qemu

Форк
0
/
mac_dbdma.c 
942 строки · 25.3 Кб
1
/*
2
 * PowerMac descriptor-based DMA emulation
3
 *
4
 * Copyright (c) 2005-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2009 Laurent Vivier
7
 *
8
 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
9
 *
10
 *   Definitions for using the Apple Descriptor-Based DMA controller
11
 *   in Power Macintosh computers.
12
 *
13
 *   Copyright (C) 1996 Paul Mackerras.
14
 *
15
 * some parts from mol 0.9.71
16
 *
17
 *   Descriptor based DMA emulation
18
 *
19
 *   Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
20
 *
21
 * Permission is hereby granted, free of charge, to any person obtaining a copy
22
 * of this software and associated documentation files (the "Software"), to deal
23
 * in the Software without restriction, including without limitation the rights
24
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
25
 * copies of the Software, and to permit persons to whom the Software is
26
 * furnished to do so, subject to the following conditions:
27
 *
28
 * The above copyright notice and this permission notice shall be included in
29
 * all copies or substantial portions of the Software.
30
 *
31
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
34
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
36
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
37
 * THE SOFTWARE.
38
 */
39

40
#include "qemu/osdep.h"
41
#include "hw/irq.h"
42
#include "hw/ppc/mac_dbdma.h"
43
#include "migration/vmstate.h"
44
#include "qemu/main-loop.h"
45
#include "qemu/module.h"
46
#include "qemu/log.h"
47
#include "sysemu/dma.h"
48

49
/* debug DBDMA */
50
#define DEBUG_DBDMA 0
51
#define DEBUG_DBDMA_CHANMASK ((1ull << DBDMA_CHANNELS) - 1)
52

53
#define DBDMA_DPRINTF(fmt, ...) do { \
54
    if (DEBUG_DBDMA) { \
55
        printf("DBDMA: " fmt , ## __VA_ARGS__); \
56
    } \
57
} while (0)
58

59
#define DBDMA_DPRINTFCH(ch, fmt, ...) do { \
60
    if (DEBUG_DBDMA) { \
61
        if ((1ul << (ch)->channel) & DEBUG_DBDMA_CHANMASK) { \
62
            printf("DBDMA[%02x]: " fmt , (ch)->channel, ## __VA_ARGS__); \
63
        } \
64
    } \
65
} while (0)
66

67
/*
68
 */
69

70
static DBDMAState *dbdma_from_ch(DBDMA_channel *ch)
71
{
72
    return container_of(ch, DBDMAState, channels[ch->channel]);
73
}
74

75
#if DEBUG_DBDMA
76
static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
77
{
78
    DBDMA_DPRINTFCH(ch, "dbdma_cmd %p\n", cmd);
79
    DBDMA_DPRINTFCH(ch, "    req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
80
    DBDMA_DPRINTFCH(ch, "    command 0x%04x\n", le16_to_cpu(cmd->command));
81
    DBDMA_DPRINTFCH(ch, "    phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
82
    DBDMA_DPRINTFCH(ch, "    cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
83
    DBDMA_DPRINTFCH(ch, "    res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
84
    DBDMA_DPRINTFCH(ch, "    xfer_status 0x%04x\n",
85
                    le16_to_cpu(cmd->xfer_status));
86
}
87
#else
88
static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
89
{
90
}
91
#endif
92
static void dbdma_cmdptr_load(DBDMA_channel *ch)
93
{
94
    DBDMA_DPRINTFCH(ch, "dbdma_cmdptr_load 0x%08x\n",
95
                    ch->regs[DBDMA_CMDPTR_LO]);
96
    dma_memory_read(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
97
                    &ch->current, sizeof(dbdma_cmd), MEMTXATTRS_UNSPECIFIED);
98
}
99

100
static void dbdma_cmdptr_save(DBDMA_channel *ch)
101
{
102
    DBDMA_DPRINTFCH(ch, "-> update 0x%08x stat=0x%08x, res=0x%04x\n",
103
                    ch->regs[DBDMA_CMDPTR_LO],
104
                    le16_to_cpu(ch->current.xfer_status),
105
                    le16_to_cpu(ch->current.res_count));
106
    dma_memory_write(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
107
                     &ch->current, sizeof(dbdma_cmd), MEMTXATTRS_UNSPECIFIED);
108
}
109

