qemu

Форк
0
/
mps2-scc.c 
502 строки · 13.9 Кб
1
/*
2
 * ARM MPS2 SCC emulation
3
 *
4
 * Copyright (c) 2017 Linaro Limited
5
 * Written by Peter Maydell
6
 *
7
 *  This program is free software; you can redistribute it and/or modify
8
 *  it under the terms of the GNU General Public License version 2 or
9
 *  (at your option) any later version.
10
 */
11

12
/* This is a model of the SCC (Serial Communication Controller)
13
 * found in the FPGA images of MPS2 development boards.
14
 *
15
 * Documentation of it can be found in the MPS2 TRM:
16
 * https://developer.arm.com/documentation/100112/latest/
17
 * and also in the Application Notes documenting individual FPGA images.
18
 */
19

20
#include "qemu/osdep.h"
21
#include "qemu/log.h"
22
#include "qemu/module.h"
23
#include "qemu/bitops.h"
24
#include "trace.h"
25
#include "hw/sysbus.h"
26
#include "hw/irq.h"
27
#include "migration/vmstate.h"
28
#include "hw/registerfields.h"
29
#include "hw/misc/mps2-scc.h"
30
#include "hw/misc/led.h"
31
#include "hw/qdev-properties.h"
32

33
REG32(CFG0, 0)
34
REG32(CFG1, 4)
35
REG32(CFG2, 8)
36
REG32(CFG3, 0xc)
37
REG32(CFG4, 0x10)
38
REG32(CFG5, 0x14)
39
REG32(CFG6, 0x18)
40
REG32(CFG7, 0x1c)
41
REG32(CFGDATA_RTN, 0xa0)
42
REG32(CFGDATA_OUT, 0xa4)
43
REG32(CFGCTRL, 0xa8)
44
    FIELD(CFGCTRL, DEVICE, 0, 12)
45
    FIELD(CFGCTRL, RES1, 12, 8)
46
    FIELD(CFGCTRL, FUNCTION, 20, 6)
47
    FIELD(CFGCTRL, RES2, 26, 4)
48
    FIELD(CFGCTRL, WRITE, 30, 1)
49
    FIELD(CFGCTRL, START, 31, 1)
50
REG32(CFGSTAT, 0xac)
51
    FIELD(CFGSTAT, DONE, 0, 1)
52
    FIELD(CFGSTAT, ERROR, 1, 1)
53
REG32(DLL, 0x100)
54
REG32(AID, 0xFF8)
55
REG32(ID, 0xFFC)
56

57
static int scc_partno(MPS2SCC *s)
58
{
59
    /* Return the partno field of the SCC_ID (0x524, 0x511, etc) */
60
    return extract32(s->id, 4, 8);
61
}
62

63
/* Is CFG_REG2 present? */
64
static bool have_cfg2(MPS2SCC *s)
65
{
66
    return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
67
        scc_partno(s) == 0x536;
68
}
69

70
/* Is CFG_REG3 present? */
71
static bool have_cfg3(MPS2SCC *s)
72
{
73
    return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 &&
74
        scc_partno(s) != 0x536;
75
}
76

77
/* Is CFG_REG5 present? */
78
static bool have_cfg5(MPS2SCC *s)
79
{
80
    return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
81
        scc_partno(s) == 0x536;
82
}
83

84
/* Is CFG_REG6 present? */
85
static bool have_cfg6(MPS2SCC *s)
86
{
87
    return scc_partno(s) == 0x524 || scc_partno(s) == 0x536;
88
}
89

90
/* Is CFG_REG7 present? */
91
static bool have_cfg7(MPS2SCC *s)
92
{
93
    return scc_partno(s) == 0x536;
94
}
95

96
/* Does CFG_REG0 drive the 'remap' GPIO output? */
97
static bool cfg0_is_remap(MPS2SCC *s)
98
{
99
    return scc_partno(s) != 0x536;
100
}
101

102
/* Is CFG_REG1 driving a set of LEDs? */
103
static bool cfg1_is_leds(MPS2SCC *s)
104
{
105
    return scc_partno(s) != 0x536;
106
}
107

108
/* Handle a write via the SYS_CFG channel to the specified function/device.
109
 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit).
110
 */
111
static bool scc_cfg_write(MPS2SCC *s, unsigned function,
112
                          unsigned device, uint32_t value)
113
{
114
    trace_mps2_scc_cfg_write(function, device, value);
115

