qemu

Форк
0
/
bcm2835_cprman.c 
813 строк · 22.4 Кб
1
/*
2
 * BCM2835 CPRMAN clock manager
3
 *
4
 * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
5
 *
6
 * SPDX-License-Identifier: GPL-2.0-or-later
7
 */
8

9
/*
10
 * This peripheral is roughly divided into 3 main parts:
11
 *   - the PLLs
12
 *   - the PLL channels
13
 *   - the clock muxes
14
 *
15
 * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
16
 * channels. Those channel are then connected to the clock muxes. Each mux has
17
 * multiples sources (usually the xosc, some of the PLL channels and some "test
18
 * debug" clocks). A mux is configured to select a given source through its
19
 * control register. Each mux has one output clock that also goes out of the
20
 * CPRMAN. This output clock usually connects to another peripheral in the SoC
21
 * (so a given mux is dedicated to a peripheral).
22
 *
23
 * At each level (PLL, channel and mux), the clock can be altered through
24
 * dividers (and multipliers in case of the PLLs), and can be disabled (in this
25
 * case, the next levels see no clock).
26
 *
27
 * This can be sum-up as follows (this is an example and not the actual BCM2835
28
 * clock tree):
29
 *
30
 *          /-->[PLL]-|->[PLL channel]--...            [mux]--> to peripherals
31
 *          |         |->[PLL channel]  muxes takes    [mux]
32
 *          |         \->[PLL channel]  inputs from    [mux]
33
 *          |                           some channels  [mux]
34
 * [xosc]---|-->[PLL]-|->[PLL channel]  and other srcs [mux]
35
 *          |         \->[PLL channel]           ...-->[mux]
36
 *          |                                          [mux]
37
 *          \-->[PLL]--->[PLL channel]                 [mux]
38
 *
39
 * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
40
 * tree configuration.
41
 *
42
 * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
43
 * with "-out" (e.g. "uart-out", "h264-out", ...).
44
 */
45

46
#include "qemu/osdep.h"
47
#include "qemu/log.h"
48
#include "migration/vmstate.h"
49
#include "hw/qdev-properties.h"
50
#include "hw/misc/bcm2835_cprman.h"
51
#include "hw/misc/bcm2835_cprman_internals.h"
52
#include "trace.h"
53

54
/* PLL */
55

56
static void pll_reset(DeviceState *dev)
57
{
58
    CprmanPllState *s = CPRMAN_PLL(dev);
59
    const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
60

61
    *s->reg_cm = info->cm;
62
    *s->reg_a2w_ctrl = info->a2w_ctrl;
63
    memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
64
    *s->reg_a2w_frac = info->a2w_frac;
65
}
66

67
static bool pll_is_locked(const CprmanPllState *pll)
68
{
69
    return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
70
        && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
71
}
72

73
static void pll_update(CprmanPllState *pll)
74
{
75
    uint64_t freq, ndiv, fdiv, pdiv;
76

77
    if (!pll_is_locked(pll)) {
78
        clock_update(pll->out, 0);
79
        return;
80
    }
81

82
    pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
83

84
    if (!pdiv) {
85
        clock_update(pll->out, 0);
86
        return;
87
    }
88

89
    ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
90
    fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
91

92
    if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
93
        /* The prescaler doubles the parent frequency */
94
        ndiv *= 2;
95
        fdiv *= 2;
96
    }
97

98
    /*
99
     * We have a multiplier with an integer part (ndiv) and a fractional part
100
     * (fdiv), and a divider (pdiv).
101
     */
102
    freq = clock_get_hz(pll->xosc_in) *
103
        ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
104
    freq /= pdiv;
105
    freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
106

107
    clock_update_hz(pll->out, freq);
108
}
109

110
static void pll_xosc_update(void *opaque, ClockEvent event)
111
{
112
    pll_update(CPRMAN_PLL(opaque));
113
}
114

115
static void pll_init(Object *obj)
116
{
117
    CprmanPllState *s = CPRMAN_PLL(obj);
118

119
    s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
120
                                    s, ClockUpdate);
121
    s->out = qdev_init_clock_out(DEVICE(s), "out");
122
}
123