110
static void kill_channel(DBDMA_channel *ch)
111
{
112
    DBDMA_DPRINTFCH(ch, "kill_channel\n");
113

114
    ch->regs[DBDMA_STATUS] |= DEAD;
115
    ch->regs[DBDMA_STATUS] &= ~ACTIVE;
116

117
    qemu_irq_raise(ch->irq);
118
}
119

120
static void conditional_interrupt(DBDMA_channel *ch)
121
{
122
    dbdma_cmd *current = &ch->current;
123
    uint16_t intr;
124
    uint16_t sel_mask, sel_value;
125
    uint32_t status;
126
    int cond;
127

128
    DBDMA_DPRINTFCH(ch, "%s\n", __func__);
129

130
    intr = le16_to_cpu(current->command) & INTR_MASK;
131

132
    switch(intr) {
133
    case INTR_NEVER:  /* don't interrupt */
134
        return;
135
    case INTR_ALWAYS: /* always interrupt */
136
        qemu_irq_raise(ch->irq);
137
        DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
138
        return;
139
    }
140

141
    status = ch->regs[DBDMA_STATUS] & DEVSTAT;
142

143
    sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f;
144
    sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f;
145

146
    cond = (status & sel_mask) == (sel_value & sel_mask);
147

148
    switch(intr) {
149
    case INTR_IFSET:  /* intr if condition bit is 1 */
150
        if (cond) {
151
            qemu_irq_raise(ch->irq);
152
            DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
153
        }
154
        return;
155
    case INTR_IFCLR:  /* intr if condition bit is 0 */
156
        if (!cond) {
157
            qemu_irq_raise(ch->irq);
158
            DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
159
        }
160
        return;
161
    }
162
}
163

164
static int conditional_wait(DBDMA_channel *ch)
165
{
166
    dbdma_cmd *current = &ch->current;
167
    uint16_t wait;
168
    uint16_t sel_mask, sel_value;
169
    uint32_t status;
170
    int cond;
171
    int res = 0;
172

173
    wait = le16_to_cpu(current->command) & WAIT_MASK;
174
    switch(wait) {
175
    case WAIT_NEVER:  /* don't wait */
176
        return 0;
177
    case WAIT_ALWAYS: /* always wait */
178
        DBDMA_DPRINTFCH(ch, "  [WAIT_ALWAYS]\n");
179
        return 1;
180
    }
181

182
    status = ch->regs[DBDMA_STATUS] & DEVSTAT;
183

184
    sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f;
185
    sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f;
186

187
    cond = (status & sel_mask) == (sel_value & sel_mask);
188

189
    switch(wait) {
190
    case WAIT_IFSET:  /* wait if condition bit is 1 */
191
        if (cond) {
192
            res = 1;
193
        }
194
        DBDMA_DPRINTFCH(ch, "  [WAIT_IFSET=%d]\n", res);
195
        break;
196
    case WAIT_IFCLR:  /* wait if condition bit is 0 */
197
        if (!cond) {
198
            res = 1;
199
        }
200
        DBDMA_DPRINTFCH(ch, "  [WAIT_IFCLR=%d]\n", res);
201
        break;
202
    }
203
    return res;
204
}
205

206
static void next(DBDMA_channel *ch)
207
{
208
    uint32_t cp;
209

210
    ch->regs[DBDMA_STATUS] &= ~BT;
211

212
    cp = ch->regs[DBDMA_CMDPTR_LO];
213
    ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd);
214
    dbdma_cmdptr_load(ch);
215
}
216

217
static void branch(DBDMA_channel *ch)
218
{
219
    dbdma_cmd *current = &ch->current;
220

221
    ch->regs[DBDMA_CMDPTR_LO] = le32_to_cpu(current->cmd_dep);
222
    ch->regs[DBDMA_STATUS] |= BT;
223
    dbdma_cmdptr_load(ch);
224
}
225

226
static void conditional_branch(DBDMA_channel *ch)
227
{
228
    dbdma_cmd *current = &ch->current;
229
    uint16_t br;
230
    uint16_t sel_mask, sel_value;
231
    uint32_t status;
232
    int cond;
233