116
    if (function != 1 || device >= s->num_oscclk) {
117
        qemu_log_mask(LOG_GUEST_ERROR,
118
                      "MPS2 SCC config write: bad function %d device %d\n",
119
                      function, device);
120
        return false;
121
    }
122

123
    s->oscclk[device] = value;
124
    return true;
125
}
126

127
/* Handle a read via the SYS_CFG channel to the specified function/device.
128
 * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit),
129
 * or set *value on success.
130
 */
131
static bool scc_cfg_read(MPS2SCC *s, unsigned function,
132
                         unsigned device, uint32_t *value)
133
{
134
    if (function != 1 || device >= s->num_oscclk) {
135
        qemu_log_mask(LOG_GUEST_ERROR,
136
                      "MPS2 SCC config read: bad function %d device %d\n",
137
                      function, device);
138
        return false;
139
    }
140

141
    *value = s->oscclk[device];
142

143
    trace_mps2_scc_cfg_read(function, device, *value);
144
    return true;
145
}
146

147
static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
148
{
149
    MPS2SCC *s = MPS2_SCC(opaque);
150
    uint64_t r;
151

152
    switch (offset) {
153
    case A_CFG0:
154
        r = s->cfg0;
155
        break;
156
    case A_CFG1:
157
        r = s->cfg1;
158
        break;
159
    case A_CFG2:
160
        if (!have_cfg2(s)) {
161
            goto bad_offset;
162
        }
163
        r = s->cfg2;
164
        break;
165
    case A_CFG3:
166
        if (!have_cfg3(s)) {
167
            goto bad_offset;
168
        }
169
        /*
170
         * These are user-settable DIP switches on the board. We don't
171
         * model that, so just return zeroes.
172
         *
173
         * TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing
174
         * bits". These change which part of the DDR4 the motherboard
175
         * configuration controller can see in its memory map (see the
176
         * appnote section 2.4). QEMU doesn't model the MCC at all, so these
177
         * bits are not interesting to us; read-as-zero is as good as anything
178
         * else.
179
         */
180
        r = 0;
181
        break;
182
    case A_CFG4:
183
        r = s->cfg4;
184
        break;
185
    case A_CFG5:
186
        if (!have_cfg5(s)) {
187
            goto bad_offset;
188
        }
189
        r = s->cfg5;
190
        break;
191
    case A_CFG6:
192
        if (!have_cfg6(s)) {
193
            goto bad_offset;
194
        }
195
        r = s->cfg6;
196
        break;
197
    case A_CFG7:
198
        if (!have_cfg7(s)) {
199
            goto bad_offset;
200
        }
201
        r = s->cfg7;
202
        break;
203
    case A_CFGDATA_RTN:
204
        r = s->cfgdata_rtn;
205
        break;
206
    case A_CFGDATA_OUT:
207
        r = s->cfgdata_out;
208
        break;
209
    case A_CFGCTRL:
210
        r = s->cfgctrl;
211
        break;
212
    case A_CFGSTAT:
213
        r = s->cfgstat;
214
        break;
215
    case A_DLL:
216
        r = s->dll;
217
        break;
218
    case A_AID:
219
        r = s->aid;
220
        break;
221
    case A_ID:
222
        r = s->id;
223
        break;
224
    default:
225
    bad_offset:
226
        qemu_log_mask(LOG_GUEST_ERROR,
227
                      "MPS2 SCC read: bad offset %x\n", (int) offset);
228
        r = 0;
229
        break;
230
    }
231

232
    trace_mps2_scc_read(offset, r, size);
233
    return r;
234
}
235

236
static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
237
                           unsigned size)
238
{
239
    MPS2SCC *s = MPS2_SCC(opaque);
240

