qemu

Форк
0
/
ipoctal232.c 
608 строк · 16.4 Кб
1
/*
2
 * QEMU GE IP-Octal 232 IndustryPack emulation
3
 *
4
 * Copyright (C) 2012 Igalia, S.L.
5
 * Author: Alberto Garcia <berto@igalia.com>
6
 *
7
 * This code is licensed under the GNU GPL v2 or (at your option) any
8
 * later version.
9
 */
10

11
#include "qemu/osdep.h"
12
#include "hw/ipack/ipack.h"
13
#include "hw/irq.h"
14
#include "hw/qdev-properties.h"
15
#include "hw/qdev-properties-system.h"
16
#include "migration/vmstate.h"
17
#include "qemu/bitops.h"
18
#include "qemu/module.h"
19
#include "chardev/char-fe.h"
20
#include "qom/object.h"
21

22
/* #define DEBUG_IPOCTAL */
23

24
#ifdef DEBUG_IPOCTAL
25
#define DPRINTF2(fmt, ...) \
26
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
27
#else
28
#define DPRINTF2(fmt, ...) do { } while (0)
29
#endif
30

31
#define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__)
32

33
#define RX_FIFO_SIZE 3
34

35
/* The IP-Octal has 8 channels (a-h)
36
   divided into 4 blocks (A-D) */
37
#define N_CHANNELS 8
38
#define N_BLOCKS   4
39

40
#define REG_MRa  0x01
41
#define REG_MRb  0x11
42
#define REG_SRa  0x03
43
#define REG_SRb  0x13
44
#define REG_CSRa 0x03
45
#define REG_CSRb 0x13
46
#define REG_CRa  0x05
47
#define REG_CRb  0x15
48
#define REG_RHRa 0x07
49
#define REG_RHRb 0x17
50
#define REG_THRa 0x07
51
#define REG_THRb 0x17
52
#define REG_ACR  0x09
53
#define REG_ISR  0x0B
54
#define REG_IMR  0x0B
55
#define REG_OPCR 0x1B
56

57
#define CR_ENABLE_RX    BIT(0)
58
#define CR_DISABLE_RX   BIT(1)
59
#define CR_ENABLE_TX    BIT(2)
60
#define CR_DISABLE_TX   BIT(3)
61
#define CR_CMD(cr)      ((cr) >> 4)
62
#define CR_NO_OP        0
63
#define CR_RESET_MR     1
64
#define CR_RESET_RX     2
65
#define CR_RESET_TX     3
66
#define CR_RESET_ERR    4
67
#define CR_RESET_BRKINT 5
68
#define CR_START_BRK    6
69
#define CR_STOP_BRK     7
70
#define CR_ASSERT_RTSN  8
71
#define CR_NEGATE_RTSN  9
72
#define CR_TIMEOUT_ON   10
73
#define CR_TIMEOUT_OFF  12
74

75
#define SR_RXRDY   BIT(0)
76
#define SR_FFULL   BIT(1)
77
#define SR_TXRDY   BIT(2)
78
#define SR_TXEMT   BIT(3)
79
#define SR_OVERRUN BIT(4)
80
#define SR_PARITY  BIT(5)
81
#define SR_FRAMING BIT(6)
82
#define SR_BREAK   BIT(7)
83

84
#define ISR_TXRDYA BIT(0)
85
#define ISR_RXRDYA BIT(1)
86
#define ISR_BREAKA BIT(2)
87
#define ISR_CNTRDY BIT(3)
88
#define ISR_TXRDYB BIT(4)
89
#define ISR_RXRDYB BIT(5)
90
#define ISR_BREAKB BIT(6)
91
#define ISR_MPICHG BIT(7)
92
#define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0))
93
#define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1))
94
#define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2))
95

96
typedef struct IPOctalState IPOctalState;
97
typedef struct SCC2698Channel SCC2698Channel;
98
typedef struct SCC2698Block SCC2698Block;
99

100
struct SCC2698Channel {
101
    IPOctalState *ipoctal;
102
    CharBackend dev;
103
    bool rx_enabled;
104
    uint8_t mr[2];
105
    uint8_t mr_idx;
106
    uint8_t sr;
107
    uint8_t rhr[RX_FIFO_SIZE];
108
    uint8_t rhr_idx;
109
    uint8_t rx_pending;
110
};
111

