428

429
static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
430
{
431
    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
432
    if (!(f->config[6] & (1 << 6))) {
433
        /* Do nothing unless CSVALID */
434
        return;
435
    }
436
    if (!f->iomem && !f->dev) {
437
        return;
438
    }
439
    memory_region_del_subregion(get_system_memory(), &f->container);
440
    memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
441
    object_unparent(OBJECT(&f->container));
442
}
443

444
void omap_gpmc_reset(struct omap_gpmc_s *s)
445
{
446
    int i;
447

448
    s->sysconfig = 0;
449
    s->irqst = 0;
450
    s->irqen = 0;
451
    omap_gpmc_int_update(s);
452
    for (i = 0; i < 8; i++) {
453
        /* This has to happen before we change any of the config
454
         * used to determine which memory regions are mapped or unmapped.
455
         */
456
        omap_gpmc_cs_unmap(s, i);
457
    }
458
    s->timeout = 0;
459
    s->config = 0xa00;
460
    s->prefetch.config1 = 0x00004000;
461
    s->prefetch.transfercount = 0x00000000;
462
    s->prefetch.startengine = 0;
463
    s->prefetch.fifopointer = 0;
464
    s->prefetch.count = 0;
465
    for (i = 0; i < 8; i ++) {
466
        s->cs_file[i].config[1] = 0x101001;
467
        s->cs_file[i].config[2] = 0x020201;
468
        s->cs_file[i].config[3] = 0x10031003;
469
        s->cs_file[i].config[4] = 0x10f1111;
470
        s->cs_file[i].config[5] = 0;
471
        s->cs_file[i].config[6] = 0xf00;
472
        /* In theory we could probe attached devices for some CFG1
473
         * bits here, but we just retain them across resets as they
474
         * were set initially by omap_gpmc_attach().
475
         */
476
        if (i == 0) {
477
            s->cs_file[i].config[0] &= 0x00433e00;
478
            s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
479
            omap_gpmc_cs_map(s, i);
480
        } else {
481
            s->cs_file[i].config[0] &= 0x00403c00;
482
        }
483
    }
484
    s->ecc_cs = 0;
485
    s->ecc_ptr = 0;
486
    s->ecc_cfg = 0x3fcff000;
487
    for (i = 0; i < 9; i ++)
488
        ecc_reset(&s->ecc[i]);
489
}
490

491
static int gpmc_wordaccess_only(hwaddr addr)
492
{
493
    /* Return true if the register offset is to a register that
494
     * only permits word width accesses.
495
     * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
496
     * for any chipselect.
497
     */
498
    if (addr >= 0x60 && addr <= 0x1d4) {
499
        int cs = (addr - 0x60) / 0x30;
500
        addr -= cs * 0x30;
501
        if (addr >= 0x7c && addr < 0x88) {
502
            /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
503
            return 0;
504
        }
505
    }
506
    return 1;
507
}
508

509
static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
510
                               unsigned size)
511
{
512
    struct omap_gpmc_s *s = opaque;
513
    int cs;
514
    struct omap_gpmc_cs_file_s *f;
515

516
    if (size != 4 && gpmc_wordaccess_only(addr)) {
517
        return omap_badwidth_read32(opaque, addr);
518
    }
519

520
    switch (addr) {
521
    case 0x000:	/* GPMC_REVISION */
522
        return s->revision;
523

524
    case 0x010:	/* GPMC_SYSCONFIG */
525
        return s->sysconfig;
526

527
    case 0x014:	/* GPMC_SYSSTATUS */
528
        return 1;						/* RESETDONE */
529

530
    case 0x018:	/* GPMC_IRQSTATUS */
531
        return s->irqst;
532

533
    case 0x01c:	/* GPMC_IRQENABLE */
534
        return s->irqen;
535

536
    case 0x040:	/* GPMC_TIMEOUT_CONTROL */
537
        return s->timeout;
538

539
    case 0x044:	/* GPMC_ERR_ADDRESS */
540
    case 0x048:	/* GPMC_ERR_TYPE */
541
        return 0;
542