234
    /* check if we must branch */
235

236
    br = le16_to_cpu(current->command) & BR_MASK;
237

238
    switch(br) {
239
    case BR_NEVER:  /* don't branch */
240
        next(ch);
241
        return;
242
    case BR_ALWAYS: /* always branch */
243
        DBDMA_DPRINTFCH(ch, "  [BR_ALWAYS]\n");
244
        branch(ch);
245
        return;
246
    }
247

248
    status = ch->regs[DBDMA_STATUS] & DEVSTAT;
249

250
    sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f;
251
    sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f;
252

253
    cond = (status & sel_mask) == (sel_value & sel_mask);
254

255
    switch(br) {
256
    case BR_IFSET:  /* branch if condition bit is 1 */
257
        if (cond) {
258
            DBDMA_DPRINTFCH(ch, "  [BR_IFSET = 1]\n");
259
            branch(ch);
260
        } else {
261
            DBDMA_DPRINTFCH(ch, "  [BR_IFSET = 0]\n");
262
            next(ch);
263
        }
264
        return;
265
    case BR_IFCLR:  /* branch if condition bit is 0 */
266
        if (!cond) {
267
            DBDMA_DPRINTFCH(ch, "  [BR_IFCLR = 1]\n");
268
            branch(ch);
269
        } else {
270
            DBDMA_DPRINTFCH(ch, "  [BR_IFCLR = 0]\n");
271
            next(ch);
272
        }
273
        return;
274
    }
275
}
276

277
static void channel_run(DBDMA_channel *ch);
278

279
static void dbdma_end(DBDMA_io *io)
280
{
281
    DBDMA_channel *ch = io->channel;
282
    dbdma_cmd *current = &ch->current;
283

284
    DBDMA_DPRINTFCH(ch, "%s\n", __func__);
285

286
    if (conditional_wait(ch))
287
        goto wait;
288

289
    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
290
    current->res_count = cpu_to_le16(io->len);
291
    dbdma_cmdptr_save(ch);
292
    if (io->is_last)
293
        ch->regs[DBDMA_STATUS] &= ~FLUSH;
294

295
    conditional_interrupt(ch);
296
    conditional_branch(ch);
297

298
wait:
299
    /* Indicate that we're ready for a new DMA round */
300
    ch->io.processing = false;
301

302
    if ((ch->regs[DBDMA_STATUS] & RUN) &&
303
        (ch->regs[DBDMA_STATUS] & ACTIVE))
304
        channel_run(ch);
305
}
306

307
static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
308
                        uint16_t req_count, int is_last)
309
{
310
    DBDMA_DPRINTFCH(ch, "start_output\n");
311

312
    /* KEY_REGS, KEY_DEVICE and KEY_STREAM
313
     * are not implemented in the mac-io chip
314
     */
315

316
    DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
317
    if (!addr || key > KEY_STREAM3) {
318
        kill_channel(ch);
319
        return;
320
    }
321

322
    ch->io.addr = addr;
323
    ch->io.len = req_count;
324
    ch->io.is_last = is_last;
325
    ch->io.dma_end = dbdma_end;
326
    ch->io.is_dma_out = 1;
327
    ch->io.processing = true;
328
    if (ch->rw) {
329
        ch->rw(&ch->io);
330
    }
331
}
332

333
static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
334
                       uint16_t req_count, int is_last)
335
{
336
    DBDMA_DPRINTFCH(ch, "start_input\n");
337

338
    /* KEY_REGS, KEY_DEVICE and KEY_STREAM
339
     * are not implemented in the mac-io chip
340
     */
341

342
    DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
343
    if (!addr || key > KEY_STREAM3) {
344
        kill_channel(ch);
345
        return;
346
    }
347

348
    ch->io.addr = addr;
349
    ch->io.len = req_count;
350
    ch->io.is_last = is_last;
351
    ch->io.dma_end = dbdma_end;
352
    ch->io.is_dma_out = 0;
353
    ch->io.processing = true;
354
    if (ch->rw) {
355
        ch->rw(&ch->io);
356
    }
357
}
358

359
static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
360
                     uint16_t len)
361
{
362
    dbdma_cmd *current = &ch->current;
363

