qemu

Форк
0
/
imx25_ccm.c 
320 строк · 8.3 Кб
1
/*
2
 * IMX25 Clock Control Module
3
 *
4
 * Copyright (C) 2012 NICTA
5
 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
6
 *
7
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8
 * See the COPYING file in the top-level directory.
9
 *
10
 * To get the timer frequencies right, we need to emulate at least part of
11
 * the CCM.
12
 */
13

14
#include "qemu/osdep.h"
15
#include "hw/misc/imx25_ccm.h"
16
#include "migration/vmstate.h"
17
#include "qemu/log.h"
18
#include "qemu/module.h"
19

20
#ifndef DEBUG_IMX25_CCM
21
#define DEBUG_IMX25_CCM 0
22
#endif
23

24
#define DPRINTF(fmt, args...) \
25
    do { \
26
        if (DEBUG_IMX25_CCM) { \
27
            fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \
28
                                             __func__, ##args); \
29
        } \
30
    } while (0)
31

32
static const char *imx25_ccm_reg_name(uint32_t reg)
33
{
34
    static char unknown[20];
35

36
    switch (reg) {
37
    case IMX25_CCM_MPCTL_REG:
38
        return "mpctl";
39
    case IMX25_CCM_UPCTL_REG:
40
        return "upctl";
41
    case IMX25_CCM_CCTL_REG:
42
        return "cctl";
43
    case IMX25_CCM_CGCR0_REG:
44
        return "cgcr0";
45
    case IMX25_CCM_CGCR1_REG:
46
        return "cgcr1";
47
    case IMX25_CCM_CGCR2_REG:
48
        return "cgcr2";
49
    case IMX25_CCM_PCDR0_REG:
50
        return "pcdr0";
51
    case IMX25_CCM_PCDR1_REG:
52
        return "pcdr1";
53
    case IMX25_CCM_PCDR2_REG:
54
        return "pcdr2";
55
    case IMX25_CCM_PCDR3_REG:
56
        return "pcdr3";
57
    case IMX25_CCM_RCSR_REG:
58
        return "rcsr";
59
    case IMX25_CCM_CRDR_REG:
60
        return "crdr";
61
    case IMX25_CCM_DCVR0_REG:
62
        return "dcvr0";
63
    case IMX25_CCM_DCVR1_REG:
64
        return "dcvr1";
65
    case IMX25_CCM_DCVR2_REG:
66
        return "dcvr2";
67
    case IMX25_CCM_DCVR3_REG:
68
        return "dcvr3";
69
    case IMX25_CCM_LTR0_REG:
70
        return "ltr0";
71
    case IMX25_CCM_LTR1_REG:
72
        return "ltr1";
73
    case IMX25_CCM_LTR2_REG:
74
        return "ltr2";
75
    case IMX25_CCM_LTR3_REG:
76
        return "ltr3";
77
    case IMX25_CCM_LTBR0_REG:
78
        return "ltbr0";
79
    case IMX25_CCM_LTBR1_REG:
80
        return "ltbr1";
81
    case IMX25_CCM_PMCR0_REG:
82
        return "pmcr0";
83
    case IMX25_CCM_PMCR1_REG:
84
        return "pmcr1";
85
    case IMX25_CCM_PMCR2_REG:
86
        return "pmcr2";
87
    case IMX25_CCM_MCR_REG:
88
        return "mcr";
89
    case IMX25_CCM_LPIMR0_REG:
90
        return "lpimr0";
91
    case IMX25_CCM_LPIMR1_REG:
92
        return "lpimr1";
93
    default:
94
        snprintf(unknown, sizeof(unknown), "[%u ?]", reg);
95
        return unknown;
96
    }
97
}
98
#define CKIH_FREQ 24000000 /* 24MHz crystal input */
99

100
static const VMStateDescription vmstate_imx25_ccm = {
101
    .name = TYPE_IMX25_CCM,
102
    .version_id = 1,
103
    .minimum_version_id = 1,
104
    .fields = (const VMStateField[]) {
105
        VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG),
106
        VMSTATE_END_OF_LIST()
107
    },
108
};
109

110
static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev)
111
{
112
    uint32_t freq;
113
    IMX25CCMState *s = IMX25_CCM(dev);
114

115
    if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) {
116
        freq = CKIH_FREQ;
117
    } else {
118
        freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ);
119
    }
120

121
    DPRINTF("freq = %u\n", freq);
122

123
    return freq;
124
}
125

126
static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev)
127
{
128
    uint32_t freq;
129
    IMX25CCMState *s = IMX25_CCM(dev);
130

131
    freq = imx25_ccm_get_mpll_clk(dev);
132

133
    if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) {
134
        freq = (freq * 3 / 4);
135
    }
136

137
    freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV));
138

139
    DPRINTF("freq = %u\n", freq);
140

141
    return freq;
142
}
143

144
static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev)
145
{
146
    uint32_t freq;
147
    IMX25CCMState *s = IMX25_CCM(dev);
148