543
    case 0x050:	/* GPMC_CONFIG */
544
        return s->config;
545

546
    case 0x054:	/* GPMC_STATUS */
547
        return 0x001;
548

549
    case 0x060 ... 0x1d4:
550
        cs = (addr - 0x060) / 0x30;
551
        addr -= cs * 0x30;
552
        f = s->cs_file + cs;
553
        switch (addr) {
554
        case 0x60:      /* GPMC_CONFIG1 */
555
            return f->config[0];
556
        case 0x64:      /* GPMC_CONFIG2 */
557
            return f->config[1];
558
        case 0x68:      /* GPMC_CONFIG3 */
559
            return f->config[2];
560
        case 0x6c:      /* GPMC_CONFIG4 */
561
            return f->config[3];
562
        case 0x70:      /* GPMC_CONFIG5 */
563
            return f->config[4];
564
        case 0x74:      /* GPMC_CONFIG6 */
565
            return f->config[5];
566
        case 0x78:      /* GPMC_CONFIG7 */
567
            return f->config[6];
568
        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
569
            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
570
                return omap_nand_read(f, 0, size);
571
            }
572
            return 0;
573
        }
574
        break;
575

576
    case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
577
        return s->prefetch.config1;
578
    case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
579
        return s->prefetch.transfercount;
580
    case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
581
        return s->prefetch.startengine;
582
    case 0x1f0:	/* GPMC_PREFETCH_STATUS */
583
        /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
584
         * FIFOTHRESHOLDSTATUS bit should be set when
585
         * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
586
         * Apparently the underlying functional spec from which the TRM was
587
         * created states that the behaviour is ">=", and this also
588
         * makes more conceptual sense.
589
         */
590
        return (s->prefetch.fifopointer << 24) |
591
                ((s->prefetch.fifopointer >=
592
                  ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
593
                s->prefetch.count;
594

595
    case 0x1f4:	/* GPMC_ECC_CONFIG */
596
        return s->ecc_cs;
597
    case 0x1f8:	/* GPMC_ECC_CONTROL */
598
        return s->ecc_ptr;
599
    case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
600
        return s->ecc_cfg;
601
    case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
602
        cs = (addr & 0x1f) >> 2;
603
        /* TODO: check correctness */
604
        return
605
                ((s->ecc[cs].cp    &  0x07) <<  0) |
606
                ((s->ecc[cs].cp    &  0x38) << 13) |
607
                ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
608
                ((s->ecc[cs].lp[1] & 0x1ff) << 19);
609

610
    case 0x230:	/* GPMC_TESTMODE_CTRL */
611
        return 0;
612
    case 0x234:	/* GPMC_PSA_LSB */
613
    case 0x238:	/* GPMC_PSA_MSB */
614
        return 0x00000000;
615
    }
616

617
    OMAP_BAD_REG(addr);
618
    return 0;
619
}
620

621
static void omap_gpmc_write(void *opaque, hwaddr addr,
622
                            uint64_t value, unsigned size)
623
{
624
    struct omap_gpmc_s *s = opaque;
625
    int cs;
626
    struct omap_gpmc_cs_file_s *f;
627

628
    if (size != 4 && gpmc_wordaccess_only(addr)) {
629
        omap_badwidth_write32(opaque, addr, value);
630
        return;
631
    }
632

633
    switch (addr) {
634
    case 0x000:	/* GPMC_REVISION */
635
    case 0x014:	/* GPMC_SYSSTATUS */
636
    case 0x054:	/* GPMC_STATUS */
637
    case 0x1f0:	/* GPMC_PREFETCH_STATUS */
638
    case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
639
    case 0x234:	/* GPMC_PSA_LSB */
640
    case 0x238:	/* GPMC_PSA_MSB */
641
        OMAP_RO_REG(addr);
642
        break;
643

644
    case 0x010:	/* GPMC_SYSCONFIG */
645
        if ((value >> 3) == 0x3)
646
            fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
647
                            __func__, value >> 3);
648
        if (value & 2)
649
            omap_gpmc_reset(s);
650
        s->sysconfig = value & 0x19;
651
        break;
652

653
    case 0x018:	/* GPMC_IRQSTATUS */
654
        s->irqst &= ~value;
655
        omap_gpmc_int_update(s);
656
        break;
657

