qemu

Форк
0
/
mps2-fpgaio.c 
355 строк · 10.6 Кб
1
/*
2
 * ARM MPS2 AN505 FPGAIO emulation
3
 *
4
 * Copyright (c) 2018 Linaro Limited
5
 * Written by Peter Maydell
6
 *
7
 *  This program is free software; you can redistribute it and/or modify
8
 *  it under the terms of the GNU General Public License version 2 or
9
 *  (at your option) any later version.
10
 */
11

12
/* This is a model of the "FPGA system control and I/O" block found
13
 * in the AN505 FPGA image for the MPS2 devboard.
14
 * It is documented in AN505:
15
 * https://developer.arm.com/documentation/dai0505/latest/
16
 */
17

18
#include "qemu/osdep.h"
19
#include "qemu/log.h"
20
#include "qemu/module.h"
21
#include "qapi/error.h"
22
#include "trace.h"
23
#include "hw/sysbus.h"
24
#include "migration/vmstate.h"
25
#include "hw/registerfields.h"
26
#include "hw/misc/mps2-fpgaio.h"
27
#include "hw/misc/led.h"
28
#include "hw/qdev-properties.h"
29
#include "qemu/timer.h"
30

31
REG32(LED0, 0)
32
REG32(DBGCTRL, 4)
33
REG32(BUTTON, 8)
34
REG32(CLK1HZ, 0x10)
35
REG32(CLK100HZ, 0x14)
36
REG32(COUNTER, 0x18)
37
REG32(PRESCALE, 0x1c)
38
REG32(PSCNTR, 0x20)
39
REG32(SWITCH, 0x28)
40
REG32(MISC, 0x4c)
41

42
static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
43
{
44
    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
45
}
46

47
static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
48
{
49
    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
50
}
51

52
static void resync_counter(MPS2FPGAIO *s)
53
{
54
    /*
55
     * Update s->counter and s->pscntr to their true current values
56
     * by calculating how many times PSCNTR has ticked since the
57
     * last time we did a resync.
58
     */
59
    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
60
    int64_t elapsed = now - s->pscntr_sync_ticks;
61

62
    /*
63
     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
64
     * lose time if we do multiple resyncs in a single tick.
65
     */
66
    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
67

68
    /*
69
     * Work out what PSCNTR and COUNTER have moved to. We assume that
70
     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
71
     * and that COUNTER increments at the same moment.
72
     */
73
    if (ticks == 0) {
74
        /* We haven't ticked since the last time we were asked */
75
        return;
76
    } else if (ticks < s->pscntr) {
77
        /* We haven't yet reached zero, just reduce the PSCNTR */
78
        s->pscntr -= ticks;
79
    } else {
80
        if (s->prescale == 0) {
81
            /*
82
             * If the reload value is zero then the PSCNTR will stick
83
             * at zero once it reaches it, and so we will increment
84
             * COUNTER every tick after that.
85
             */
86
            s->counter += ticks - s->pscntr;
87
            s->pscntr = 0;
88
        } else {
89
            /*
90
             * This is the complicated bit. This ASCII art diagram gives an
91
             * example with PRESCALE==5 PSCNTR==7:
92
             *
93
             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
94
             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
95
             * cinc                           1                 2
96
             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
97
             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
98
             *
99
             * where x = y % (s->prescale + 1)
100
             * and so PSCNTR = s->prescale - x
101
             * and COUNTER is incremented by y / (s->prescale + 1)
102
             *
103
             * The case where PSCNTR < PRESCALE works out the same,
104
             * though we must be careful to calculate y as 64-bit unsigned
105
             * for all parts of the expression.
106
             * y < 0 is not possible because that implies ticks < s->pscntr.
107
             */
108
            uint64_t y = ticks - s->pscntr + s->prescale;
109
            s->pscntr = s->prescale - (y % (s->prescale + 1));
110
            s->counter += y / (s->prescale + 1);
111
        }
112
    }
113

114
    /*
115
     * Only advance the sync time to the timestamp of the last PSCNTR tick,
116
     * not all the way to 'now', so we don't lose time if we do multiple
117
     * resyncs in a single tick.
118
     */
119
    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
120
                                     s->prescale_clk);
121
}
122

123
static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
124
{
125
    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
126
    uint64_t r;
127
    int64_t now;
128

129
    switch (offset) {
130
    case A_LED0:
131
        r = s->led0;
132
        break;
133
    case A_DBGCTRL:
134
        if (!s->has_dbgctrl) {
135
            goto bad_offset;
136
        }
137
        r = s->dbgctrl;
138
        break;
139
    case A_BUTTON:
140
        /* User-pressable board buttons. We don't model that, so just return
141
         * zeroes.
142
         */
143
        r = 0;
144
        break;
145
    case A_PRESCALE:
146
        r = s->prescale;
147
        break;
148
    case A_MISC:
149
        r = s->misc;
150
        break;
151
    case A_CLK1HZ:
152
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
153
        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
154
        break;
155
    case A_CLK100HZ:
156
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
157
        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
158
        break;
159
    case A_COUNTER:
160
        resync_counter(s);
161
        r = s->counter;
162
        break;
163
    case A_PSCNTR:
164
        resync_counter(s);
165
        r = s->pscntr;
166
        break;
167
    case A_SWITCH:
168
        if (!s->has_switches) {
169
            goto bad_offset;
170
        }
171
        /* User-togglable board switches. We don't model that, so report 0. */
172
        r = 0;
173
        break;
174
    default:
175
    bad_offset:
176
        qemu_log_mask(LOG_GUEST_ERROR,
177
                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
178
        r = 0;
179
        break;
180
    }
181