124
static const VMStateDescription pll_vmstate = {
125
    .name = TYPE_CPRMAN_PLL,
126
    .version_id = 1,
127
    .minimum_version_id = 1,
128
    .fields = (const VMStateField[]) {
129
        VMSTATE_CLOCK(xosc_in, CprmanPllState),
130
        VMSTATE_END_OF_LIST()
131
    }
132
};
133

134
static void pll_class_init(ObjectClass *klass, void *data)
135
{
136
    DeviceClass *dc = DEVICE_CLASS(klass);
137

138
    dc->reset = pll_reset;
139
    dc->vmsd = &pll_vmstate;
140
}
141

142
static const TypeInfo cprman_pll_info = {
143
    .name = TYPE_CPRMAN_PLL,
144
    .parent = TYPE_DEVICE,
145
    .instance_size = sizeof(CprmanPllState),
146
    .class_init = pll_class_init,
147
    .instance_init = pll_init,
148
};
149

150

151
/* PLL channel */
152

153
static void pll_channel_reset(DeviceState *dev)
154
{
155
    CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
156
    const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
157

158
    *s->reg_a2w_ctrl = info->a2w_ctrl;
159
}
160

161
static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
162
{
163
    /*
164
     * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
165
     * not set it when enabling the channel, but does clear it when disabling
166
     * it.
167
     */
168
    return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
169
        && !(*channel->reg_cm & channel->hold_mask);
170
}
171

172
static void pll_channel_update(CprmanPllChannelState *channel)
173
{
174
    uint64_t freq, div;
175

176
    if (!pll_channel_is_enabled(channel)) {
177
        clock_update(channel->out, 0);
178
        return;
179
    }
180

181
    div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
182

183
    if (!div) {
184
        /*
185
         * It seems that when the divider value is 0, it is considered as
186
         * being maximum by the hardware (see the Linux driver).
187
         */
188
        div = R_A2W_PLLx_CHANNELy_DIV_MASK;
189
    }
190

191
    /* Some channels have an additional fixed divider */
192
    freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
193

194
    clock_update_hz(channel->out, freq);
195
}
196

197
/* Update a PLL and all its channels */
198
static void pll_update_all_channels(BCM2835CprmanState *s,
199
                                    CprmanPllState *pll)
200
{
201
    size_t i;
202

203
    pll_update(pll);
204

205
    for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
206
        CprmanPllChannelState *channel = &s->channels[i];
207
        if (channel->parent == pll->id) {
208
            pll_channel_update(channel);
209
        }
210
    }
211
}
212

213
static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
214
{
215
    pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
216
}
217

218
static void pll_channel_init(Object *obj)
219
{
220
    CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
221

222
    s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
223
                                   pll_channel_pll_in_update, s,
224
                                   ClockUpdate);
225
    s->out = qdev_init_clock_out(DEVICE(s), "out");
226
}
227

228
static const VMStateDescription pll_channel_vmstate = {
229
    .name = TYPE_CPRMAN_PLL_CHANNEL,
230
    .version_id = 1,
231
    .minimum_version_id = 1,
232
    .fields = (const VMStateField[]) {
233
        VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
234
        VMSTATE_END_OF_LIST()
235
    }
236
};
237

238
static void pll_channel_class_init(ObjectClass *klass, void *data)
239
{
240
    DeviceClass *dc = DEVICE_CLASS(klass);
241

242
    dc->reset = pll_channel_reset;
243
    dc->vmsd = &pll_channel_vmstate;
244
}
245

246
static const TypeInfo cprman_pll_channel_info = {
247
    .name = TYPE_CPRMAN_PLL_CHANNEL,
248
    .parent = TYPE_DEVICE,
249
    .instance_size = sizeof(CprmanPllChannelState),
250
    .class_init = pll_channel_class_init,
251
    .instance_init = pll_channel_init,
252
};
253

254

255
/* clock mux */
256

257
static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
258
{
259
    return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
260
}
261

262
static void clock_mux_update(CprmanClockMuxState *mux)
263
{
264
    uint64_t freq;
265
    uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
266
    bool enabled = clock_mux_is_enabled(mux);
267

268
    *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
269

270
    if (!enabled) {
271
        clock_update(mux->out, 0);
272
        return;
273
    }
274

275
    freq = clock_get_hz(mux->srcs[src]);
276

277
    if (mux->int_bits == 0 && mux->frac_bits == 0) {
278
        clock_update_hz(mux->out, freq);
279
        return;
280
    }
281