658
    case 0x01c:	/* GPMC_IRQENABLE */
659
        s->irqen = value & 0xf03;
660
        omap_gpmc_int_update(s);
661
        break;
662

663
    case 0x040:	/* GPMC_TIMEOUT_CONTROL */
664
        s->timeout = value & 0x1ff1;
665
        break;
666

667
    case 0x044:	/* GPMC_ERR_ADDRESS */
668
    case 0x048:	/* GPMC_ERR_TYPE */
669
        break;
670

671
    case 0x050:	/* GPMC_CONFIG */
672
        s->config = value & 0xf13;
673
        break;
674

675
    case 0x060 ... 0x1d4:
676
        cs = (addr - 0x060) / 0x30;
677
        addr -= cs * 0x30;
678
        f = s->cs_file + cs;
679
        switch (addr) {
680
        case 0x60:      /* GPMC_CONFIG1 */
681
            f->config[0] = value & 0xffef3e13;
682
            break;
683
        case 0x64:      /* GPMC_CONFIG2 */
684
            f->config[1] = value & 0x001f1f8f;
685
            break;
686
        case 0x68:      /* GPMC_CONFIG3 */
687
            f->config[2] = value & 0x001f1f8f;
688
            break;
689
        case 0x6c:      /* GPMC_CONFIG4 */
690
            f->config[3] = value & 0x1f8f1f8f;
691
            break;
692
        case 0x70:      /* GPMC_CONFIG5 */
693
            f->config[4] = value & 0x0f1f1f1f;
694
            break;
695
        case 0x74:      /* GPMC_CONFIG6 */
696
            f->config[5] = value & 0x00000fcf;
697
            break;
698
        case 0x78:      /* GPMC_CONFIG7 */
699
            if ((f->config[6] ^ value) & 0xf7f) {
700
                omap_gpmc_cs_unmap(s, cs);
701
                f->config[6] = value & 0x00000f7f;
702
                omap_gpmc_cs_map(s, cs);
703
            }
704
            break;
705
        case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
706
            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
707
                nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
708
                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
709
            }
710
            break;
711
        case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
712
            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
713
                nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
714
                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
715
            }
716
            break;
717
        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
718
            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
719
                omap_nand_write(f, 0, value, size);
720
            }
721
            break;
722
        default:
723
            goto bad_reg;
724
        }
725
        break;
726

727
    case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
728
        if (!s->prefetch.startengine) {
729
            uint32_t newconfig1 = value & 0x7f8f7fbf;
730
            uint32_t changed;
731
            changed = newconfig1 ^ s->prefetch.config1;
732
            if (changed & (0x80 | 0x7000000)) {
733
                /* Turning the engine on or off, or mapping it somewhere else.
734
                 * cs_map() and cs_unmap() check the prefetch config and
735
                 * overall CSVALID bits, so it is sufficient to unmap-and-map
736
                 * both the old cs and the new one. Note that we adhere to
737
                 * the "unmap/change config/map" order (and not unmap twice
738
                 * if newcs == oldcs), otherwise we'll try to delete the wrong
739
                 * memory region.
740
                 */
741
                int oldcs = prefetch_cs(s->prefetch.config1);
742
                int newcs = prefetch_cs(newconfig1);
743
                omap_gpmc_cs_unmap(s, oldcs);
744
                if (oldcs != newcs) {
745
                    omap_gpmc_cs_unmap(s, newcs);
746
                }
747
                s->prefetch.config1 = newconfig1;
748
                omap_gpmc_cs_map(s, oldcs);
749
                if (oldcs != newcs) {
750
                    omap_gpmc_cs_map(s, newcs);
751
                }
752
            } else {
753
                s->prefetch.config1 = newconfig1;
754
            }
755
        }
756
        break;
757

758
    case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
759
        if (!s->prefetch.startengine) {
760
            s->prefetch.transfercount = value & 0x3fff;
761
        }
762
        break;
763