182
    trace_mps2_fpgaio_read(offset, r, size);
183
    return r;
184
}
185

186
static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
187
                              unsigned size)
188
{
189
    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
190
    int64_t now;
191

192
    trace_mps2_fpgaio_write(offset, value, size);
193

194
    switch (offset) {
195
    case A_LED0:
196
        if (s->num_leds != 0) {
197
            uint32_t i;
198

199
            s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
200
            for (i = 0; i < s->num_leds; i++) {
201
                led_set_state(s->led[i], value & (1 << i));
202
            }
203
        }
204
        break;
205
    case A_DBGCTRL:
206
        if (!s->has_dbgctrl) {
207
            goto bad_offset;
208
        }
209
        qemu_log_mask(LOG_UNIMP,
210
                      "MPS2 FPGAIO: DBGCTRL unimplemented\n");
211
        s->dbgctrl = value;
212
        break;
213
    case A_PRESCALE:
214
        resync_counter(s);
215
        s->prescale = value;
216
        break;
217
    case A_MISC:
218
        /* These are control bits for some of the other devices on the
219
         * board (SPI, CLCD, etc). We don't implement that yet, so just
220
         * make the bits read as written.
221
         */
222
        qemu_log_mask(LOG_UNIMP,
223
                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
224
        s->misc = value;
225
        break;
226
    case A_CLK1HZ:
227
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
228
        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
229
        break;
230
    case A_CLK100HZ:
231
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
232
        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
233
        break;
234
    case A_COUNTER:
235
        resync_counter(s);
236
        s->counter = value;
237
        break;
238
    case A_PSCNTR:
239
        resync_counter(s);
240
        s->pscntr = value;
241
        break;
242
    default:
243
    bad_offset:
244
        qemu_log_mask(LOG_GUEST_ERROR,
245
                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
246
        break;
247
    }
248
}
249

250
static const MemoryRegionOps mps2_fpgaio_ops = {
251
    .read = mps2_fpgaio_read,
252
    .write = mps2_fpgaio_write,
253
    .endianness = DEVICE_LITTLE_ENDIAN,
254
};
255

256
static void mps2_fpgaio_reset(DeviceState *dev)
257
{
258
    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
259
    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
260

261
    trace_mps2_fpgaio_reset();
262
    s->led0 = 0;
263
    s->prescale = 0;
264
    s->misc = 0;
265
    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
266
    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
267
    s->counter = 0;
268
    s->pscntr = 0;
269
    s->pscntr_sync_ticks = now;
270

271
    for (size_t i = 0; i < s->num_leds; i++) {
272
        device_cold_reset(DEVICE(s->led[i]));
273
    }
274
}
275

276
static void mps2_fpgaio_init(Object *obj)
277
{
278
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
279
    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
280

281
    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
282
                          "mps2-fpgaio", 0x1000);
283
    sysbus_init_mmio(sbd, &s->iomem);
284
}
285

286
static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
287
{
288
    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
289
    uint32_t i;
290

291
    if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
292
        error_setg(errp, "num-leds cannot be greater than %d",
293
                   MPS2FPGAIO_MAX_LEDS);
294
        return;
295
    }
296

297
    for (i = 0; i < s->num_leds; i++) {
298
        g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
299
        s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
300
                                      LED_COLOR_GREEN, ledname);
301
    }
302
}
303

304
static const VMStateDescription mps2_fpgaio_vmstate = {
305
    .name = "mps2-fpgaio",
306
    .version_id = 3,
307
    .minimum_version_id = 3,
308
    .fields = (const VMStateField[]) {
309
        VMSTATE_UINT32(led0, MPS2FPGAIO),
310
        VMSTATE_UINT32(prescale, MPS2FPGAIO),
311
        VMSTATE_UINT32(misc, MPS2FPGAIO),
312
        VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
313
        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
314
        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
315
        VMSTATE_UINT32(counter, MPS2FPGAIO),
316
        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
317
        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
318
        VMSTATE_END_OF_LIST()
319
    },
320
};
321

322
static Property mps2_fpgaio_properties[] = {
323
    /* Frequency of the prescale counter */
324
    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
325
    /* Number of LEDs controlled by LED0 register */
326
    DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
327
    DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
328
    DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
329
    DEFINE_PROP_END_OF_LIST(),
330
};
331

332
static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
333
{
334
    DeviceClass *dc = DEVICE_CLASS(klass);
335

336
    dc->vmsd = &mps2_fpgaio_vmstate;
337
    dc->realize = mps2_fpgaio_realize;
338
    dc->reset = mps2_fpgaio_reset;
339
    device_class_set_props(dc, mps2_fpgaio_properties);
340
}
341

342
static const TypeInfo mps2_fpgaio_info = {
343
    .name = TYPE_MPS2_FPGAIO,
344
    .parent = TYPE_SYS_BUS_DEVICE,
345
    .instance_size = sizeof(MPS2FPGAIO),
346
    .instance_init = mps2_fpgaio_init,
347
    .class_init = mps2_fpgaio_class_init,
348
};
349

350
static void mps2_fpgaio_register_types(void)
351
{
352
    type_register_static(&mps2_fpgaio_info);
353
}
354

355
type_init(mps2_fpgaio_register_types);
356

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.