282
    /*
283
     * The divider has an integer and a fractional part. The size of each part
284
     * varies with the muxes (int_bits and frac_bits). Both parts are
285
     * concatenated, with the integer part always starting at bit 12.
286
     *
287
     *         31          12 11          0
288
     *        ------------------------------
289
     * CM_DIV |      |  int  |  frac  |    |
290
     *        ------------------------------
291
     *                <-----> <------>
292
     *                int_bits frac_bits
293
     */
294
    div = extract32(*mux->reg_div,
295
                    R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
296
                    mux->int_bits + mux->frac_bits);
297

298
    if (!div) {
299
        clock_update(mux->out, 0);
300
        return;
301
    }
302

303
    freq = muldiv64(freq, 1 << mux->frac_bits, div);
304

305
    clock_update_hz(mux->out, freq);
306
}
307

308
static void clock_mux_src_update(void *opaque, ClockEvent event)
309
{
310
    CprmanClockMuxState **backref = opaque;
311
    CprmanClockMuxState *s = *backref;
312
    CprmanClockMuxSource src = backref - s->backref;
313

314
    if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
315
        return;
316
    }
317

318
    clock_mux_update(s);
319
}
320

321
static void clock_mux_reset(DeviceState *dev)
322
{
323
    CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
324
    const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
325

326
    *clock->reg_ctl = info->cm_ctl;
327
    *clock->reg_div = info->cm_div;
328
}
329

330
static void clock_mux_init(Object *obj)
331
{
332
    CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
333
    size_t i;
334

335
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
336
        char *name = g_strdup_printf("srcs[%zu]", i);
337
        s->backref[i] = s;
338
        s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
339
                                        clock_mux_src_update,
340
                                        &s->backref[i],
341
                                        ClockUpdate);
342
        g_free(name);
343
    }
344

345
    s->out = qdev_init_clock_out(DEVICE(s), "out");
346
}
347

348
static const VMStateDescription clock_mux_vmstate = {
349
    .name = TYPE_CPRMAN_CLOCK_MUX,
350
    .version_id = 1,
351
    .minimum_version_id = 1,
352
    .fields = (const VMStateField[]) {
353
        VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
354
                            CPRMAN_NUM_CLOCK_MUX_SRC),
355
        VMSTATE_END_OF_LIST()
356
    }
357
};
358

359
static void clock_mux_class_init(ObjectClass *klass, void *data)
360
{
361
    DeviceClass *dc = DEVICE_CLASS(klass);
362

363
    dc->reset = clock_mux_reset;
364
    dc->vmsd = &clock_mux_vmstate;
365
}
366

367
static const TypeInfo cprman_clock_mux_info = {
368
    .name = TYPE_CPRMAN_CLOCK_MUX,
369
    .parent = TYPE_DEVICE,
370
    .instance_size = sizeof(CprmanClockMuxState),
371
    .class_init = clock_mux_class_init,
372
    .instance_init = clock_mux_init,
373
};
374

375

376
/* DSI0HSCK mux */
377

378
static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
379
{
380
    bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
381
    Clock *src = src_is_plld ? s->plld_in : s->plla_in;
382

383
    clock_update(s->out, clock_get(src));
384
}
385

386
static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
387
{
388
    dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
389
}
390

391
static void dsi0hsck_mux_init(Object *obj)
392
{
393
    CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
394
    DeviceState *dev = DEVICE(obj);
395

396
    s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
397
                                    s, ClockUpdate);
398
    s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
399
                                    s, ClockUpdate);
400
    s->out = qdev_init_clock_out(DEVICE(s), "out");
401
}
402

403
static const VMStateDescription dsi0hsck_mux_vmstate = {
404
    .name = TYPE_CPRMAN_DSI0HSCK_MUX,
405
    .version_id = 1,
406
    .minimum_version_id = 1,
407
    .fields = (const VMStateField[]) {
408
        VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
409
        VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
410
        VMSTATE_END_OF_LIST()
411
    }
412
};
413

414
static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
415
{
416
    DeviceClass *dc = DEVICE_CLASS(klass);
417

