qemu

Форк
0
/
qed-l2-cache.c 
195 строк · 6.0 Кб
1
/*
2
 * QEMU Enhanced Disk Format L2 Cache
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Anthony Liguori   <aliguori@us.ibm.com>
8
 *
9
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
10
 * See the COPYING.LIB file in the top-level directory.
11
 *
12
 */
13

14
/*
15
 * L2 table cache usage is as follows:
16
 *
17
 * An open image has one L2 table cache that is used to avoid accessing the
18
 * image file for recently referenced L2 tables.
19
 *
20
 * Cluster offset lookup translates the logical offset within the block device
21
 * to a cluster offset within the image file.  This is done by indexing into
22
 * the L1 and L2 tables which store cluster offsets.  It is here where the L2
23
 * table cache serves up recently referenced L2 tables.
24
 *
25
 * If there is a cache miss, that L2 table is read from the image file and
26
 * committed to the cache.  Subsequent accesses to that L2 table will be served
27
 * from the cache until the table is evicted from the cache.
28
 *
29
 * L2 tables are also committed to the cache when new L2 tables are allocated
30
 * in the image file.  Since the L2 table cache is write-through, the new L2
31
 * table is first written out to the image file and then committed to the
32
 * cache.
33
 *
34
 * Multiple I/O requests may be using an L2 table cache entry at any given
35
 * time.  That means an entry may be in use across several requests and
36
 * reference counting is needed to free the entry at the correct time.  In
37
 * particular, an entry evicted from the cache will only be freed once all
38
 * references are dropped.
39
 *
40
 * An in-flight I/O request will hold a reference to a L2 table cache entry for
41
 * the period during which it needs to access the L2 table.  This includes
42
 * cluster offset lookup, L2 table allocation, and L2 table update when a new
43
 * data cluster has been allocated.
44
 *
45
 * An interesting case occurs when two requests need to access an L2 table that
46
 * is not in the cache.  Since the operation to read the table from the image
47
 * file takes some time to complete, both requests may see a cache miss and
48
 * start reading the L2 table from the image file.  The first to finish will
49
 * commit its L2 table into the cache.  When the second tries to commit its
50
 * table will be deleted in favor of the existing cache entry.
51
 */
52

53
#include "qemu/osdep.h"
54
#include "qemu/memalign.h"
55
#include "trace.h"
56
#include "qed.h"
57

58
/* Each L2 holds 2GB so this let's us fully cache a 100GB disk */
59
#define MAX_L2_CACHE_SIZE 50
60

61
/**
62
 * Initialize the L2 cache
63
 */
64
void qed_init_l2_cache(L2TableCache *l2_cache)
65
{
66
    QTAILQ_INIT(&l2_cache->entries);
67
    l2_cache->n_entries = 0;
68
}
69

70
/**
71
 * Free the L2 cache
72
 */
73
void qed_free_l2_cache(L2TableCache *l2_cache)
74
{
75
    CachedL2Table *entry, *next_entry;
76

77
    QTAILQ_FOREACH_SAFE(entry, &l2_cache->entries, node, next_entry) {
78
        qemu_vfree(entry->table);
79
        g_free(entry);
80
    }
81
}
82

83
/**
84
 * Allocate an uninitialized entry from the cache
85
 *
86
 * The returned entry has a reference count of 1 and is owned by the caller.
87
 * The caller must allocate the actual table field for this entry and it must
88
 * be freeable using qemu_vfree().
89
 */
90
CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache)
91
{
92
    CachedL2Table *entry;
93

94
    entry = g_malloc0(sizeof(*entry));
95
    entry->ref++;
96

97
    trace_qed_alloc_l2_cache_entry(l2_cache, entry);
98

99
    return entry;
100
}
101

102
/**
103
 * Decrease an entry's reference count and free if necessary when the reference
104
 * count drops to zero.
105
 *
106
 * Called with table_lock held.
107
 */
108
void qed_unref_l2_cache_entry(CachedL2Table *entry)
109
{
110
    if (!entry) {
111
        return;
112
    }
113

114
    entry->ref--;
115
    trace_qed_unref_l2_cache_entry(entry, entry->ref);
116
    if (entry->ref == 0) {
117
        qemu_vfree(entry->table);
118
        g_free(entry);
119
    }
120
}
121

122
/**
123
 * Find an entry in the L2 cache.  This may return NULL and it's up to the
124
 * caller to satisfy the cache miss.
125
 *
126
 * For a cached entry, this function increases the reference count and returns
127
 * the entry.
128
 *
129
 * Called with table_lock held.
130
 */
131
CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset)
132
{
133
    CachedL2Table *entry;
134

135
    QTAILQ_FOREACH(entry, &l2_cache->entries, node) {
136
        if (entry->offset == offset) {
137
            trace_qed_find_l2_cache_entry(l2_cache, entry, offset, entry->ref);
138
            entry->ref++;
139
            return entry;
140
        }
141
    }
142
    return NULL;
143
}
144

145
/**
146
 * Commit an L2 cache entry into the cache.  This is meant to be used as part of
147
 * the process to satisfy a cache miss.  A caller would allocate an entry which
148
 * is not actually in the L2 cache and then once the entry was valid and
149
 * present on disk, the entry can be committed into the cache.
150
 *
151
 * Since the cache is write-through, it's important that this function is not
152
 * called until the entry is present on disk and the L1 has been updated to
153
 * point to the entry.
154
 *
155
 * N.B. This function steals a reference to the l2_table from the caller so the
156
 * caller must obtain a new reference by issuing a call to
157
 * qed_find_l2_cache_entry().
158
 *
159
 * Called with table_lock held.
160
 */
161
void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table)
162
{
163
    CachedL2Table *entry;
164

165
    entry = qed_find_l2_cache_entry(l2_cache, l2_table->offset);
166
    if (entry) {
167
        qed_unref_l2_cache_entry(entry);
168
        qed_unref_l2_cache_entry(l2_table);
169
        return;
170
    }
171

172
    /* Evict an unused cache entry so we have space.  If all entries are in use
173
     * we can grow the cache temporarily and we try to shrink back down later.
174
     */
175
    if (l2_cache->n_entries >= MAX_L2_CACHE_SIZE) {
176
        CachedL2Table *next;
177
        QTAILQ_FOREACH_SAFE(entry, &l2_cache->entries, node, next) {
178
            if (entry->ref > 1) {
179
                continue;
180
            }
181

182
            QTAILQ_REMOVE(&l2_cache->entries, entry, node);
183
            l2_cache->n_entries--;
184
            qed_unref_l2_cache_entry(entry);
185

186
            /* Stop evicting when we've shrunk back to max size */
187
            if (l2_cache->n_entries < MAX_L2_CACHE_SIZE) {
188
                break;
189
            }
190
        }
191
    }
192

193
    l2_cache->n_entries++;
194
    QTAILQ_INSERT_TAIL(&l2_cache->entries, l2_table, node);
195
}
196

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.