pytorch

Форк
0
/
python.py 
1519 строк · 57.4 Кб
1
from __future__ import annotations
2

3
from dataclasses import dataclass
4
from typing import Sequence
5

6
from torchgen.api import cpp
7
from torchgen.api.types import Binding, CppSignature, CppSignatureGroup
8
from torchgen.gen import pythonify_default
9
from torchgen.model import (
10
    Argument,
11
    BaseTy,
12
    BaseType,
13
    FunctionSchema,
14
    ListType,
15
    NativeFunction,
16
    OptionalType,
17
    Return,
18
    Type,
19
    Variant,
20
)
21

22

23
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
24
#
25
#                           Data Models
26
#
27
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
28
#
29
# [Notes] python binding codegen
30
#
31
# The Python binding codegen produces code that takes the input list of
32
# PyObjects, finds the matching ATen C++ function using PythonArgParser,
33
# converts the PyObjects into C++ types and calls the ATen C++ function:
34
#
35
# +--------+  parsing   +------------------------+  binding   +-----------------------+
36
# | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch |
37
# +--------+            +------------------------+            +-----------------------+
38
#
39
# The following examples demonstrate the data models the Python binding
40
# codegen needs to deal with and the tasks it needs to accomplish. It
41
# helps understand the purpose of the new data types we introduced below.
42
#
43
#  - Function Schema (source of truth)
44
#
45
#      aten::empty.names(int[] size, *, Dimname[]? names,
46
#                        ScalarType? dtype=None, Layout? layout=None,
47
#                        Device? device=None, bool? pin_memory=None,
48
#                        MemoryFormat? memory_format=None) -> Tensor
49
#
50
#  - Python Signature
51
#
52
#    It's used to generate input schema string for PythonArgParser.
53
#    Note: TensorOptions fields are reordered and the additional
54
#    'requires_grad' field is added:
55
#
56
#      empty(IntArrayRef size, *, DimnameList? names,
57
#            MemoryFormat? memory_format=None, ScalarType dtype=None,
58
#            Layout layout=torch.strided, Device device=None,
59
#            bool pin_memory=False, bool requires_grad=False)
60
#
61
#  - C++ Signature
62
#
63
#    It's used to generate C++ lambda formals & dispatch call.
64
#    Note: the scattered TensorOptions fields are packed into 'options'.
65
#
66
#      auto dispatch_empty =
67
#          [](IntArrayRef size, std::optional<DimnameList> names,
68
#             const TensorOptions & options,
69
#             std::optional<MemoryFormat> memory_format) -> Tensor {
70
#          pybind11::gil_scoped_release no_gil;
71
#          return torch::empty(size, names, options, memory_format);
72
#      };
73
#
74
#  - Binding between Python Arguments and C++ Arguments
75
#
76
#    Given a set of Python Arguments in scope, we need produce the
77
#    binding expressions that translate the Python API into C++ API:
78
#
79
#            Python Args               Cpp Args       Binding Exprs
80
#     -----------------------------------------------------------------
81
#         0: size                      size           '_r.intlist(0)'
82
#         1: names                     names          'names' [special init]
83
#         2: memory_format -------+
84
#         3: dtype         -----+-|--> options        'options' [special packing]
85
#         4: layout            /  |
86
#         5: device           /   +--> memory_format  '_r.memoryformatOptional(2)'
87
#         6: pin_memory      /
88
#         7: requires_grad -+
89
#
90
#    So the full dispatch expression would look like:
91
#
92
#      dispatch_empty(_r.intlist(0), names, options,
93
#                     _r.memoryformatOptional(2))
94
#
95
#    Where does 'names' come from? It involves special local init:
96
#
97
#      auto __names = _r.toDimnameListOptional(1);
98
#      std::optional<DimnameList> names =
99
#          __names ? std::make_optional(DimnameList(__names.value()))
100
#                  : std::nullopt;
101
#
102
#    Where does 'options' come from? It involves special local init
103
#    for TensorOptions. Note that Python side has the additional
104
#    'requires_grad' field:
105
#
106
#      const auto options = TensorOptions()
107
#          .dtype(_r.scalartype(3))
108
#          .device(_r.device(5))
109
#          .layout(_r.layoutOptional(4))
110
#          .requires_grad(_r.toBool(7))
111
#          .pinned_memory(_r.toBool(6));
112
#
113
#    In some other cases one Python Argument can map to multiple C++
114
#    Arguments. For example:
115
#
116
#     aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False)
117
#       -> (Tensor values, Tensor indices)
118
#
119
#            Python Args               Cpp Args          Binding Exprs
120
#     ---------------------------------------------------------------------
121
#                               +----> max               'out[0]'
122
#                              /-----> max_values        'out[1]
123
#         0: input            /        self              '_r.tensor(0)'
124
#         1: dim             /         dim               '_r.dimname(1)'
125
#         2: keepdim        /          keepdim           '_r.toBool(2)'
126
#         3: out      -----+           [local init] out  '_r.tensorlist_n<2>(3)'
127
#
128
#    As demonstrated above, the binding can involve reordering,
129
#    packing, unpacking and special local inits.
130
#
131
#
132
#  Let's look at a concrete example:
133
#
134
#      static PythonArgParser parser({
135
#        "abs(Tensor input, *, Tensor out=None)",
136
#        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
137
#         ^
138
#         +--- Python Schema, represented by PythonSignature and PythonArgument
139
#
140
#      }, /*traceable=*/true);
141
#
142
#      ParsedArgs<2> parsed_args;
143
#      auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
144
#
145
#      ...
146
#
147
#      if (_r.isNone(1)) {
148
#          ~~~~~~~~~~~~  <--- Scattered PythonArgParser output (arg name = 'out')
149
#                             represented by PythonArgParserOutputExpr
150
#
151
#        // aten::abs(Tensor self) -> Tensor
152
#        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
153
#         ^
154
#         +--- NativeFunction schema, base version
155
#
156
#        auto dispatch_abs = [](const Tensor & self) -> Tensor {
157
#                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
158
#                             ^
159
#                             +--- dispatch_lambda_args / dispatch_lambda_return_str
160
#                                  generated from NativeFunction / CppSignature
161
#                                  (deprecated PythonSignature is special)
162
#                                  arguments are represented by DispatchLambdaArgument
163
#
164
#          pybind11::gil_scoped_release no_gil;
165
#          return self.abs();
166
#                 ~~~~~~~~~~~  <--- cpp_dispatch_target / cpp_dispatch_exprs
167
#                                   generated from NativeFunction / CppSignature
168
#        };
169
#        return wrap(dispatch_abs(_r.tensor(0)));
170
#                                 ~~~~~~~~~~~~~
171
#                                  ^
172
#                                  +--- dispatch_lambda_exprs
173
#                                       binding PythonArgParserOutputExpr (python args)
174
#                                       and DispatchLambdaArgument (c++ args)
175
#
176
#      } else {
177
#        // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
178
#        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
179
#         ^
180
#         +--- NativeFunction schema, out-variant
181
#
182
#        auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor {
183
#          pybind11::gil_scoped_release no_gil;
184
#          return at::abs_out(out, self);
185
#        };
186
#        return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0)));
187
#      }
188
#
189
#
190
# [Notes] python interface codegen
191
# The python dataclasses below are used used to generate both python binding code
192
# and pyi type hint signatures.
193
# In theory these two should look very similar, but there are number of differences
194
# in how pyi signatures vs. python_arg_parser signatures are generated.
195
# These differences have been encapsulated in signature_str() vs. signature_str_pyi()
196
# to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments.
197
# For examples, only pyi signatures include return types.
198