364
    DBDMA_DPRINTFCH(ch, "load_word %d bytes, addr=%08x\n", len, addr);
365

366
    /* only implements KEY_SYSTEM */
367

368
    if (key != KEY_SYSTEM) {
369
        printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
370
        kill_channel(ch);
371
        return;
372
    }
373

374
    dma_memory_read(&address_space_memory, addr, &current->cmd_dep, len,
375
                    MEMTXATTRS_UNSPECIFIED);
376

377
    if (conditional_wait(ch))
378
        goto wait;
379

380
    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
381
    dbdma_cmdptr_save(ch);
382
    ch->regs[DBDMA_STATUS] &= ~FLUSH;
383

384
    conditional_interrupt(ch);
385
    next(ch);
386

387
wait:
388
    DBDMA_kick(dbdma_from_ch(ch));
389
}
390

391
static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
392
                      uint16_t len)
393
{
394
    dbdma_cmd *current = &ch->current;
395

396
    DBDMA_DPRINTFCH(ch, "store_word %d bytes, addr=%08x pa=%x\n",
397
                    len, addr, le32_to_cpu(current->cmd_dep));
398

399
    /* only implements KEY_SYSTEM */
400

401
    if (key != KEY_SYSTEM) {
402
        printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
403
        kill_channel(ch);
404
        return;
405
    }
406

407
    dma_memory_write(&address_space_memory, addr, &current->cmd_dep, len,
408
                     MEMTXATTRS_UNSPECIFIED);
409

410
    if (conditional_wait(ch))
411
        goto wait;
412

413
    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
414
    dbdma_cmdptr_save(ch);
415
    ch->regs[DBDMA_STATUS] &= ~FLUSH;
416

417
    conditional_interrupt(ch);
418
    next(ch);
419

420
wait:
421
    DBDMA_kick(dbdma_from_ch(ch));
422
}
423

424
static void nop(DBDMA_channel *ch)
425
{
426
    dbdma_cmd *current = &ch->current;
427

428
    if (conditional_wait(ch))
429
        goto wait;
430

431
    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
432
    dbdma_cmdptr_save(ch);
433

434
    conditional_interrupt(ch);
435
    conditional_branch(ch);
436

437
wait:
438
    DBDMA_kick(dbdma_from_ch(ch));
439
}
440

441
static void stop(DBDMA_channel *ch)
442
{
443
    ch->regs[DBDMA_STATUS] &= ~(ACTIVE);
444

445
    /* the stop command does not increment command pointer */
446
}
447

448
static void channel_run(DBDMA_channel *ch)
449
{
450
    dbdma_cmd *current = &ch->current;
451
    uint16_t cmd, key;
452
    uint16_t req_count;
453
    uint32_t phy_addr;
454

455
    DBDMA_DPRINTFCH(ch, "channel_run\n");
456
    dump_dbdma_cmd(ch, current);
457

458
    /* clear WAKE flag at command fetch */
459

460
    ch->regs[DBDMA_STATUS] &= ~WAKE;
461

462
    cmd = le16_to_cpu(current->command) & COMMAND_MASK;
463

464
    switch (cmd) {
465
    case DBDMA_NOP:
466
        nop(ch);
467
        return;
468

469
    case DBDMA_STOP:
470
        stop(ch);
471
        return;
472
    }
473

474
    key = le16_to_cpu(current->command) & 0x0700;
475
    req_count = le16_to_cpu(current->req_count);
476
    phy_addr = le32_to_cpu(current->phy_addr);
477

478
    if (key == KEY_STREAM4) {
479
        printf("command %x, invalid key 4\n", cmd);
480
        kill_channel(ch);
481
        return;
482
    }
483

484
    switch (cmd) {
485
    case OUTPUT_MORE:
486
        DBDMA_DPRINTFCH(ch, "* OUTPUT_MORE *\n");
487
        start_output(ch, key, phy_addr, req_count, 0);
488
        return;
489

490
    case OUTPUT_LAST:
491
        DBDMA_DPRINTFCH(ch, "* OUTPUT_LAST *\n");
492
        start_output(ch, key, phy_addr, req_count, 1);
493
        return;
494