241
    trace_mps2_scc_write(offset, value, size);
242

243
    switch (offset) {
244
    case A_CFG0:
245
        /*
246
         * On some boards bit 0 controls board-specific remapping;
247
         * we always reflect bit 0 in the 'remap' GPIO output line,
248
         * and let the board wire it up or not as it chooses.
249
         * TODO on some boards bit 1 is CPU_WAIT.
250
         *
251
         * TODO: on the AN536 this register controls reset and halt
252
         * for both CPUs. For the moment we don't implement this, so the
253
         * register just reads as written.
254
         */
255
        s->cfg0 = value;
256
        if (cfg0_is_remap(s)) {
257
            qemu_set_irq(s->remap, s->cfg0 & 1);
258
        }
259
        break;
260
    case A_CFG1:
261
        s->cfg1 = value;
262
        /*
263
         * On most boards this register drives LEDs.
264
         *
265
         * TODO: for AN536 this controls whether flash and ATCM are
266
         * enabled or disabled on reset. QEMU doesn't model this, and
267
         * always wires up RAM in the ATCM area and ROM in the flash area.
268
         */
269
        if (cfg1_is_leds(s)) {
270
            for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
271
                led_set_state(s->led[i], extract32(value, i, 1));
272
            }
273
        }
274
        break;
275
    case A_CFG2:
276
        if (!have_cfg2(s)) {
277
            goto bad_offset;
278
        }
279
        /* AN524, AN536: QSPI Select signal */
280
        s->cfg2 = value;
281
        break;
282
    case A_CFG5:
283
        if (!have_cfg5(s)) {
284
            goto bad_offset;
285
        }
286
        /* AN524, AN536: ACLK frequency in Hz */
287
        s->cfg5 = value;
288
        break;
289
    case A_CFG6:
290
        if (!have_cfg6(s)) {
291
            goto bad_offset;
292
        }
293
        /* AN524: Clock divider for BRAM */
294
        /* AN536: Core 0 vector table base address */
295
        s->cfg6 = value;
296
        break;
297
    case A_CFG7:
298
        if (!have_cfg7(s)) {
299
            goto bad_offset;
300
        }
301
        /* AN536: Core 1 vector table base address */
302
        s->cfg6 = value;
303
        break;
304
    case A_CFGDATA_OUT:
305
        s->cfgdata_out = value;
306
        break;
307
    case A_CFGCTRL:
308
        /* Writing to CFGCTRL clears SYS_CFGSTAT */
309
        s->cfgstat = 0;
310
        s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK |
311
                               R_CFGCTRL_RES2_MASK |
312
                               R_CFGCTRL_START_MASK);
313

314
        if (value & R_CFGCTRL_START_MASK) {
315
            /* Start bit set -- do a read or write (instantaneously) */
316
            int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT,
317
                                   R_CFGCTRL_DEVICE_LENGTH);
318
            int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT,
319
                                     R_CFGCTRL_FUNCTION_LENGTH);
320

321
            s->cfgstat = R_CFGSTAT_DONE_MASK;
322
            if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) {
323
                if (!scc_cfg_write(s, function, device, s->cfgdata_out)) {
324
                    s->cfgstat |= R_CFGSTAT_ERROR_MASK;
325
                }
326
            } else {
327
                uint32_t result;
328
                if (!scc_cfg_read(s, function, device, &result)) {
329
                    s->cfgstat |= R_CFGSTAT_ERROR_MASK;
330
                } else {
331
                    s->cfgdata_rtn = result;
332
                }
333
            }
334
        }
335
        break;
336
    case A_DLL:
337
        /* DLL stands for Digital Locked Loop.
338
         * Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a
339
         * mask of which of the DLL_LOCKED bits [16:23] should be ORed
340
         * together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0].
341
         * For QEMU, our DLLs are always locked, so we can leave bit 0
342
         * as 1 always and don't need to recalculate it.
343
         */
344
        s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8));
345
        break;
346
    default:
347
    bad_offset:
348
        qemu_log_mask(LOG_GUEST_ERROR,
349
                      "MPS2 SCC write: bad offset 0x%x\n", (int) offset);
350
        break;
351
    }
352
}
353

354
static const MemoryRegionOps mps2_scc_ops = {
355
    .read = mps2_scc_read,
356
    .write = mps2_scc_write,
357
    .endianness = DEVICE_LITTLE_ENDIAN,
358
};
359

360
static void mps2_scc_reset(DeviceState *dev)
361
{
362
    MPS2SCC *s = MPS2_SCC(dev);
363
    int i;
364

365
    trace_mps2_scc_reset();
366
    s->cfg0 = s->cfg0_reset;
367
    s->cfg1 = 0;
368
    s->cfg2 = 0;
369
    s->cfg5 = 0;
370
    s->cfg6 = 0;
371
    s->cfgdata_rtn = 0;
372
    s->cfgdata_out = 0;
373
    s->cfgctrl = 0x100000;
374
    s->cfgstat = 0;
375
    s->dll = 0xffff0001;
376
    for (i = 0; i < s->num_oscclk; i++) {
377
        s->oscclk[i] = s->oscclk_reset[i];
378
    }
379
    for (i = 0; i < ARRAY_SIZE(s->led); i++) {
380
        device_cold_reset(DEVICE(s->led[i]));
381
    }
382
}
383