199

200
@dataclass(frozen=True)
201
class PythonReturns:
202
    returns: tuple[Return, ...]
203

204

205
@dataclass(frozen=True)
206
class PythonArgument:
207
    name: str
208
    type: Type
209
    default: str | None
210

211
    # Used to generate the default init expr for some PythonArgParser outputs, e.g.:
212
    #
213
    #   _r.layoutWithDefault(3, layout_from_backend(self.options().backend())))
214
    #                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215
    #                            ^
216
    #                            +--- default_init str
217
    default_init: str | None
218

219
    # Compute argument formal for python argument parsing.
220
    # Needs to be consistent with torch/csrc/utils/python_arg_parser.h.
221
    def argument_str(self, *, method: bool = False, symint: bool = True) -> str:
222
        type_str = (
223
            argument_type_str(self.type, symint=symint)
224
            .replace("const ", "")
225
            .replace(" &", "")
226
        )
227

228
        name = self.name
229
        # s/self/input/ outside method bindings
230
        # [old codegen] TODO: remove this? doesn't rename in codegen, it's just
231
        # for the parse string
232
        if name == "self" and type_str in ["Tensor", "Number"] and not method:
233
            name = "input"
234

235
        # add default
236
        if self.default is not None:
237
            default = {
238
                "nullptr": "None",
239
                "::std::nullopt": "None",
240
                "std::nullopt": "None",
241
                "{}": "None",
242
            }.get(self.default, self.default)
243
            return f"{type_str} {name}={default}"
244
        else:
245
            return f"{type_str} {name}"
246

247
    def argument_str_pyi(
248
        self, *, method: bool = False, deprecated: bool = False
249
    ) -> str:
250
        type_str = argument_type_str_pyi(self.type)
251

252
        name = self.name
253
        # s/self/input/ outside method bindings
254
        # [old codegen] TODO: remove this? doesn't rename in codegen, it's just
255
        # for the parse string
256
        if name == "self" and type_str == "Tensor" and not method and not deprecated:
257
            name = "input"
258

259
        if name == "from":  # from is a Python keyword...
260
            name += "_"
261

262
        # pyi merges the _out and functional variants into the same signature, with an optional out arg
263
        if name == "out" and type_str == "Tensor" and not deprecated:
264
            type_str = "Optional[" + type_str + "]"
265

266
        # pyi deprecated signatures don't get defaults for their out arg
267
        treat_as_no_default = (
268
            deprecated
269
            and isinstance(self, PythonOutArgument)
270
            and self.default == "None"
271
        )
272

273
        # add default
274
        if self.default is not None and not treat_as_no_default:
275
            if (
276
                isinstance(self.type, ListType)
277
                and self.type.elem == BaseType(BaseTy.int)
278
                and self.default.startswith("{")
279
                and self.default.endswith("}")
280
            ):
281
                default = (
282
                    "(" + ", ".join(map(str.strip, self.default[1:-1].split(","))) + ")"
283
                )
284
            else:
285
                default = {
286
                    "nullptr": "None",
287
                    "::std::nullopt": "None",
288
                    "std::nullopt": "None",
289
                    "{}": "None",
290
                    "c10::MemoryFormat::Contiguous": "contiguous_format",
291
                    "QScheme::PER_TENSOR_AFFINE": "per_tensor_affine",
292
                }.get(self.default, self.default)
293
            return f"{name}: {type_str} = {default}"
294
        else:
295
            return f"{name}: {type_str}"
296

297

298
@dataclass(frozen=True)
299
class PythonOutArgument(PythonArgument):
300
    # In Python signature multiple output fields are packed into one 'out' argument.
301
    # When binding to C++, it's first binded to a local 'out' variable:
302
    #   'auto out = _r.tensorlist_n<2>(2);',
303
    # then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc.
304
    # TODO: maybe don't need keep scattered out fields for python signature?
305
    outputs: tuple[PythonArgument, ...]
306

307
    @staticmethod
308
    def from_outputs(outputs: tuple[PythonArgument, ...]) -> PythonOutArgument | None:
309
        if not outputs:
310
            return None
311

312
        size = len(outputs)
313
        if size == 1:
314
            return PythonOutArgument(
315
                name=outputs[0].name,
316
                type=outputs[0].type,
317
                default="None",
318
                default_init=None,
319
                outputs=outputs,
320
            )
321
        elif size > 1:
322
            if any(not a.type.is_tensor_like() for a in outputs):
323
                raise RuntimeError(f"Unsupported output type: {outputs}")
324
            return PythonOutArgument(
325
                name="out",
326
                # TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None?
327
                type=ListType(BaseType(BaseTy.Tensor), size),
328
                default="None",
329
                default_init=None,
330
                outputs=outputs,
331
            )
332
        raise AssertionError(r"Unexpected PythonOutArgument size")
333

334

335
@dataclass(frozen=True)
336
class PythonSignature:
337
    # Base operator name, without inplace/outplace suffix.
338
    name: str
339

340
    # Positional arguments.
341
    # TODO: create a dedicated SelfArgument type for 'self'?
342
    input_args: tuple[PythonArgument, ...]
343

344
    # Keyword arguments excluding the 'out' argument and scattered kwargs belonging
345
    # to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc).
346
    input_kwargs: tuple[PythonArgument, ...]
347

348
    output_args: PythonOutArgument | None
349

350
    # Return types, which are only used by pyi
351
    returns: PythonReturns
352

353
    # These are scattered kwargs arguments belonging to TensorOptions.
354
    # When binding to C++, they are packed into a TensorOptions object 'options'.
355
    # It's possible that the C++ signature doesn't take TensorOptions object (e.g.
356
    # for out variant), in which case they will be used as scattered fields without
357
    # being packed into 'options'.
358
    # TODO: maybe create a PythonTensorOptionsArgument?
359
    tensor_options_args: tuple[PythonArgument, ...]
360

361
    # method or function signature?
362
    method: bool
363

364
    @property
365
    def deprecated(self) -> bool:
366
        return False
367