495
    case INPUT_MORE:
496
        DBDMA_DPRINTFCH(ch, "* INPUT_MORE *\n");
497
        start_input(ch, key, phy_addr, req_count, 0);
498
        return;
499

500
    case INPUT_LAST:
501
        DBDMA_DPRINTFCH(ch, "* INPUT_LAST *\n");
502
        start_input(ch, key, phy_addr, req_count, 1);
503
        return;
504
    }
505

506
    if (key < KEY_REGS) {
507
        printf("command %x, invalid key %x\n", cmd, key);
508
        key = KEY_SYSTEM;
509
    }
510

511
    /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
512
     * and BRANCH is invalid
513
     */
514

515
    req_count = req_count & 0x0007;
516
    if (req_count & 0x4) {
517
        req_count = 4;
518
        phy_addr &= ~3;
519
    } else if (req_count & 0x2) {
520
        req_count = 2;
521
        phy_addr &= ~1;
522
    } else
523
        req_count = 1;
524

525
    switch (cmd) {
526
    case LOAD_WORD:
527
        DBDMA_DPRINTFCH(ch, "* LOAD_WORD *\n");
528
        load_word(ch, key, phy_addr, req_count);
529
        return;
530

531
    case STORE_WORD:
532
        DBDMA_DPRINTFCH(ch, "* STORE_WORD *\n");
533
        store_word(ch, key, phy_addr, req_count);
534
        return;
535
    }
536
}
537

538
static void DBDMA_run(DBDMAState *s)
539
{
540
    int channel;
541

542
    for (channel = 0; channel < DBDMA_CHANNELS; channel++) {
543
        DBDMA_channel *ch = &s->channels[channel];
544
        uint32_t status = ch->regs[DBDMA_STATUS];
545
        if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) {
546
            channel_run(ch);
547
        }
548
    }
549
}
550

551
static void DBDMA_run_bh(void *opaque)
552
{
553
    DBDMAState *s = opaque;
554

555
    DBDMA_DPRINTF("-> DBDMA_run_bh\n");
556
    DBDMA_run(s);
557
    DBDMA_DPRINTF("<- DBDMA_run_bh\n");
558
}
559

560
void DBDMA_kick(DBDMAState *dbdma)
561
{
562
    qemu_bh_schedule(dbdma->bh);
563
}
564

565
void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
566
                            DBDMA_rw rw, DBDMA_flush flush,
567
                            void *opaque)
568
{
569
    DBDMAState *s = dbdma;
570
    DBDMA_channel *ch = &s->channels[nchan];
571

572
    DBDMA_DPRINTFCH(ch, "DBDMA_register_channel 0x%x\n", nchan);
573

574
    assert(rw);
575
    assert(flush);
576

577
    ch->irq = irq;
578
    ch->rw = rw;
579
    ch->flush = flush;
580
    ch->io.opaque = opaque;
581
}
582

583
static void dbdma_control_write(DBDMA_channel *ch)
584
{
585
    uint16_t mask, value;
586
    uint32_t status;
587
    bool do_flush = false;
588

589
    mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff;
590
    value = ch->regs[DBDMA_CONTROL] & 0xffff;
591

592
    /* This is the status register which we'll update
593
     * appropriately and store back
594
     */
595
    status = ch->regs[DBDMA_STATUS];
596

597
    /* RUN and PAUSE are bits under SW control only
598
     * FLUSH and WAKE are set by SW and cleared by HW
599
     * DEAD, ACTIVE and BT are only under HW control
600
     *
601
     * We handle ACTIVE separately at the end of the
602
     * logic to ensure all cases are covered.
603
     */
604

605
    /* Setting RUN will tentatively activate the channel
606
     */
607
    if ((mask & RUN) && (value & RUN)) {
608
        status |= RUN;
609
        DBDMA_DPRINTFCH(ch, " Setting RUN !\n");
610
    }
611

612
    /* Clearing RUN 1->0 will stop the channel */
613
    if ((mask & RUN) && !(value & RUN)) {
614
        /* This has the side effect of clearing the DEAD bit */
615
        status &= ~(DEAD | RUN);
616
        DBDMA_DPRINTFCH(ch, " Clearing RUN !\n");
617
    }
618