112
struct SCC2698Block {
113
    uint8_t imr;
114
    uint8_t isr;
115
};
116

117
struct IPOctalState {
118
    IPackDevice parent_obj;
119

120
    SCC2698Channel ch[N_CHANNELS];
121
    SCC2698Block blk[N_BLOCKS];
122
    uint8_t irq_vector;
123
};
124

125
#define TYPE_IPOCTAL "ipoctal232"
126

127
OBJECT_DECLARE_SIMPLE_TYPE(IPOctalState, IPOCTAL)
128

129
static const VMStateDescription vmstate_scc2698_channel = {
130
    .name = "scc2698_channel",
131
    .version_id = 1,
132
    .minimum_version_id = 1,
133
    .fields = (const VMStateField[]) {
134
        VMSTATE_BOOL(rx_enabled, SCC2698Channel),
135
        VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2),
136
        VMSTATE_UINT8(mr_idx, SCC2698Channel),
137
        VMSTATE_UINT8(sr, SCC2698Channel),
138
        VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE),
139
        VMSTATE_UINT8(rhr_idx, SCC2698Channel),
140
        VMSTATE_UINT8(rx_pending, SCC2698Channel),
141
        VMSTATE_END_OF_LIST()
142
    }
143
};
144

145
static const VMStateDescription vmstate_scc2698_block = {
146
    .name = "scc2698_block",
147
    .version_id = 1,
148
    .minimum_version_id = 1,
149
    .fields = (const VMStateField[]) {
150
        VMSTATE_UINT8(imr, SCC2698Block),
151
        VMSTATE_UINT8(isr, SCC2698Block),
152
        VMSTATE_END_OF_LIST()
153
    }
154
};
155

156
static const VMStateDescription vmstate_ipoctal = {
157
    .name = "ipoctal232",
158
    .version_id = 1,
159
    .minimum_version_id = 1,
160
    .fields = (const VMStateField[]) {
161
        VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState),
162
        VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1,
163
                             vmstate_scc2698_channel, SCC2698Channel),
164
        VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1,
165
                             vmstate_scc2698_block, SCC2698Block),
166
        VMSTATE_UINT8(irq_vector, IPOctalState),
167
        VMSTATE_END_OF_LIST()
168
    }
169
};
170

171
/* data[10] is 0x0C, not 0x0B as the doc says */
172
static const uint8_t id_prom_data[] = {
173
    0x49, 0x50, 0x41, 0x43, 0xF0, 0x22,
174
    0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC
175
};
176

177
static void update_irq(IPOctalState *dev, unsigned block)
178
{
179
    IPackDevice *idev = IPACK_DEVICE(dev);
180
    /* Blocks A and B interrupt on INT0#, C and D on INT1#.
181
       Thus, to get the status we have to check two blocks. */
182
    SCC2698Block *blk0 = &dev->blk[block];
183
    SCC2698Block *blk1 = &dev->blk[block^1];
184
    unsigned intno = block / 2;
185

186
    if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) {
187
        qemu_irq_raise(idev->irq[intno]);
188
    } else {
189
        qemu_irq_lower(idev->irq[intno]);
190
    }
191
}
192

193
static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val)
194
{
195
    SCC2698Channel *ch = &dev->ch[channel];
196
    SCC2698Block *blk = &dev->blk[channel / 2];
197

198
    DPRINTF("Write CR%c %u: ", channel + 'a', val);
199

200
    /* The lower 4 bits are used to enable and disable Tx and Rx */
201
    if (val & CR_ENABLE_RX) {
202
        DPRINTF2("Rx on, ");
203
        ch->rx_enabled = true;
204
    }
205
    if (val & CR_DISABLE_RX) {
206
        DPRINTF2("Rx off, ");
207
        ch->rx_enabled = false;
208
    }
209
    if (val & CR_ENABLE_TX) {
210
        DPRINTF2("Tx on, ");
211
        ch->sr |= SR_TXRDY | SR_TXEMT;
212
        blk->isr |= ISR_TXRDY(channel);
213
    }
214
    if (val & CR_DISABLE_TX) {
215
        DPRINTF2("Tx off, ");
216
        ch->sr &= ~(SR_TXRDY | SR_TXEMT);
217
        blk->isr &= ~ISR_TXRDY(channel);
218
    }
219