368
    def arguments(
369
        self, *, skip_outputs: bool = False, skip_tensor_options: bool = False
370
    ) -> tuple[PythonArgument | PythonOutArgument, ...]:
371
        result: list[PythonArgument | PythonOutArgument] = []
372
        result.extend(self.input_args)
373
        result.extend(self.input_kwargs)
374
        if self.output_args is not None and not skip_outputs:
375
            result.append(self.output_args)
376
        if not skip_tensor_options:
377
            result.extend(self.tensor_options_args)
378
        return tuple(result)
379

380
    def arguments_count(self) -> int:
381
        return len(self.arguments())
382

383
    def output_idx(self) -> int:
384
        return len(self.input_args) + len(self.input_kwargs)
385

386
    # [old codegen] Compute the Python function signature for argument parsing,
387
    # as specified in torch/csrc/utils/python_arg_parser.h.  WARNING:
388
    # this is NOT the same type signature as specified by PEP 484
389
    # as understood by mypy; our format was independently developed
390
    # and has some quirks to make it more suitable specifically
391
    # for error parsing.
392
    #
393
    # For a translation to mypy-valid type signatures, see
394
    # signature_str_pyi().
395
    def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
396
        args = self.arguments(skip_outputs=skip_outputs)
397
        schema_formals: list[str] = [
398
            a.argument_str(method=self.method, symint=symint) for a in args
399
        ]
400
        positional_argc = len(self.input_args)
401
        if len(schema_formals) > positional_argc:
402
            schema_formals.insert(positional_argc, "*")
403

404
        return f'{self.name}({", ".join(schema_formals)})'
405

406
    def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
407
        args = self.arguments(skip_outputs=skip_outputs)
408
        schema_formals: list[str] = [
409
            a.argument_str_pyi(method=self.method) for a in args
410
        ]
411
        positional_argc = len(self.input_args)
412
        if len(schema_formals) > positional_argc:
413
            schema_formals.insert(positional_argc, "*")
414

415
        # only pyi signatures include returns
416
        returns_str = returns_str_pyi(self)
417
        # pyi also includes self (with no typing/defaults) for methods
418
        if self.method:
419
            schema_formals.insert(0, "self")
420
        return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
421

422
    def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> str | None:
423
        # only pyi uses vararg signatures
424
        args = self.arguments(skip_outputs=skip_outputs)
425
        schema_formals: list[str] = [
426
            a.argument_str_pyi(method=self.method) for a in args
427
        ]
428
        # vararg only applies to pyi signatures. vararg variants are not generated for all signatures
429
        num_args = self.arguments_count()
430
        num_positionalargs = len(self.input_args)
431

432
        have_vararg_version = False
433
        if num_args > 0:
434
            vararg_type = args[0].type
435
            if (
436
                isinstance(vararg_type, ListType)
437
                and str(vararg_type.elem) in ["int", "SymInt"]
438
                and num_positionalargs == 1
439
            ):
440
                have_vararg_version = True
441

442
        if not have_vararg_version:
443
            return None
444

445
        # Below are the major changes in vararg vs. regular pyi signatures
446
        # vararg signatures also omit the asterix
447
        assert isinstance(vararg_type, ListType)
448
        schema_formals[0] = (
449
            "*" + args[0].name + ": " + argument_type_str_pyi(vararg_type.elem)
450
        )
451

452
        returns_str = returns_str_pyi(self)
453
        # pyi also includes self (with no typing/defaults) for methods
454
        if self.method:
455
            schema_formals.insert(0, "self")
456
        return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
457

458

459
# The deprecated python signature involves some special logic, so create a
460
# dedicated data model to store these extra properties.
461
@dataclass(frozen=True)
462
class PythonSignatureDeprecated(PythonSignature):
463
    # Schema for the deprecated function
464
    deprecated_schema: FunctionSchema
465

466
    # The deprecated signature might miss some arguments that the corresponding
467
    # C++ signature expects. We need store the constant default values to pass in.
468
    # For example:
469
    #   [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2)
470
    #   [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
471
    #   [func call]: self.addmm(mat1, mat2, beta, 1)
472
    # We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case.
473
    deprecated_args_exprs: tuple[str, ...]
474

475
    @property
476
    def deprecated(self) -> bool:
477
        return True
478

479
    def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
480
        return (
481
            PythonSignature.signature_str(
482
                self, skip_outputs=skip_outputs, symint=symint
483
            )
484
            + "|deprecated"
485
        )
486

487
    def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
488
        args = self.arguments(skip_outputs=skip_outputs)
489
        schema_formals: list[str] = [
490
            a.argument_str_pyi(method=self.method, deprecated=True) for a in args
491
        ]
492
        positional_argc = len(self.input_args)
493
        if len(schema_formals) > positional_argc:
494
            schema_formals.insert(positional_argc, "*")
495

496
        returns_str = returns_str_pyi(self)
497
        return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
498

499
    def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> str | None:
500
        # the codegen doesn't include vararg variants for deprecated signatures
501
        return None
502

503

504
# This struct is used to hold the PythonSignature and its corresponding
505
# NativeFunction BEFORE grouping base and out-variant functions.
506
# Why not store NativeFunction in PythonSignature or construct PythonSignature
507
# from NativeFunction? Because they are not 1-1 mapped.
508
# One native function could have both deprecated and non-deprecated python
509
# signatures - NativeFunction doesn't contain information to construct the
510
# deprecated python signature.
511
# One python signature is used to handle both the base and the out-variant
512
# function - see 'PythonSignatureGroup'.
513
@dataclass(frozen=True)
514
class PythonSignatureNativeFunctionPair:
515
    signature: PythonSignature
516
    function: NativeFunction
517

518

519
# We merge pairs of functions with signatures that are equivalent mod
520
# output arguments, and use a single entry in the python_arg_parser sig
521
# list for both (output arguments become optional).
522
@dataclass(frozen=True)
523
class PythonSignatureGroup:
524
    # The signature used for Python argument parsing. The outplace signature
525
    # is preferred if exists, because it can be used to parse inputs for both
526
    # the out-place variant and the base version (with output omitted).
527
    signature: PythonSignature
528

529
    # The regular ATen declaration (e.g. conv2d)
530
    base: NativeFunction
531

532
    # The out variant (e.g. conv2d_out)
533
    outplace: NativeFunction | None
534

535
    @classmethod
536
    def from_pairs(
537
        cls,
538
        functional: PythonSignatureNativeFunctionPair,
539
        out: PythonSignatureNativeFunctionPair | None,
540
    ) -> PythonSignatureGroup:
541
        if out is None:
542
            return PythonSignatureGroup(
543
                signature=functional.signature,
544
                base=functional.function,
545
                outplace=None,
546
            )
547

548
        # prefer the signature with optional out=... arguments because it's the
549
        # superset that can be used to parse input for both base and outplace.
550
        signature_kwargs = out.signature.__dict__.copy()
551

552
        # Out overloads in C++ don't have TensorOptions arguments,
553
        # so take these from the functional variant
554
        signature_kwargs[
555
            "tensor_options_args"
556
        ] = functional.signature.tensor_options_args
557