418
    dc->vmsd = &dsi0hsck_mux_vmstate;
419
}
420

421
static const TypeInfo cprman_dsi0hsck_mux_info = {
422
    .name = TYPE_CPRMAN_DSI0HSCK_MUX,
423
    .parent = TYPE_DEVICE,
424
    .instance_size = sizeof(CprmanDsi0HsckMuxState),
425
    .class_init = dsi0hsck_mux_class_init,
426
    .instance_init = dsi0hsck_mux_init,
427
};
428

429

430
/* CPRMAN "top level" model */
431

432
static uint32_t get_cm_lock(const BCM2835CprmanState *s)
433
{
434
    static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
435
        [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
436
        [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
437
        [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
438
        [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
439
        [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
440
    };
441

442
    uint32_t r = 0;
443
    size_t i;
444

445
    for (i = 0; i < CPRMAN_NUM_PLL; i++) {
446
        r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
447
    }
448

449
    return r;
450
}
451

452
static uint64_t cprman_read(void *opaque, hwaddr offset,
453
                            unsigned size)
454
{
455
    BCM2835CprmanState *s = CPRMAN(opaque);
456
    uint64_t r = 0;
457
    size_t idx = offset / sizeof(uint32_t);
458

459
    switch (idx) {
460
    case R_CM_LOCK:
461
        r = get_cm_lock(s);
462
        break;
463

464
    default:
465
        r = s->regs[idx];
466
    }
467

468
    trace_bcm2835_cprman_read(offset, r);
469
    return r;
470
}
471

472
static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
473
                                                   size_t idx)
474
{
475
    size_t i;
476

477
    for (i = 0; i < CPRMAN_NUM_PLL; i++) {
478
        if (PLL_INIT_INFO[i].cm_offset == idx) {
479
            pll_update_all_channels(s, &s->plls[i]);
480
            return;
481
        }
482
    }
483
}
484

485
static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
486
{
487
    size_t i;
488

489
    for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
490
        if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
491
            pll_channel_update(&s->channels[i]);
492
            return;
493
        }
494
    }
495
}
496

497
static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
498
{
499
    size_t i;
500

501
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
502
        if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
503
            (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
504
            /* matches CM_CTL or CM_DIV mux register */
505
            clock_mux_update(&s->clock_muxes[i]);
506
            return;
507
        }
508
    }
509
}
510

511
#define CASE_PLL_A2W_REGS(pll_) \
512
    case R_A2W_ ## pll_ ## _CTRL: \
513
    case R_A2W_ ## pll_ ## _ANA0: \
514
    case R_A2W_ ## pll_ ## _ANA1: \
515
    case R_A2W_ ## pll_ ## _ANA2: \
516
    case R_A2W_ ## pll_ ## _ANA3: \
517
    case R_A2W_ ## pll_ ## _FRAC
518

519
static void cprman_write(void *opaque, hwaddr offset,
520
                         uint64_t value, unsigned size)
521
{
522
    BCM2835CprmanState *s = CPRMAN(opaque);
523
    size_t idx = offset / sizeof(uint32_t);
524

525
    if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
526
        trace_bcm2835_cprman_write_invalid_magic(offset, value);
527
        return;
528
    }
529

530
    value &= ~R_CPRMAN_PASSWORD_MASK;
531

532
    trace_bcm2835_cprman_write(offset, value);
533
    s->regs[idx] = value;
534

535
    switch (idx) {
536
    case R_CM_PLLA ... R_CM_PLLH:
537
    case R_CM_PLLB:
538
        /*
539
         * A given CM_PLLx register is shared by both the PLL and the channels
540
         * of this PLL.
541
         */
542
        update_pll_and_channels_from_cm(s, idx);
543
        break;
544