764
    case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
765
        if (s->prefetch.startengine != (value & 1)) {
766
            s->prefetch.startengine = value & 1;
767
            if (s->prefetch.startengine) {
768
                /* Prefetch engine start */
769
                s->prefetch.count = s->prefetch.transfercount;
770
                if (s->prefetch.config1 & 1) {
771
                    /* Write */
772
                    s->prefetch.fifopointer = 64;
773
                } else {
774
                    /* Read */
775
                    s->prefetch.fifopointer = 0;
776
                    fill_prefetch_fifo(s);
777
                }
778
            } else {
779
                /* Prefetch engine forcibly stopped. The TRM
780
                 * doesn't define the behaviour if you do this.
781
                 * We clear the prefetch count, which means that
782
                 * we permit no more writes, and don't read any
783
                 * more data from NAND. The CPU can still drain
784
                 * the FIFO of unread data.
785
                 */
786
                s->prefetch.count = 0;
787
            }
788
            omap_gpmc_int_update(s);
789
        }
790
        break;
791

792
    case 0x1f4:	/* GPMC_ECC_CONFIG */
793
        s->ecc_cs = 0x8f;
794
        break;
795
    case 0x1f8:	/* GPMC_ECC_CONTROL */
796
        if (value & (1 << 8))
797
            for (cs = 0; cs < 9; cs ++)
798
                ecc_reset(&s->ecc[cs]);
799
        s->ecc_ptr = value & 0xf;
800
        if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
801
            s->ecc_ptr = 0;
802
            s->ecc_cs &= ~1;
803
        }
804
        break;
805
    case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
806
        s->ecc_cfg = value & 0x3fcff1ff;
807
        break;
808
    case 0x230:	/* GPMC_TESTMODE_CTRL */
809
        if (value & 7)
810
            fprintf(stderr, "%s: test mode enable attempt\n", __func__);
811
        break;
812

813
    default:
814
    bad_reg:
815
        OMAP_BAD_REG(addr);
816
        return;
817
    }
818
}
819

820
static const MemoryRegionOps omap_gpmc_ops = {
821
    .read = omap_gpmc_read,
822
    .write = omap_gpmc_write,
823
    .endianness = DEVICE_NATIVE_ENDIAN,
824
};
825

826
struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
827
                                   hwaddr base,
828
                                   qemu_irq irq, qemu_irq drq)
829
{
830
    int cs;
831
    struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
832

833
    memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
834
    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
835

836
    s->irq = irq;
837
    s->drq = drq;
838
    s->accept_256 = cpu_is_omap3630(mpu);
839
    s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
840
    s->lastirq = 0;
841
    omap_gpmc_reset(s);
842

843
    /* We have to register a different IO memory handler for each
844
     * chip select region in case a NAND device is mapped there. We
845
     * make the region the worst-case size of 256MB and rely on the
846
     * container memory region in cs_map to chop it down to the actual
847
     * guest-requested size.
848
     */
849
    for (cs = 0; cs < 8; cs++) {
850
        memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
851
                              &omap_nand_ops,
852
                              &s->cs_file[cs],
853
                              "omap-nand",
854
                              256 * 1024 * 1024);
855
    }
856

857
    memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
858
                          "omap-gpmc-prefetch", 256 * 1024 * 1024);
859
    return s;
860
}
861

862
void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
863
{
864
    struct omap_gpmc_cs_file_s *f;
865
    assert(iomem);
866

867
    if (cs < 0 || cs >= 8) {
868
        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
869
        exit(-1);
870
    }
871
    f = &s->cs_file[cs];
872

873
    omap_gpmc_cs_unmap(s, cs);
874
    f->config[0] &= ~(0xf << 10);
875
    f->iomem = iomem;
876
    omap_gpmc_cs_map(s, cs);
877
}
878

879
void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
880
{
881
    struct omap_gpmc_cs_file_s *f;
882
    assert(nand);
883

884
    if (cs < 0 || cs >= 8) {
885
        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
886
        exit(-1);
887
    }
888
    f = &s->cs_file[cs];
889

890
    omap_gpmc_cs_unmap(s, cs);
891
    f->config[0] &= ~(0xf << 10);
892
    f->config[0] |= (OMAP_GPMC_NAND << 10);
893
    f->dev = nand;
894
    if (nand_getbuswidth(f->dev) == 16) {
895
        f->config[0] |= OMAP_GPMC_16BIT << 12;
896
    }
897
    omap_gpmc_cs_map(s, cs);
898
}
899

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.