558
        return PythonSignatureGroup(
559
            signature=type(out.signature)(**signature_kwargs),
560
            base=functional.function,
561
            outplace=out.function,
562
        )
563

564

565
# C++ function dispatch is wrapped in a lambda function. The lambda function
566
# has almost the same signature as the C++ function, only with some small
567
# variants - see details below.
568
# This data model is used to represent arguments of the lambda function
569
# signature.
570
@dataclass(frozen=True)
571
class DispatchLambdaArgument:
572
    name: str
573
    type_str: str
574
    is_out_arg: bool
575

576

577
# To pass PyObjects arguments to C++ function (via the lambda wrapper),
578
# we need first convert PyObjects into simple C++ objects. This work
579
# is done by PythonArgParser.
580
# This data model is used to represent the output of PythonArgParser.
581
# It has 1-1 mapping with PythonArgument in PythonSignature.
582
@dataclass(frozen=True)
583
class PythonArgParserOutputExpr:
584
    # argument name
585
    name: str
586

587
    # RHS expression to reference PythonArgParser output.
588
    expr: str
589

590
    # In some special cases we need create different expr, e.g.:
591
    # '_r.isNone(1)' instead of '_r.tensor(1)'.
592
    index: int
593

594
    # The python argument it maps to.
595
    argument: PythonArgument
596

597
    @property
598
    def is_none_expr(self) -> str:
599
        return f"_r.isNone({self.index})"
600

601

602
# To pass PythonArgParser output to the lambda wrapper, we need bind
603
# PythonArgParserOutputExpr to DispatchLambdaArgument.
604
# They are not always 1-1 mapped, e.g. scattered TensorOptions fields
605
# need be packed into a TensorOptions object, which is the argument
606
# that the lambda function wrapper takes.
607
@dataclass(frozen=True)
608
class DispatchLambdaArgumentExprs:
609
    # The exprs that provide the binding for lambda arguments, e.g.:
610
    #
611
    #   'self' -> '_r.tensor(0)'
612
    #   'min' -> 'out[0]' / 'min_indices' -> 'out[1]'
613
    #   'options' -> 'options'
614
    #
615
    # It has 1-1 mapping with DispatchLambdaArgument.
616
    exprs: Sequence[str]
617

618
    # Special local inits, which might introduce new variables that
619
    # the 'exprs' above reference, e.g.:
620
    #
621
    #   'auto out = _r.tensorlist_n<2>(2);'
622
    #
623
    inits: Sequence[str]
624

625

626
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
627
#
628
#                          Helper Functions
629
#
630
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
631

632

633
def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature:
634
    return CppSignatureGroup.from_native_function(f, method=method).signature
635

636

637
def has_tensor_options(f: NativeFunction) -> bool:
638
    return f.func.arguments.tensor_options is not None
639

640

641
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
642
#
643
#                          Python Signature
644
#
645
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
646

647

648
# 'simple_type' was introduced by the old codegen, which is slightly
649
# different from the python schema type, e.g.: doesn't have '?' suffix
650
# for optional Tensor/TensorList; doesn't have '[size]' suffix for list type.
651
def argument_type_str(
652
    t: Type, *, simple_type: bool = False, symint: bool = True
653
) -> str:
654
    if isinstance(t, BaseType):
655
        if t.name == BaseTy.Tensor:
656
            return "Tensor"
657
        elif t.name == BaseTy.int:
658
            return "int64_t"
659
        elif t.name == BaseTy.float:
660
            return "double"
661
        elif t.name == BaseTy.str:
662
            return "c10::string_view"
663
        elif t.name in [
664
            BaseTy.bool,
665
            BaseTy.QScheme,
666
            BaseTy.Scalar,
667
            BaseTy.ScalarType,
668
            BaseTy.Generator,
669
            BaseTy.Storage,
670
            BaseTy.Layout,
671
            BaseTy.Device,
672
            BaseTy.DeviceIndex,
673
            BaseTy.MemoryFormat,
674
            BaseTy.Dimname,
675
            BaseTy.Stream,
676
            BaseTy.ConstQuantizerPtr,
677
            BaseTy.SymInt,
678
        ]:
679
            # These python schema type names line up with their function schema names
680
            return t.name.name
681

682
    elif isinstance(t, OptionalType):
683
        if str(t.elem) == "Tensor":
684
            # Is it desired to keep '?' for simple_type with new style dispatcher?
685
            return "Tensor?"
686
        elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
687
        return f"{elem}?"
688
    elif isinstance(t, ListType):
689
        size = t.size if not simple_type else None
690
        if str(t.elem) == "bool":
691
            assert t.size is not None
692
            return f"::std::array<bool,{t.size}>"
693
        elif str(t.elem) == "int":
694
            return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
695
        elif str(t.elem) == "SymInt":
696
            if symint:
697
                return (
698
                    f"SymIntArrayRef[{size}]" if size is not None else "SymIntArrayRef"
699
                )
700
            else:
701
                return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
702
        elif str(t.elem) == "Tensor":
703
            return f"TensorList[{size}]" if size is not None else "TensorList"
704
        elif str(t.elem) == "Scalar":
705
            return f"ScalarList[{size}]" if size is not None else "ScalarList"
706
        elif str(t.elem) == "Tensor?":
707
            if simple_type:
708
                return "c10::List<::std::optional<Tensor>>"
709
            else:
710
                return "const c10::List<::std::optional<Tensor>> &"
711
        elif str(t.elem) == "Dimname":
712
            return f"DimnameList[{size}]" if size is not None else "DimnameList"
713
        elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
714
        return f"ArrayRef<{elem}>"
715

716
    raise RuntimeError(f"unrecognized type {repr(t)}")
717

718

719
def argument_type_size(t: Type) -> int | None:
720
    l = t.is_list_like()
721
    if l is not None and str(l.elem) != "bool":
722
        return l.size
723
    else:
724
        return None
725

726

727
def argument(a: Argument) -> PythonArgument:
728
    return PythonArgument(
729
        name=a.name,
730
        type=a.type,
731
        # TODO: directly translate a.default to python default
732
        default=(
733
            str(pythonify_default(cpp.default_expr(a.default, a.type, symint=False)))
734
            if a.default is not None
735
            else None
736
        ),
737
        default_init=None,
738
    )
739

740

741
# Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen
742
def signature(
743
    f: NativeFunction, *, method: bool = False, pyi: bool = False
744
) -> PythonSignature:
745
    return signature_from_schema(
746
        f.func, category_override=f.category_override, method=method, pyi=pyi
747
    )
748