619
    /* Setting WAKE wakes up an idle channel if it's running
620
     *
621
     * Note: The doc doesn't say so but assume that only works
622
     * on a channel whose RUN bit is set.
623
     *
624
     * We set WAKE in status, it's not terribly useful as it will
625
     * be cleared on the next command fetch but it seems to mimmic
626
     * the HW behaviour and is useful for the way we handle
627
     * ACTIVE further down.
628
     */
629
    if ((mask & WAKE) && (value & WAKE) && (status & RUN)) {
630
        status |= WAKE;
631
        DBDMA_DPRINTFCH(ch, " Setting WAKE !\n");
632
    }
633

634
    /* PAUSE being set will deactivate (or prevent activation)
635
     * of the channel. We just copy it over for now, ACTIVE will
636
     * be re-evaluated later.
637
     */
638
    if (mask & PAUSE) {
639
        status = (status & ~PAUSE) | (value & PAUSE);
640
        DBDMA_DPRINTFCH(ch, " %sing PAUSE !\n",
641
                        (value & PAUSE) ? "sett" : "clear");
642
    }
643

644
    /* FLUSH is its own thing */
645
    if ((mask & FLUSH) && (value & FLUSH))  {
646
        DBDMA_DPRINTFCH(ch, " Setting FLUSH !\n");
647
        /* We set flush directly in the status register, we do *NOT*
648
         * set it in "status" so that it gets naturally cleared when
649
         * we update the status register further down. That way it
650
         * will be set only during the HW flush operation so it is
651
         * visible to any completions happening during that time.
652
         */
653
        ch->regs[DBDMA_STATUS] |= FLUSH;
654
        do_flush = true;
655
    }
656

657
    /* If either RUN or PAUSE is clear, so should ACTIVE be,
658
     * otherwise, ACTIVE will be set if we modified RUN, PAUSE or
659
     * set WAKE. That means that PAUSE was just cleared, RUN was
660
     * just set or WAKE was just set.
661
     */
662
    if ((status & PAUSE) || !(status & RUN)) {
663
        status &= ~ACTIVE;
664
        DBDMA_DPRINTFCH(ch, "  -> ACTIVE down !\n");
665

666
        /* We stopped processing, we want the underlying HW command
667
         * to complete *before* we clear the ACTIVE bit. Otherwise
668
         * we can get into a situation where the command status will
669
         * have RUN or ACTIVE not set which is going to confuse the
670
         * MacOS driver.
671
         */
672
        do_flush = true;
673
    } else if (mask & (RUN | PAUSE)) {
674
        status |= ACTIVE;
675
        DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
676
    } else if ((mask & WAKE) && (value & WAKE)) {
677
        status |= ACTIVE;
678
        DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
679
    }
680

681
    DBDMA_DPRINTFCH(ch, " new status=0x%08x\n", status);
682

683
    /* If we need to flush the underlying HW, do it now, this happens
684
     * both on FLUSH commands and when stopping the channel for safety.
685
     */
686
    if (do_flush && ch->flush) {
687
        ch->flush(&ch->io);
688
    }
689

690
    /* Finally update the status register image */
691
    ch->regs[DBDMA_STATUS] = status;
692

693
    /* If active, make sure the BH gets to run */
694
    if (status & ACTIVE) {
695
        DBDMA_kick(dbdma_from_ch(ch));
696
    }
697
}
698

699
static void dbdma_write(void *opaque, hwaddr addr,
700
                        uint64_t value, unsigned size)
701
{
702
    int channel = addr >> DBDMA_CHANNEL_SHIFT;
703
    DBDMAState *s = opaque;
704
    DBDMA_channel *ch = &s->channels[channel];
705
    int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
706

707
    DBDMA_DPRINTFCH(ch, "writel 0x" HWADDR_FMT_plx " <= 0x%08"PRIx64"\n",
708
                    addr, value);
709
    DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
710
                    (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
711

712
    /* cmdptr cannot be modified if channel is ACTIVE */
713

714
    if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) {
715
        return;
716
    }
717