220
    DPRINTF2("cmd: ");
221

222
    /* The rest of the bits implement different commands */
223
    switch (CR_CMD(val)) {
224
    case CR_NO_OP:
225
        DPRINTF2("none");
226
        break;
227
    case CR_RESET_MR:
228
        DPRINTF2("reset MR");
229
        ch->mr_idx = 0;
230
        break;
231
    case CR_RESET_RX:
232
        DPRINTF2("reset Rx");
233
        ch->rx_enabled = false;
234
        ch->rx_pending = 0;
235
        ch->sr &= ~SR_RXRDY;
236
        blk->isr &= ~ISR_RXRDY(channel);
237
        break;
238
    case CR_RESET_TX:
239
        DPRINTF2("reset Tx");
240
        ch->sr &= ~(SR_TXRDY | SR_TXEMT);
241
        blk->isr &= ~ISR_TXRDY(channel);
242
        break;
243
    case CR_RESET_ERR:
244
        DPRINTF2("reset err");
245
        ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK);
246
        break;
247
    case CR_RESET_BRKINT:
248
        DPRINTF2("reset brk ch int");
249
        blk->isr &= ~(ISR_BREAKA | ISR_BREAKB);
250
        break;
251
    default:
252
        DPRINTF2("unsupported 0x%x", CR_CMD(val));
253
    }
254

255
    DPRINTF2("\n");
256
}
257

258
static uint16_t io_read(IPackDevice *ip, uint8_t addr)
259
{
260
    IPOctalState *dev = IPOCTAL(ip);
261
    uint16_t ret = 0;
262
    /* addr[7:6]: block   (A-D)
263
       addr[7:5]: channel (a-h)
264
       addr[5:0]: register */
265
    unsigned block = addr >> 5;
266
    unsigned channel = addr >> 4;
267
    /* Big endian, accessed using 8-bit bytes at odd locations */
268
    unsigned offset = (addr & 0x1F) ^ 1;
269
    SCC2698Channel *ch = &dev->ch[channel];
270
    SCC2698Block *blk = &dev->blk[block];
271
    uint8_t old_isr = blk->isr;
272

273
    switch (offset) {
274

275
    case REG_MRa:
276
    case REG_MRb:
277
        ret = ch->mr[ch->mr_idx];
278
        DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret);
279
        ch->mr_idx = 1;
280
        break;
281

282
    case REG_SRa:
283
    case REG_SRb:
284
        ret = ch->sr;
285
        DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret);
286
        break;
287

288
    case REG_RHRa:
289
    case REG_RHRb:
290
        ret = ch->rhr[ch->rhr_idx];
291
        if (ch->rx_pending > 0) {
292
            ch->rx_pending--;
293
            if (ch->rx_pending == 0) {
294
                ch->sr &= ~SR_RXRDY;
295
                blk->isr &= ~ISR_RXRDY(channel);
296
                qemu_chr_fe_accept_input(&ch->dev);
297
            } else {
298
                ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE;
299
            }
300
            if (ch->sr & SR_BREAK) {
301
                ch->sr &= ~SR_BREAK;
302
                blk->isr |= ISR_BREAK(channel);
303
            }
304
        }
305
        DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret);
306
        break;
307

308
    case REG_ISR:
309
        ret = blk->isr;
310
        DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret);
311
        break;
312

313
    default:
314
        DPRINTF("Read unknown/unsupported register 0x%02x\n", offset);
315
    }
316

317
    if (old_isr != blk->isr) {
318
        update_irq(dev, block);
319
    }
320

321
    return ret;
322
}
323

324
static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val)
325
{
326
    IPOctalState *dev = IPOCTAL(ip);
327
    unsigned reg = val & 0xFF;
328
    /* addr[7:6]: block   (A-D)
329
       addr[7:5]: channel (a-h)
330
       addr[5:0]: register */
331
    unsigned block = addr >> 5;
332
    unsigned channel = addr >> 4;
333
    /* Big endian, accessed using 8-bit bytes at odd locations */
334
    unsigned offset = (addr & 0x1F) ^ 1;
335
    SCC2698Channel *ch = &dev->ch[channel];
336
    SCC2698Block *blk = &dev->blk[block];
337
    uint8_t old_isr = blk->isr;
338
    uint8_t old_imr = blk->imr;
339