545
    CASE_PLL_A2W_REGS(PLLA) :
546
        pll_update(&s->plls[CPRMAN_PLLA]);
547
        break;
548

549
    CASE_PLL_A2W_REGS(PLLC) :
550
        pll_update(&s->plls[CPRMAN_PLLC]);
551
        break;
552

553
    CASE_PLL_A2W_REGS(PLLD) :
554
        pll_update(&s->plls[CPRMAN_PLLD]);
555
        break;
556

557
    CASE_PLL_A2W_REGS(PLLH) :
558
        pll_update(&s->plls[CPRMAN_PLLH]);
559
        break;
560

561
    CASE_PLL_A2W_REGS(PLLB) :
562
        pll_update(&s->plls[CPRMAN_PLLB]);
563
        break;
564

565
    case R_A2W_PLLA_DSI0:
566
    case R_A2W_PLLA_CORE:
567
    case R_A2W_PLLA_PER:
568
    case R_A2W_PLLA_CCP2:
569
    case R_A2W_PLLC_CORE2:
570
    case R_A2W_PLLC_CORE1:
571
    case R_A2W_PLLC_PER:
572
    case R_A2W_PLLC_CORE0:
573
    case R_A2W_PLLD_DSI0:
574
    case R_A2W_PLLD_CORE:
575
    case R_A2W_PLLD_PER:
576
    case R_A2W_PLLD_DSI1:
577
    case R_A2W_PLLH_AUX:
578
    case R_A2W_PLLH_RCAL:
579
    case R_A2W_PLLH_PIX:
580
    case R_A2W_PLLB_ARM:
581
        update_channel_from_a2w(s, idx);
582
        break;
583

584
    case R_CM_GNRICCTL ... R_CM_SMIDIV:
585
    case R_CM_TCNTCNT ... R_CM_VECDIV:
586
    case R_CM_PULSECTL ... R_CM_PULSEDIV:
587
    case R_CM_SDCCTL ... R_CM_ARMCTL:
588
    case R_CM_AVEOCTL ... R_CM_EMMCDIV:
589
    case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
590
        update_mux_from_cm(s, idx);
591
        break;
592

593
    case R_CM_DSI0HSCK:
594
        dsi0hsck_mux_update(&s->dsi0hsck_mux);
595
        break;
596
    }
597
}
598

599
#undef CASE_PLL_A2W_REGS
600

601
static const MemoryRegionOps cprman_ops = {
602
    .read = cprman_read,
603
    .write = cprman_write,
604
    .endianness = DEVICE_LITTLE_ENDIAN,
605
    .valid = {
606
        /*
607
         * Although this hasn't been checked against real hardware, nor the
608
         * information can be found in a datasheet, it seems reasonable because
609
         * of the "PASSWORD" magic value found in every registers.
610
         */
611
        .min_access_size        = 4,
612
        .max_access_size        = 4,
613
        .unaligned              = false,
614
    },
615
    .impl = {
616
        .max_access_size = 4,
617
    },
618
};
619

620
static void cprman_reset(DeviceState *dev)
621
{
622
    BCM2835CprmanState *s = CPRMAN(dev);
623
    size_t i;
624

625
    memset(s->regs, 0, sizeof(s->regs));
626

627
    for (i = 0; i < CPRMAN_NUM_PLL; i++) {
628
        device_cold_reset(DEVICE(&s->plls[i]));
629
    }
630

631
    for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
632
        device_cold_reset(DEVICE(&s->channels[i]));
633
    }
634

635
    device_cold_reset(DEVICE(&s->dsi0hsck_mux));
636

637
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
638
        device_cold_reset(DEVICE(&s->clock_muxes[i]));
639
    }
640

641
    clock_update_hz(s->xosc, s->xosc_freq);
642
}
643

644
static void cprman_init(Object *obj)
645
{
646
    BCM2835CprmanState *s = CPRMAN(obj);
647
    size_t i;
648

649
    for (i = 0; i < CPRMAN_NUM_PLL; i++) {
650
        object_initialize_child(obj, PLL_INIT_INFO[i].name,
651
                                &s->plls[i], TYPE_CPRMAN_PLL);
652
        set_pll_init_info(s, &s->plls[i], i);
653
    }
654

655
    for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
656
        object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
657
                                &s->channels[i],
658
                                TYPE_CPRMAN_PLL_CHANNEL);
659
        set_pll_channel_init_info(s, &s->channels[i], i);
660
    }
661

662
    object_initialize_child(obj, "dsi0hsck-mux",
663
                            &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
664
    s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
665

666
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
667
        char *alias;
668

669
        object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
670
                                &s->clock_muxes[i],
671
                                TYPE_CPRMAN_CLOCK_MUX);
672
        set_clock_mux_init_info(s, &s->clock_muxes[i], i);
673

674
        /* Expose muxes output as CPRMAN outputs */
675
        alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
676
        qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
677
        g_free(alias);
678
    }
679