718
    ch->regs[reg] = value;
719

720
    switch(reg) {
721
    case DBDMA_CONTROL:
722
        dbdma_control_write(ch);
723
        break;
724
    case DBDMA_CMDPTR_LO:
725
        /* 16-byte aligned */
726
        ch->regs[DBDMA_CMDPTR_LO] &= ~0xf;
727
        dbdma_cmdptr_load(ch);
728
        break;
729
    case DBDMA_STATUS:
730
    case DBDMA_INTR_SEL:
731
    case DBDMA_BRANCH_SEL:
732
    case DBDMA_WAIT_SEL:
733
        /* nothing to do */
734
        break;
735
    case DBDMA_XFER_MODE:
736
    case DBDMA_CMDPTR_HI:
737
    case DBDMA_DATA2PTR_HI:
738
    case DBDMA_DATA2PTR_LO:
739
    case DBDMA_ADDRESS_HI:
740
    case DBDMA_BRANCH_ADDR_HI:
741
    case DBDMA_RES1:
742
    case DBDMA_RES2:
743
    case DBDMA_RES3:
744
    case DBDMA_RES4:
745
        /* unused */
746
        break;
747
    }
748
}
749

750
static uint64_t dbdma_read(void *opaque, hwaddr addr,
751
                           unsigned size)
752
{
753
    uint32_t value;
754
    int channel = addr >> DBDMA_CHANNEL_SHIFT;
755
    DBDMAState *s = opaque;
756
    DBDMA_channel *ch = &s->channels[channel];
757
    int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
758

759
    value = ch->regs[reg];
760

761
    switch(reg) {
762
    case DBDMA_CONTROL:
763
        value = ch->regs[DBDMA_STATUS];
764
        break;
765
    case DBDMA_STATUS:
766
    case DBDMA_CMDPTR_LO:
767
    case DBDMA_INTR_SEL:
768
    case DBDMA_BRANCH_SEL:
769
    case DBDMA_WAIT_SEL:
770
        /* nothing to do */
771
        break;
772
    case DBDMA_XFER_MODE:
773
    case DBDMA_CMDPTR_HI:
774
    case DBDMA_DATA2PTR_HI:
775
    case DBDMA_DATA2PTR_LO:
776
    case DBDMA_ADDRESS_HI:
777
    case DBDMA_BRANCH_ADDR_HI:
778
        /* unused */
779
        value = 0;
780
        break;
781
    case DBDMA_RES1:
782
    case DBDMA_RES2:
783
    case DBDMA_RES3:
784
    case DBDMA_RES4:
785
        /* reserved */
786
        break;
787
    }
788

789
    DBDMA_DPRINTFCH(ch, "readl 0x" HWADDR_FMT_plx " => 0x%08x\n", addr, value);
790
    DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
791
                    (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
792

793
    return value;
794
}
795

796
static const MemoryRegionOps dbdma_ops = {
797
    .read = dbdma_read,
798
    .write = dbdma_write,
799
    .endianness = DEVICE_LITTLE_ENDIAN,
800
    .valid = {
801
        .min_access_size = 4,
802
        .max_access_size = 4,
803
    },
804
};
805

806
static const VMStateDescription vmstate_dbdma_io = {
807
    .name = "dbdma_io",
808
    .version_id = 0,
809
    .minimum_version_id = 0,
810
    .fields = (const VMStateField[]) {
811
        VMSTATE_UINT64(addr, struct DBDMA_io),
812
        VMSTATE_INT32(len, struct DBDMA_io),
813
        VMSTATE_INT32(is_last, struct DBDMA_io),
814
        VMSTATE_INT32(is_dma_out, struct DBDMA_io),
815
        VMSTATE_BOOL(processing, struct DBDMA_io),
816
        VMSTATE_END_OF_LIST()
817
    }
818
};
819

820
static const VMStateDescription vmstate_dbdma_cmd = {
821
    .name = "dbdma_cmd",
822
    .version_id = 0,
823
    .minimum_version_id = 0,
824
    .fields = (const VMStateField[]) {
825
        VMSTATE_UINT16(req_count, dbdma_cmd),
826
        VMSTATE_UINT16(command, dbdma_cmd),
827
        VMSTATE_UINT32(phy_addr, dbdma_cmd),
828
        VMSTATE_UINT32(cmd_dep, dbdma_cmd),
829
        VMSTATE_UINT16(res_count, dbdma_cmd),
830
        VMSTATE_UINT16(xfer_status, dbdma_cmd),
831
        VMSTATE_END_OF_LIST()
832
    }
833
};
834