340
    switch (offset) {
341

342
    case REG_MRa:
343
    case REG_MRb:
344
        ch->mr[ch->mr_idx] = reg;
345
        DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg);
346
        ch->mr_idx = 1;
347
        break;
348

349
    /* Not implemented */
350
    case REG_CSRa:
351
    case REG_CSRb:
352
        DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg);
353
        break;
354

355
    case REG_CRa:
356
    case REG_CRb:
357
        write_cr(dev, channel, reg);
358
        break;
359

360
    case REG_THRa:
361
    case REG_THRb:
362
        if (ch->sr & SR_TXRDY) {
363
            uint8_t thr = reg;
364
            DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg);
365
            /* XXX this blocks entire thread. Rewrite to use
366
             * qemu_chr_fe_write and background I/O callbacks */
367
            qemu_chr_fe_write_all(&ch->dev, &thr, 1);
368
        } else {
369
            DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg);
370
        }
371
        break;
372

373
    /* Not implemented */
374
    case REG_ACR:
375
        DPRINTF("Write ACR%c 0x%x\n", block + 'A', val);
376
        break;
377

378
    case REG_IMR:
379
        DPRINTF("Write IMR%c 0x%x\n", block + 'A', val);
380
        blk->imr = reg;
381
        break;
382

383
    /* Not implemented */
384
    case REG_OPCR:
385
        DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val);
386
        break;
387

388
    default:
389
        DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val);
390
    }
391

392
    if (old_isr != blk->isr || old_imr != blk->imr) {
393
        update_irq(dev, block);
394
    }
395
}
396

397
static uint16_t id_read(IPackDevice *ip, uint8_t addr)
398
{
399
    uint16_t ret = 0;
400
    unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */
401

402
    if (pos < ARRAY_SIZE(id_prom_data)) {
403
        ret = id_prom_data[pos];
404
    } else {
405
        DPRINTF("Attempt to read unavailable PROM data at 0x%x\n",  addr);
406
    }
407

408
    return ret;
409
}
410

411
static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val)
412
{
413
    IPOctalState *dev = IPOCTAL(ip);
414
    if (addr == 1) {
415
        DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
416
        dev->irq_vector = val; /* Undocumented, but the hw works like that */
417
    } else {
418
        DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
419
    }
420
}
421

422
static uint16_t int_read(IPackDevice *ip, uint8_t addr)
423
{
424
    IPOctalState *dev = IPOCTAL(ip);
425
    /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */
426
    if (addr != 0 && addr != 2) {
427
        DPRINTF("Attempt to read from 0x%x\n", addr);
428
        return 0;
429
    } else {
430
        /* Update interrupts if necessary */
431
        update_irq(dev, addr);
432
        return dev->irq_vector;
433
    }
434
}
435

436
static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val)
437
{
438
    DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
439
}
440

441
static uint16_t mem_read16(IPackDevice *ip, uint32_t addr)
442
{
443
    DPRINTF("Attempt to read from 0x%x\n", addr);
444
    return 0;
445
}
446

447
static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val)
448
{
449
    DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
450
}
451

452
static uint8_t mem_read8(IPackDevice *ip, uint32_t addr)
453
{
454
    DPRINTF("Attempt to read from 0x%x\n", addr);
455
    return 0;
456
}
457

458
static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val)
459
{
460
    IPOctalState *dev = IPOCTAL(ip);
461
    if (addr == 1) {
462
        DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
463
        dev->irq_vector = val;
464
    } else {
465
        DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
466
    }
467
}
468

469
static int hostdev_can_receive(void *opaque)
470
{
471
    SCC2698Channel *ch = opaque;
472
    int available_bytes = RX_FIFO_SIZE - ch->rx_pending;
473
    return ch->rx_enabled ? available_bytes : 0;
474
}
475

476
static void hostdev_receive(void *opaque, const uint8_t *buf, int size)
477
{
478
    SCC2698Channel *ch = opaque;
479
    IPOctalState *dev = ch->ipoctal;
480
    unsigned pos = ch->rhr_idx + ch->rx_pending;
481
    int i;
482

483
    assert(size + ch->rx_pending <= RX_FIFO_SIZE);
484

485
    /* Copy data to the RxFIFO */
486
    for (i = 0; i < size; i++) {
487
        pos %= RX_FIFO_SIZE;
488
        ch->rhr[pos++] = buf[i];
489
    }
490