384
static void mps2_scc_init(Object *obj)
385
{
386
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
387
    MPS2SCC *s = MPS2_SCC(obj);
388

389
    memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000);
390
    sysbus_init_mmio(sbd, &s->iomem);
391
    qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1);
392
}
393

394
static void mps2_scc_realize(DeviceState *dev, Error **errp)
395
{
396
    MPS2SCC *s = MPS2_SCC(dev);
397

398
    for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
399
        char *name = g_strdup_printf("SCC LED%zu", i);
400
        s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
401
                                      LED_COLOR_GREEN, name);
402
        g_free(name);
403
    }
404

405
    s->oscclk = g_new0(uint32_t, s->num_oscclk);
406
}
407

408
static void mps2_scc_finalize(Object *obj)
409
{
410
    MPS2SCC *s = MPS2_SCC(obj);
411

412
    g_free(s->oscclk_reset);
413
}
414

415
static bool cfg7_needed(void *opaque)
416
{
417
    MPS2SCC *s = opaque;
418

419
    return have_cfg7(s);
420
}
421

422
static const VMStateDescription vmstate_cfg7 = {
423
    .name = "mps2-scc/cfg7",
424
    .version_id = 1,
425
    .minimum_version_id = 1,
426
    .needed = cfg7_needed,
427
    .fields = (const VMStateField[]) {
428
        VMSTATE_UINT32(cfg7, MPS2SCC),
429
        VMSTATE_END_OF_LIST()
430
    }
431
};
432

433
static const VMStateDescription mps2_scc_vmstate = {
434
    .name = "mps2-scc",
435
    .version_id = 3,
436
    .minimum_version_id = 3,
437
    .fields = (const VMStateField[]) {
438
        VMSTATE_UINT32(cfg0, MPS2SCC),
439
        VMSTATE_UINT32(cfg1, MPS2SCC),
440
        VMSTATE_UINT32(cfg2, MPS2SCC),
441
        /* cfg3, cfg4 are read-only so need not be migrated */
442
        VMSTATE_UINT32(cfg5, MPS2SCC),
443
        VMSTATE_UINT32(cfg6, MPS2SCC),
444
        VMSTATE_UINT32(cfgdata_rtn, MPS2SCC),
445
        VMSTATE_UINT32(cfgdata_out, MPS2SCC),
446
        VMSTATE_UINT32(cfgctrl, MPS2SCC),
447
        VMSTATE_UINT32(cfgstat, MPS2SCC),
448
        VMSTATE_UINT32(dll, MPS2SCC),
449
        VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk,
450
                              0, vmstate_info_uint32, uint32_t),
451
        VMSTATE_END_OF_LIST()
452
    },
453
    .subsections = (const VMStateDescription * const []) {
454
        &vmstate_cfg7,
455
        NULL
456
    }
457
};
458

459
static Property mps2_scc_properties[] = {
460
    /* Values for various read-only ID registers (which are specific
461
     * to the board model or FPGA image)
462
     */
463
    DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0),
464
    DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0),
465
    DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0),
466
    /* Reset value for CFG0 register */
467
    DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0),
468
    /*
469
     * These are the initial settings for the source clocks on the board.
470
     * In hardware they can be configured via a config file read by the
471
     * motherboard configuration controller to suit the FPGA image.
472
     */
473
    DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset,
474
                      qdev_prop_uint32, uint32_t),
475
    DEFINE_PROP_END_OF_LIST(),
476
};
477

478
static void mps2_scc_class_init(ObjectClass *klass, void *data)
479
{
480
    DeviceClass *dc = DEVICE_CLASS(klass);
481

482
    dc->realize = mps2_scc_realize;
483
    dc->vmsd = &mps2_scc_vmstate;
484
    dc->reset = mps2_scc_reset;
485
    device_class_set_props(dc, mps2_scc_properties);
486
}
487

488
static const TypeInfo mps2_scc_info = {
489
    .name = TYPE_MPS2_SCC,
490
    .parent = TYPE_SYS_BUS_DEVICE,
491
    .instance_size = sizeof(MPS2SCC),
492
    .instance_init = mps2_scc_init,
493
    .instance_finalize = mps2_scc_finalize,
494
    .class_init = mps2_scc_class_init,
495
};
496

497
static void mps2_scc_register_types(void)
498
{
499
    type_register_static(&mps2_scc_info);
500
}
501

502
type_init(mps2_scc_register_types);
503

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.