835
static const VMStateDescription vmstate_dbdma_channel = {
836
    .name = "dbdma_channel",
837
    .version_id = 1,
838
    .minimum_version_id = 1,
839
    .fields = (const VMStateField[]) {
840
        VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS),
841
        VMSTATE_STRUCT(io, struct DBDMA_channel, 0, vmstate_dbdma_io, DBDMA_io),
842
        VMSTATE_STRUCT(current, struct DBDMA_channel, 0, vmstate_dbdma_cmd,
843
                       dbdma_cmd),
844
        VMSTATE_END_OF_LIST()
845
    }
846
};
847

848
static const VMStateDescription vmstate_dbdma = {
849
    .name = "dbdma",
850
    .version_id = 3,
851
    .minimum_version_id = 3,
852
    .fields = (const VMStateField[]) {
853
        VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1,
854
                             vmstate_dbdma_channel, DBDMA_channel),
855
        VMSTATE_END_OF_LIST()
856
    }
857
};
858

859
static void mac_dbdma_reset(DeviceState *d)
860
{
861
    DBDMAState *s = MAC_DBDMA(d);
862
    int i;
863

864
    for (i = 0; i < DBDMA_CHANNELS; i++) {
865
        memset(s->channels[i].regs, 0, DBDMA_SIZE);
866
    }
867
}
868

869
static void dbdma_unassigned_rw(DBDMA_io *io)
870
{
871
    DBDMA_channel *ch = io->channel;
872
    dbdma_cmd *current = &ch->current;
873
    uint16_t cmd;
874
    qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
875
                  __func__, ch->channel);
876
    ch->io.processing = false;
877

878
    cmd = le16_to_cpu(current->command) & COMMAND_MASK;
879
    if (cmd == OUTPUT_MORE || cmd == OUTPUT_LAST ||
880
        cmd == INPUT_MORE || cmd == INPUT_LAST) {
881
        current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
882
        current->res_count = cpu_to_le16(io->len);
883
        dbdma_cmdptr_save(ch);
884
    }
885
}
886

887
static void dbdma_unassigned_flush(DBDMA_io *io)
888
{
889
    DBDMA_channel *ch = io->channel;
890
    qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
891
                  __func__, ch->channel);
892
}
893

894
static void mac_dbdma_init(Object *obj)
895
{
896
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
897
    DBDMAState *s = MAC_DBDMA(obj);
898
    int i;
899

900
    for (i = 0; i < DBDMA_CHANNELS; i++) {
901
        DBDMA_channel *ch = &s->channels[i];
902

903
        ch->rw = dbdma_unassigned_rw;
904
        ch->flush = dbdma_unassigned_flush;
905
        ch->channel = i;
906
        ch->io.channel = ch;
907
    }
908

909
    memory_region_init_io(&s->mem, obj, &dbdma_ops, s, "dbdma", 0x1000);
910
    sysbus_init_mmio(sbd, &s->mem);
911
}
912

913
static void mac_dbdma_realize(DeviceState *dev, Error **errp)
914
{
915
    DBDMAState *s = MAC_DBDMA(dev);
916

917
    s->bh = qemu_bh_new_guarded(DBDMA_run_bh, s, &dev->mem_reentrancy_guard);
918
}
919

920
static void mac_dbdma_class_init(ObjectClass *oc, void *data)
921
{
922
    DeviceClass *dc = DEVICE_CLASS(oc);
923

924
    dc->realize = mac_dbdma_realize;
925
    dc->reset = mac_dbdma_reset;
926
    dc->vmsd = &vmstate_dbdma;
927
}
928

929
static const TypeInfo mac_dbdma_type_info = {
930
    .name = TYPE_MAC_DBDMA,
931
    .parent = TYPE_SYS_BUS_DEVICE,
932
    .instance_size = sizeof(DBDMAState),
933
    .instance_init = mac_dbdma_init,
934
    .class_init = mac_dbdma_class_init
935
};
936

937
static void mac_dbdma_register_types(void)
938
{
939
    type_register_static(&mac_dbdma_type_info);
940
}
941

942
type_init(mac_dbdma_register_types)
943

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.