749

750
def signature_from_schema(
751
    func: FunctionSchema,
752
    *,
753
    category_override: str | None,
754
    method: bool = False,
755
    pyi: bool = False,
756
) -> PythonSignature:
757
    args: list[Argument] = []
758
    args.extend(func.arguments.pre_self_positional)
759
    # Skip SelfArgument if this is method.
760
    if not method and func.arguments.self_arg is not None:
761
        args.append(func.arguments.self_arg.argument)
762
    args.extend(func.arguments.post_self_positional)
763
    args.extend(func.arguments.pre_tensor_options_kwarg_only)
764
    # Skip TensorOptionsArguments. Python side TensorOptions
765
    # arguments are created based on different rules - see below.
766
    args.extend(func.arguments.post_tensor_options_kwarg_only)
767
    args.extend(func.arguments.out)
768

769
    input_arg_set = {a.name for a in func.arguments.flat_positional}
770
    kwarg_only_set = {a.name for a in func.arguments.flat_kwarg_only}
771
    out_arg_set = {a.name for a in func.arguments.out}
772

773
    input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args)))
774
    input_kwargs = tuple(
775
        map(argument, filter(lambda a: a.name in kwarg_only_set, args))
776
    )
777
    outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args)))
778

779
    # Reintroduce the scattered fields of TensorOptions for Python.
780
    # Compared to the cpp counterpart, the python arguments have new property
781
    # (default_init) and a new argument 'requires_grad', which require some
782
    # special handlings.
783
    # [old codegen] TODO: because these aren't guaranteed to be 100% faithful
784
    # to the original versions in the yaml, this recreation is a potential
785
    # source of drift between eager and JIT. Pull this logic out to a shared place.
786

787
    has_tensor_input_arg = any(
788
        a.type.is_tensor_like() for a in func.arguments.flat_non_out
789
    )
790
    if any(a.name == "requires_grad" for a in func.schema_order_arguments()):
791
        raise ValueError(
792
            "argument named requires_grad is reserved, should not explicitly add it in the schema"
793
        )
794

795
    # [old codegen] this probably won't work if one of the returns is not a tensor,
796
    # but it will produce a compile-time error that is obvious.
797
    has_tensor_return = any(r.type.is_tensor_like() for r in func.returns)
798

799
    name: str = cpp.name(func)
800
    is_factory_function = category_override == "factory" or (
801
        has_tensor_return and not has_tensor_input_arg
802
    )
803
    is_like_or_new_function = (
804
        category_override in ("new", "like")
805
        or name.startswith("new_")
806
        or name.endswith("_like")
807
    )
808
    is_dummy_function = category_override == "dummy"
809

810
    tensor_options_args: list[PythonArgument] = []
811
    if (is_factory_function or is_like_or_new_function) and not is_dummy_function:
812

813
        def topt_default_init(name: str) -> str | None:
814
            topt_args = func.arguments.tensor_options
815
            if topt_args is None:
816
                return None
817
            a = getattr(topt_args, name)
818
            if a.default is None or a.default == "None":
819
                return None
820
            return cpp.default_expr(a.default, a.type, symint=False)
821

822
        tensor_options_args.append(
823
            PythonArgument(
824
                name="dtype",
825
                type=OptionalType(BaseType(BaseTy.ScalarType)),
826
                default="None",
827
                default_init=(
828
                    None if is_like_or_new_function else topt_default_init("dtype")
829
                ),
830
            )
831
        )
832
        tensor_options_args.append(
833
            PythonArgument(
834
                name="layout",
835
                type=OptionalType(BaseType(BaseTy.Layout)),
836
                default="None",
837
                default_init=(
838
                    None if is_like_or_new_function else topt_default_init("layout")
839
                ),
840
            )
841
        )
842
        tensor_options_args.append(
843
            PythonArgument(
844
                name="device",
845
                type=OptionalType(BaseType(BaseTy.Device)),
846
                default="None",
847
                default_init=(
848
                    None
849
                    if is_like_or_new_function
850
                    else (
851
                        topt_default_init("device")
852
                        or "torch::tensors::get_default_device()"
853
                    )
854
                ),
855
            )
856
        )
857
        tensor_options_args.append(
858
            PythonArgument(
859
                name="pin_memory",
860
                type=OptionalType(BaseType(BaseTy.bool)),
861
                default="False",
862
                default_init=None,
863
            )
864
        )
865
        tensor_options_args.append(
866
            PythonArgument(
867
                name="requires_grad",
868
                type=OptionalType(BaseType(BaseTy.bool)),
869
                default="False",
870
                default_init=None,
871
            )
872
        )
873

874
    returns = PythonReturns(returns=func.returns)
875

876
    return PythonSignature(
877
        name=str(func.name.name),
878
        input_args=input_args,
879
        input_kwargs=input_kwargs,
880
        output_args=PythonOutArgument.from_outputs(outputs),
881
        tensor_options_args=tuple(tensor_options_args),
882
        returns=returns,
883
        method=method,
884
    )
885

886

887
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
888
#
889
#                          Python Interface
890
#
891
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
892

893

894
def structseq_fieldnames(returns: tuple[Return, ...]) -> list[str]:
895
    if len(returns) <= 1 or all(r.name is None for r in returns):
896
        return []
897
    else:
898
        if any(r.name is None for r in returns):
899
            # When building on Windows, `PyStructSequence_UnnamedField` could not be
900
            # resolved by the linker for some reason, which cause error in building:
901
            #
902
            # python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol
903
            # PyStructSequence_UnnamedField
904
            #
905
            # Thus, at this point in time, we do not support unnamed
906
            # fields in structseq; you must either name all fields,
907
            # or none of them.
908
            raise ValueError("Unnamed field is not supported by codegen")
909

910
        return [str(r.name) for r in returns]
911

912

913
def argument_type_str_pyi(t: Type) -> str:
914
    add_optional = False
915
    if isinstance(t, OptionalType):
916
        t = t.elem
917
        add_optional = True
918

919
    if isinstance(t, BaseType):
920
        if t.name in [BaseTy.int, BaseTy.DeviceIndex]:
921
            ret = "_int"
922
        if t.name == BaseTy.SymInt:
923
            ret = "Union[_int, SymInt]"
924
        elif t.name == BaseTy.float:
925
            ret = "_float"
926
        elif t.name == BaseTy.str:
927
            ret = "str"
928
        elif t.name == BaseTy.Scalar:
929
            ret = "Union[Number, _complex]"
930
        elif t.name == BaseTy.ScalarType:
931
            ret = "_dtype"
932
        elif t.name == BaseTy.bool:
933
            ret = "_bool"
934
        elif t.name == BaseTy.QScheme:
935
            ret = "_qscheme"
936
        elif t.name == BaseTy.Layout:
937
            ret = "_layout"
938
        elif t.name == BaseTy.Device:
939
            ret = "Optional[DeviceLikeType]"
940
        elif t.name == BaseTy.MemoryFormat:
941
            ret = "memory_format"
942
        elif t.name == BaseTy.Dimname:
943
            ret = "Union[str, ellipsis, None]"
944
        elif t.name == BaseTy.Storage:
945
            ret = "Union[Storage, UntypedStorage]"
946
        elif t.name in [BaseTy.Tensor, BaseTy.Generator, BaseTy.Stream]:
947
            # These python schema type names line up with their function schema names
948
            ret = t.name.name
949