680
    s->xosc = clock_new(obj, "xosc");
681
    s->gnd = clock_new(obj, "gnd");
682

683
    clock_set(s->gnd, 0);
684

685
    memory_region_init_io(&s->iomem, obj, &cprman_ops,
686
                          s, "bcm2835-cprman", 0x2000);
687
    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
688
}
689

690
static void connect_mux_sources(BCM2835CprmanState *s,
691
                                CprmanClockMuxState *mux,
692
                                const CprmanPllChannel *clk_mapping)
693
{
694
    size_t i;
695
    Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
696
    Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
697

698
    /* For sources from 0 to 3. Source 4 to 9 are mux specific */
699
    Clock * const CLK_SRC_MAPPING[] = {
700
        [CPRMAN_CLOCK_SRC_GND] = s->gnd,
701
        [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
702
        [CPRMAN_CLOCK_SRC_TD0] = td0,
703
        [CPRMAN_CLOCK_SRC_TD1] = td1,
704
    };
705

706
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
707
        CprmanPllChannel mapping = clk_mapping[i];
708
        Clock *src;
709

710
        if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
711
            src = s->gnd;
712
        } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
713
            src = s->dsi0hsck_mux.out;
714
        } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
715
            src = CLK_SRC_MAPPING[i];
716
        } else {
717
            src = s->channels[mapping].out;
718
        }
719

720
        clock_set_source(mux->srcs[i], src);
721
    }
722
}
723

724
static void cprman_realize(DeviceState *dev, Error **errp)
725
{
726
    BCM2835CprmanState *s = CPRMAN(dev);
727
    size_t i;
728

729
    for (i = 0; i < CPRMAN_NUM_PLL; i++) {
730
        CprmanPllState *pll = &s->plls[i];
731

732
        clock_set_source(pll->xosc_in, s->xosc);
733

734
        if (!qdev_realize(DEVICE(pll), NULL, errp)) {
735
            return;
736
        }
737
    }
738

739
    for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
740
        CprmanPllChannelState *channel = &s->channels[i];
741
        CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
742
        Clock *parent_clk = s->plls[parent].out;
743

744
        clock_set_source(channel->pll_in, parent_clk);
745

746
        if (!qdev_realize(DEVICE(channel), NULL, errp)) {
747
            return;
748
        }
749
    }
750

751
    clock_set_source(s->dsi0hsck_mux.plla_in,
752
                     s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
753
    clock_set_source(s->dsi0hsck_mux.plld_in,
754
                     s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
755

756
    if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
757
        return;
758
    }
759

760
    for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
761
        CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
762

763
        connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
764

765
        if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
766
            return;
767
        }
768
    }
769
}
770

771
static const VMStateDescription cprman_vmstate = {
772
    .name = TYPE_BCM2835_CPRMAN,
773
    .version_id = 1,
774
    .minimum_version_id = 1,
775
    .fields = (const VMStateField[]) {
776
        VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
777
        VMSTATE_END_OF_LIST()
778
    }
779
};
780

781
static Property cprman_properties[] = {
782
    DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
783
    DEFINE_PROP_END_OF_LIST()
784
};
785

786
static void cprman_class_init(ObjectClass *klass, void *data)
787
{
788
    DeviceClass *dc = DEVICE_CLASS(klass);
789

790
    dc->realize = cprman_realize;
791
    dc->reset = cprman_reset;
792
    dc->vmsd = &cprman_vmstate;
793
    device_class_set_props(dc, cprman_properties);
794
}
795

796
static const TypeInfo cprman_info = {
797
    .name = TYPE_BCM2835_CPRMAN,
798
    .parent = TYPE_SYS_BUS_DEVICE,
799
    .instance_size = sizeof(BCM2835CprmanState),
800
    .class_init = cprman_class_init,
801
    .instance_init = cprman_init,
802
};
803

804
static void cprman_register_types(void)
805
{
806
    type_register_static(&cprman_info);
807
    type_register_static(&cprman_pll_info);
808
    type_register_static(&cprman_pll_channel_info);
809
    type_register_static(&cprman_clock_mux_info);
810
    type_register_static(&cprman_dsi0hsck_mux_info);
811
}
812

813
type_init(cprman_register_types);
814

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.