491
    ch->rx_pending += size;
492

493
    /* If the RxFIFO was empty raise an interrupt */
494
    if (!(ch->sr & SR_RXRDY)) {
495
        unsigned block, channel = 0;
496
        /* Find channel number to update the ISR register */
497
        while (&dev->ch[channel] != ch) {
498
            channel++;
499
        }
500
        block = channel / 2;
501
        dev->blk[block].isr |= ISR_RXRDY(channel);
502
        ch->sr |= SR_RXRDY;
503
        update_irq(dev, block);
504
    }
505
}
506

507
static void hostdev_event(void *opaque, QEMUChrEvent event)
508
{
509
    SCC2698Channel *ch = opaque;
510
    switch (event) {
511
    case CHR_EVENT_OPENED:
512
        DPRINTF("Device %s opened\n", ch->dev->label);
513
        break;
514
    case CHR_EVENT_BREAK: {
515
        uint8_t zero = 0;
516
        DPRINTF("Device %s received break\n", ch->dev->label);
517

518
        if (!(ch->sr & SR_BREAK)) {
519
            IPOctalState *dev = ch->ipoctal;
520
            unsigned block, channel = 0;
521

522
            while (&dev->ch[channel] != ch) {
523
                channel++;
524
            }
525
            block = channel / 2;
526

527
            ch->sr |= SR_BREAK;
528
            dev->blk[block].isr |= ISR_BREAK(channel);
529
        }
530

531
        /* Put a zero character in the buffer */
532
        hostdev_receive(ch, &zero, 1);
533
    }
534
        break;
535
    default:
536
        DPRINTF("Device %s received event %d\n", ch->dev->label, event);
537
    }
538
}
539

540
static void ipoctal_realize(DeviceState *dev, Error **errp)
541
{
542
    IPOctalState *s = IPOCTAL(dev);
543
    unsigned i;
544

545
    for (i = 0; i < N_CHANNELS; i++) {
546
        SCC2698Channel *ch = &s->ch[i];
547
        ch->ipoctal = s;
548

549
        /* Redirect IP-Octal channels to host character devices */
550
        if (qemu_chr_fe_backend_connected(&ch->dev)) {
551
            qemu_chr_fe_set_handlers(&ch->dev, hostdev_can_receive,
552
                                     hostdev_receive, hostdev_event,
553
                                     NULL, ch, NULL, true);
554
            DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label);
555
        } else {
556
            DPRINTF("Could not redirect channel %u, no chardev set\n", i);
557
        }
558
    }
559
}
560

561
static Property ipoctal_properties[] = {
562
    DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev),
563
    DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev),
564
    DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev),
565
    DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev),
566
    DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev),
567
    DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev),
568
    DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev),
569
    DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev),
570
    DEFINE_PROP_END_OF_LIST(),
571
};
572

573
static void ipoctal_class_init(ObjectClass *klass, void *data)
574
{
575
    DeviceClass *dc = DEVICE_CLASS(klass);
576
    IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass);
577

578
    ic->realize     = ipoctal_realize;
579
    ic->io_read     = io_read;
580
    ic->io_write    = io_write;
581
    ic->id_read     = id_read;
582
    ic->id_write    = id_write;
583
    ic->int_read    = int_read;
584
    ic->int_write   = int_write;
585
    ic->mem_read16  = mem_read16;
586
    ic->mem_write16 = mem_write16;
587
    ic->mem_read8   = mem_read8;
588
    ic->mem_write8  = mem_write8;
589

590
    set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
591
    dc->desc    = "GE IP-Octal 232 8-channel RS-232 IndustryPack";
592
    device_class_set_props(dc, ipoctal_properties);
593
    dc->vmsd    = &vmstate_ipoctal;
594
}
595

596
static const TypeInfo ipoctal_info = {
597
    .name          = TYPE_IPOCTAL,
598
    .parent        = TYPE_IPACK_DEVICE,
599
    .instance_size = sizeof(IPOctalState),
600
    .class_init    = ipoctal_class_init,
601
};
602

603
static void ipoctal_register_types(void)
604
{
605
    type_register_static(&ipoctal_info);
606
}
607

608
type_init(ipoctal_register_types)
609

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.