149
    freq = imx25_ccm_get_mcu_clk(dev)
150
           / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV));
151

152
    DPRINTF("freq = %u\n", freq);
153

154
    return freq;
155
}
156

157
static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev)
158
{
159
    uint32_t freq;
160

161
    freq = imx25_ccm_get_ahb_clk(dev) / 2;
162

163
    DPRINTF("freq = %u\n", freq);
164

165
    return freq;
166
}
167

168
static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
169
{
170
    uint32_t freq = 0;
171
    DPRINTF("Clock = %d)\n", clock);
172

173
    switch (clock) {
174
    case CLK_NONE:
175
        break;
176
    case CLK_IPG:
177
    case CLK_IPG_HIGH:
178
        freq = imx25_ccm_get_ipg_clk(dev);
179
        break;
180
    case CLK_32k:
181
        freq = CKIL_FREQ;
182
        break;
183
    default:
184
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
185
                      TYPE_IMX25_CCM, __func__, clock);
186
        break;
187
    }
188

189
    DPRINTF("Clock = %d) = %u\n", clock, freq);
190

191
    return freq;
192
}
193

194
static void imx25_ccm_reset(DeviceState *dev)
195
{
196
    IMX25CCMState *s = IMX25_CCM(dev);
197

198
    DPRINTF("\n");
199

200
    memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t));
201
    s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01;
202
    s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800;
203
    /* 
204
     * The value below gives:
205
     * CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz. 
206
     */
207
    s->reg[IMX25_CCM_CCTL_REG]  = 0xd0030000;
208
    s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100;
209
    s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100;
210
    s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438;
211
    s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101;
212
    s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101;
213
    s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101;
214
    s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101;
215
    s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000;
216
    s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030;
217
    s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030;
218
    s->reg[IMX25_CCM_MCR_REG]   = 0x43000000;
219

220
    /*
221
     * default boot will change the reset values to allow:
222
     * CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz. 
223
     * For some reason, this doesn't work. With the value below, linux
224
     * detects a 88 MHz IPG CLK instead of 66,5 MHz.
225
    s->reg[IMX25_CCM_CCTL_REG]  = 0x20032000;
226
     */
227
}
228

229
static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size)
230
{
231
    uint32_t value = 0;
232
    IMX25CCMState *s = (IMX25CCMState *)opaque;
233

234
    if (offset < 0x70) {
235
        value = s->reg[offset >> 2];
236
    } else {
237
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
238
                      HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
239
    }
240

241
    DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
242
            value);
243

244
    return value;
245
}
246

247
static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value,
248
                            unsigned size)
249
{
250
    IMX25CCMState *s = (IMX25CCMState *)opaque;
251

252
    DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
253
            (uint32_t)value);
254

255
    if (offset < 0x70) {
256
        /*
257
         * We will do a better implementation later. In particular some bits
258
         * cannot be written to.
259
         */
260
        s->reg[offset >> 2] = value;
261
    } else {
262
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
263
                      HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
264
    }
265
}
266

267
static const struct MemoryRegionOps imx25_ccm_ops = {
268
    .read = imx25_ccm_read,
269
    .write = imx25_ccm_write,
270
    .endianness = DEVICE_NATIVE_ENDIAN,
271
    .valid = {
272
        /*
273
         * Our device would not work correctly if the guest was doing
274
         * unaligned access. This might not be a limitation on the real
275
         * device but in practice there is no reason for a guest to access
276
         * this device unaligned.
277
         */
278
        .min_access_size = 4,
279
        .max_access_size = 4,
280
        .unaligned = false,
281
    },
282
};
283

284
static void imx25_ccm_init(Object *obj)
285
{
286
    DeviceState *dev = DEVICE(obj);
287
    SysBusDevice *sd = SYS_BUS_DEVICE(obj);
288
    IMX25CCMState *s = IMX25_CCM(obj);
289

290
    memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s,
291
                          TYPE_IMX25_CCM, 0x1000);
292
    sysbus_init_mmio(sd, &s->iomem);
293
}
294

295
static void imx25_ccm_class_init(ObjectClass *klass, void *data)
296
{
297
    DeviceClass *dc = DEVICE_CLASS(klass);
298
    IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
299

300
    dc->reset = imx25_ccm_reset;
301
    dc->vmsd = &vmstate_imx25_ccm;
302
    dc->desc = "i.MX25 Clock Control Module";
303

304
    ccm->get_clock_frequency = imx25_ccm_get_clock_frequency;
305
}
306

307
static const TypeInfo imx25_ccm_info = {
308
    .name          = TYPE_IMX25_CCM,
309
    .parent        = TYPE_IMX_CCM,
310
    .instance_size = sizeof(IMX25CCMState),
311
    .instance_init = imx25_ccm_init,
312
    .class_init    = imx25_ccm_class_init,
313
};
314

315
static void imx25_ccm_register_types(void)
316
{
317
    type_register_static(&imx25_ccm_info);
318
}
319

320
type_init(imx25_ccm_register_types)
321

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.