950
    elif isinstance(t, ListType):
951
        if str(t.elem) == "int":
952
            ret = "Union[_int, _size]" if t.size is not None else "_size"
953
        elif t.is_tensor_like():
954
            # TODO: this doesn't seem right...
955
            # Tensor?[] currently translates to Optional[Union[Tuple[Tensor, ...], List[Tensor]]]
956
            # It should probably translate to   Union[Tuple[Optional[Tensor], ...], List[Optional[Tensor]]]
957
            if isinstance(t.elem, OptionalType):
958
                add_optional = True
959
            ret = (
960
                "Union[Tensor, Tuple[Tensor, ...], List[Tensor]]"
961
                if t.size is not None
962
                else "Union[Tuple[Tensor, ...], List[Tensor]]"
963
            )
964
        elif str(t.elem) == "float":
965
            ret = "Sequence[_float]"
966
        elif str(t.elem) == "SymInt" and t.size is not None:
967
            elem = argument_type_str_pyi(t.elem)
968
            ret = f"Union[{elem}, Sequence[{elem}]]"
969
        else:
970
            elem = argument_type_str_pyi(t.elem)
971
            ret = f"Sequence[{elem}]"
972

973
    else:
974
        raise RuntimeError(f"unrecognized type {repr(t)}")
975

976
    if add_optional:
977
        ret = "Optional[" + ret + "]"
978

979
    return ret
980

981

982
def return_type_str_pyi(t: Type) -> str:
983
    # Where arguments are open to accepting Union, return types should return
984
    # concrete types
985

986
    if isinstance(t, OptionalType):
987
        inner = return_type_str_pyi(t.elem)
988
        return f"Optional[{inner}]"
989

990
    if isinstance(t, BaseType):
991
        if t.name == BaseTy.Device:
992
            return "_device"
993
        elif t.name == BaseTy.Dimname:
994
            ret = "Optional[str]"
995
        else:
996
            return argument_type_str_pyi(t)
997

998
    if isinstance(t, ListType):
999
        inner = return_type_str_pyi(t.elem)
1000
        return f"Tuple[{inner}, ...]"
1001

1002
    return argument_type_str_pyi(t)
1003

1004

1005
def returns_structseq_pyi(signature: PythonSignature) -> tuple[str, str] | None:
1006
    python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
1007
    structseq_name = signature.name
1008
    field_names = structseq_fieldnames(signature.returns.returns)
1009
    if field_names:
1010
        # These types are structseq objects which act like named NamedTuples, but
1011
        # the constructor acts like the constructor of tuple. Using typing.NamedTuple
1012
        # does not allow us to override __init__.
1013
        seq_type = f"Tuple[{', '.join(python_returns)}]"
1014
        structseq_def_lines = [
1015
            f"class {structseq_name}({seq_type}):",
1016
        ]
1017
        for name, typ in zip(field_names, python_returns):
1018
            structseq_def_lines.extend(
1019
                [
1020
                    "    @property",
1021
                    f"    def {name}(self) -> {typ}: ...",
1022
                ]
1023
            )
1024
        structseq_def_lines.extend(
1025
            [
1026
                f"    def __new__(cls, sequence: {seq_type}): ...",
1027
                f"    n_fields: _int = {len(field_names)}",
1028
                f"    n_sequeunce_fields: _int = {len(field_names)}",
1029
                "    n_unnamed_fields: _int = 0",
1030
                "    def __init_subclass__(cls) -> NoReturn: ...  # prohibit subclassing",
1031
                "",  # add an extra newline
1032
            ]
1033
        )
1034
        structseq_def = "\n".join(structseq_def_lines)
1035
        # Example:
1036
        # structseq_def = (
1037
        #     "class max(Tuple[Tensor, Tensor]):\n"
1038
        #     "    @property\n"
1039
        #     "    def values(self) -> Tensor: ...\n"
1040
        #     "    @property\n"
1041
        #     "    def indices(self) -> Tensor: ...\n"
1042
        #     "    def __new__(cls, sequence: Tuple[Tensor, Tensor]): ...\n"
1043
        #     "    n_fields: _int = 2",
1044
        #     "    n_sequeunce_fields: _int = 2",
1045
        #     "    n_unnamed_fields: _int = 0",
1046
        #     "    def __init_subclass__(cls) -> NoReturn: ...  # prohibit subclassing",
1047
        # )
1048
        return structseq_name, structseq_def
1049
    return None
1050

1051

1052
def returns_str_pyi(signature: PythonSignature) -> str:
1053
    field_names = structseq_fieldnames(signature.returns.returns)
1054
    if field_names:
1055
        return f"torch.return_types.{signature.name}"
1056

1057
    python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
1058
    if len(python_returns) > 1:
1059
        return "Tuple[" + ", ".join(python_returns) + "]"
1060
    if len(python_returns) == 1:
1061
        return python_returns[0]
1062
    return "None"
1063

1064

1065
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
1066
#
1067
#                        C++ Function Dispatch
1068
#
1069
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
1070
# This section provides APIs to generate the code that does C++ function
1071
# dispatch. The C++ function call is wrapped by a lambda function.
1072
# For example:
1073
#
1074
#    // aten::selu_(Tensor(a!) self) -> Tensor(a!)
1075
#    auto dispatch_selu_ = [](Tensor self) -> Tensor {
1076
#      pybind11::gil_scoped_release no_gil;
1077
#      return at::selu_(self);
1078
#    };
1079
#
1080
# The lambda function's signature follows the C++ signature in common
1081
# cases, e.g.:
1082
#
1083
#   // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
1084
#   [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
1085
#
1086
# For out variant the 'out' argument's type is changed from 'Tensor &'
1087
# to 'Tensor'. It's because when calling the lambda it passes in the
1088
# PythonArgParser output '_r.tensor(3)', which is stack allocated object
1089
# and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'.
1090
#
1091
#   // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
1092
#   [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
1093
#
1094
# For multi-output case it can keep using reference type because the
1095
# PythonArgParser output has been unpacked to local variables, e.g.:
1096
#
1097
#   // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *,
1098
#   //     Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
1099
#   [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor>
1100
#
1101
# For deprecated python signature, it should follow deprecated python arg order.
1102
# TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary?
1103

1104

1105
def dispatch_lambda_args(
1106
    ps: PythonSignature, f: NativeFunction, symint: bool = True
1107
) -> tuple[DispatchLambdaArgument, ...]:
1108
    if isinstance(ps, PythonSignatureDeprecated):
1109
        schema = ps.deprecated_schema
1110
    else:
1111
        schema = f.func
1112

1113
    # Start with cpp arguments - dispatch lambda signature always include 'self'
1114
    cpp_args = cpp.arguments(
1115
        arguments=schema.arguments,
1116
        faithful=False,
1117
        symint=symint,
1118
        method=False,
1119
        cpp_no_default_args=f.cpp_no_default_args,
1120
    )
1121
    out_args: set[str] = {a.name for a in schema.arguments.out}
1122

1123
    # Convert from cpp argument to lambda argument
1124
    def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument:
1125
        type_str = cpp_arg.type
1126
        is_out_arg = cpp_arg.name in out_args
1127
        if ps.method and cpp_arg.name == "self":
1128
            # For method's 'self', we can use 'const Tensor &' and simply ignore mutability!
1129
            type_str = "const at::Tensor &"
1130
        else:
1131
            # For other cases we need prevent dangling refs to temps (unless it's
1132
            # unpacked scattered output)
1133
            # The reason is explained in the comments above and in 'dispatch_lambda_return_str()'.
1134
            # TODO: avoid this special handling?
1135
            ensure_temp_safe = len(out_args) <= 1 or not is_out_arg
1136
            if ensure_temp_safe:
1137
                type_str = {
1138
                    "at::Tensor &": "at::Tensor",
1139
                }.get(type_str, type_str)
1140
        return DispatchLambdaArgument(
1141
            name=cpp_arg.name,
1142
            type_str=type_str,
1143
            is_out_arg=is_out_arg,
1144
        )
1145

1146
    return tuple(map(dispatch_lambda_arg, cpp_args))
1147

1148

1149
# [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean
1150
# it's enough to just extend the list here. Before you do this, make sure
1151
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
1152
SUPPORTED_RETURN_TYPES = {
1153
    "at::Tensor",
1154
    "::std::tuple<at::Tensor,at::Tensor>",
1155
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor>",
1156
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
1157
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
1158
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
1159
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,int64_t>",
1160
    "::std::tuple<at::Tensor,at::Tensor,double,int64_t>",
1161
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t>",
1162
    "::std::tuple<at::Tensor,at::Tensor,double,at::Tensor,int64_t>",
1163
    "::std::tuple<double,int64_t>",
1164
    "::std::tuple<at::Tensor,::std::vector<at::Tensor>>",
1165
    "::std::vector<at::Tensor>",
1166
    # Needed for flash attention forw/backward
1167
    "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor>",
1168
    "at::Scalar",
1169
    "bool",
1170
    "int64_t",
1171
    "void*",
1172
    "void",
1173
    "at::QScheme",
1174
    "double",
1175
    "at::IntArrayRef",
1176
    "at::ScalarType",
1177
    "at::Stream",
1178
}
1179

1180

1181
def dispatch_lambda_return_str(f: NativeFunction) -> str:
1182
    # [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &')
1183
    # because the dispatch lambdas take mutable arguments *by value*, not
1184
    # by reference. If you then return a reference to such an argument, you
1185
    # will now have a pointer to a dangling stack entry. Not good.
1186
    #
1187
    # You want:
1188
    #
1189
    #   auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); };
1190
    #                                            ^^^^^^
1191
    #
1192
    # *not*
1193
    #
1194
    #   auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); };
1195
    #                                            ^^^^^^^
1196
    #
1197
    # (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing
1198
    # codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a
1199
    # mutable reference to temporary.  Maybe we could assign it to a
1200
    # variable itself.)
1201
    returns_without_annotation = tuple(
1202
        Return(r.name, r.type, None) for r in f.func.returns
1203
    )
1204
    return_str = cpp.returns_type(returns_without_annotation, symint=True).cpp_type()
1205
    if return_str not in SUPPORTED_RETURN_TYPES:
1206
        raise RuntimeError(f"{f.func.name} returns unsupported type {return_str}")
1207
    return return_str
1208

1209

1210
def cpp_dispatch_target(f: NativeFunction) -> str:
1211
    symint = f.func.has_symint()
1212
    name = cpp.name(f.func, symint_overload=symint)
1213
    if Variant.method in f.variants:
1214
        return f"self.{name}"
1215
    if Variant.function in f.variants:
1216
        if has_tensor_options(f) or f.func.name.name.base.endswith("_like"):
1217
            namespace = "torch"
1218
        else:
1219
            namespace = "at"
1220
        return f"{namespace}::{name}"
1221
    raise RuntimeError(f"could not dispatch, neither function nor method: {f.func}")
1222

1223

1224
def cpp_dispatch_exprs(
1225
    f: NativeFunction,
1226
    *,
1227
    python_signature: PythonSignature | None = None,
1228
) -> tuple[str, ...]:
1229
    cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments()
1230

1231
    exprs: tuple[str, ...] = ()
1232
    if not isinstance(python_signature, PythonSignatureDeprecated):
1233
        # By default the exprs are consistent with the C++ signature.
1234
        exprs = tuple(a.name for a in cpp_args)
1235
    else:
1236
        # For deprecated python signature we may need fill in some constants.
1237
        exprs = tuple(
1238
            filter(
1239
                lambda n: n != "out" or f.func.is_out_fn(),
1240
                python_signature.deprecated_args_exprs,
1241
            )
1242
        )
1243

1244
    if Variant.method in f.variants:
1245
        exprs = tuple(filter("self".__ne__, exprs))
1246

1247
    return exprs
1248

1249

1250
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
1251
#
1252
#                     Python / C++ Args Binding
1253
#
1254
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
1255

1256

1257
# We explicitly enumerate the PythonArgParser unpacking methods for all
1258
# supported types. This might be more verbose than necessary, partially
1259
# because of the irregularity of unpacking method naming, partially
1260
# because we want to mimic the old codegen behavior - to reject
1261
# unexpected and/or unsupported cases which the old codegen rejects.
1262
# For certain cases it is intentionally more restrictive than necessary,
1263
# e.g.: it doesn't accepts doublelist with definite size.
1264
def arg_parser_unpack_method(
1265
    t: Type, default: str | None, default_init: str | None, *, symint: bool = True
1266
) -> str:
1267
    has_default_init = default_init is not None
1268
    if has_default_init and str(t) not in (
1269
        "ScalarType?",
1270
        "ScalarType",
1271
        "Device",
1272
        "Device?",
1273
        "Layout",
1274
        "Layout?",
1275
        "bool",
1276
        "bool?",
1277
    ):
1278
        raise RuntimeError(f"type '{t}' does not supported unpacking with default")
1279

1280
    if isinstance(t, BaseType):
1281
        if t.name in [
1282
            BaseTy.Tensor,
1283
            BaseTy.Stream,
1284
            BaseTy.Storage,
1285
            BaseTy.Scalar,
1286
            BaseTy.Dimname,
1287
        ]:
1288
            # These unpack methods line up with their schema names
1289
            return t.name.name.lower()
1290
        elif t.name == BaseTy.ScalarType:
1291
            return "scalartypeWithDefault" if has_default_init else "scalartype"
1292
        elif t.name == BaseTy.Device:
1293
            return "deviceWithDefault" if has_default_init else "device"
1294
        elif t.name == BaseTy.DeviceIndex:
1295
            return "toInt64"
1296
        elif t.name == BaseTy.int:
1297
            return "toInt64"
1298
        elif t.name == BaseTy.SymInt:
1299
            return "toSymInt" if symint else "toInt64"
1300
        elif t.name == BaseTy.bool:
1301
            return "toBoolWithDefault" if has_default_init else "toBool"
1302
        elif t.name == BaseTy.float:
1303
            return "toDouble"
1304
        elif t.name == BaseTy.str:
1305
            return "stringView"
1306
        elif t.name == BaseTy.Layout:
1307
            return "layoutWithDefault" if has_default_init else "layout"
1308
        elif t.name == BaseTy.MemoryFormat:
1309
            return "memoryformat"
1310

1311
    elif isinstance(t, OptionalType):
1312
        if str(t.elem) == "Tensor":
1313
            return "optionalTensor"
1314
        elif str(t.elem) == "Generator":
1315
            return "generator"
1316
        elif str(t.elem) == "Dimname[]":
1317
            return "toDimnameListOptional"
1318
        elif not has_default_init and default in (
1319
            None,
1320
            "None",
1321
            "::std::nullopt",
1322
            "std::nullopt",
1323
        ):
1324
            # If default is None: append 'Optional' to elem's unpacking method
1325
            return (
1326
                arg_parser_unpack_method(t.elem, None, None, symint=symint) + "Optional"
1327
            )
1328
        else:
1329
            # Otherwise, load as underlying type with default
1330
            return arg_parser_unpack_method(
1331
                t.elem, default, default_init, symint=symint
1332
            )
1333

1334
    elif isinstance(t, ListType):
1335
        if str(t.elem) == "Tensor":
1336
            # accept and use definite size
1337
            return f"tensorlist_n<{t.size}>" if t.size is not None else "tensorlist"
1338
        elif str(t.elem) == "Tensor?":
1339
            return "list_of_optional_tensors"
1340
        elif str(t.elem) == "Dimname":
1341
            # accept definite size
1342
            return "dimnamelist"
1343
        elif str(t.elem) == "int":
1344
            # accept definite size
1345
            return "intlist"
1346
        elif str(t.elem) == "float":
1347
            return "doublelist"
1348
        elif str(t.elem) == "SymInt":
1349
            # accept definite size
1350
            return "symintlist" if symint else "intlist"
1351
        elif str(t.elem) == "Scalar":
1352
            return "scalarlist"
1353
    raise RuntimeError(f"type '{t}' is not supported by PythonArgParser")
1354

1355

1356
# Return RHS expression for python argument using PythonArgParser output.
1357
# e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)'
1358
def arg_parser_output_expr(
1359
    arg_index: int, a: PythonArgument, *, symint: bool = True
1360
) -> PythonArgParserOutputExpr:
1361
    has_default = a.default_init is not None
1362
    unpack_method = arg_parser_unpack_method(
1363
        t=a.type, default=a.default, default_init=a.default_init, symint=symint
1364
    )
1365
    default = f", {a.default_init}" if has_default else ""
1366
    expr = f"_r.{unpack_method}({arg_index}{default})"
1367

1368
    return PythonArgParserOutputExpr(
1369
        name=a.name,
1370
        expr=expr,
1371
        index=arg_index,
1372
        argument=a,
1373
    )
1374

1375

1376
# Returns a map with key = arg_name and value = PythonArgParserOutputExpr.
1377
def arg_parser_output_exprs(
1378
    ps: PythonSignature, f: NativeFunction, *, symint: bool = True
1379
) -> dict[str, PythonArgParserOutputExpr]:
1380
    return {
1381
        e.name: e
1382
        for i, a in enumerate(ps.arguments())
1383
        for e in (arg_parser_output_expr(i, a, symint=symint),)
1384
    }
1385

1386

1387
# argument name to type for scattered tensor options fields
1388
TENSOR_OPTIONS_FIELDS = {
1389
    "dtype": "ScalarType?",
1390
    "device": "Device?",
1391
    "layout": "Layout?",
1392
    "pin_memory": "bool?",
1393
    "requires_grad": "bool?",
1394
}
1395

1396

1397
# bind arg parser outputs (python args) with dispatch lambda arguments (c++ args).
1398
def dispatch_lambda_exprs(
1399
    ps: PythonSignature, f: NativeFunction, *, symint: bool = True
1400
) -> DispatchLambdaArgumentExprs:
1401
    # This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing
1402
    # 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser
1403
    # outputs.
1404
    arg_parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
1405
    lambda_args = dispatch_lambda_args(ps, f, symint=symint)
1406
    inits: list[str] = []
1407
    lambda_args_exprs: dict[str, str] = {}
1408

1409
    has_toptions = has_tensor_options(f)
1410

1411
    # 1. special inits/unpacking to provide binding exprs for lambda arguments.
1412
    for a in ps.arguments(skip_tensor_options=True):
1413
        name = a.name
1414
        arg_parser_expr = arg_parser_outputs[a.name].expr
1415

1416
        if has_toptions and name == "self":
1417
            # TODO: why this needs to be special case?
1418
            inits.extend(
1419
                [
1420
                    f"auto self = {arg_parser_expr};",
1421
                ]
1422
            )
1423
            lambda_args_exprs[name] = name
1424
        elif (
1425
            isinstance(a, PythonOutArgument)
1426
            and len(a.outputs) > 1
1427
            and f.func.is_out_fn()
1428
        ):
1429
            inits.extend(
1430
                [
1431
                    f"auto out = {arg_parser_expr};",
1432
                ]
1433
            )
1434
            for i, out_arg in enumerate(a.outputs):
1435
                lambda_args_exprs[out_arg.name] = f"out[{i}]"
1436
        elif str(a.type) == "Dimname[]?":
1437
            # [old codegen]
1438
            # TODO: make this part of something more general, or get rid of it.
1439
            # optional<ArrayRef<T>> are special. The PythonArgParser returns an
1440
            # optional<vector<T>>, which cannot be implicitly converted to
1441
            # optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap.
1442
            inits.extend(
1443
                [
1444
                    f"auto __{name} = {arg_parser_expr};",
1445
                    f"::std::optional<DimnameList> {name} = __{name} ? ::std::make_optional(DimnameList(__{name}.value())) : ::std::nullopt;",  # noqa: B950
1446
                ]
1447
            )
1448
            lambda_args_exprs[name] = name
1449
        else:
1450
            # default case - directly using PythonArgParser output expr
1451
            lambda_args_exprs[name] = arg_parser_expr
1452

1453
    # method's self is passed directly to python binding, rather than parsed
1454
    if ps.method:
1455
        lambda_args_exprs["self"] = "self"
1456

1457
    # 2. special packing/checking for TensorOptions.
1458
    tensor_options_args_names = [a.name for a in ps.tensor_options_args]
1459
    if has_toptions:
1460
        if f.func.is_out_fn():
1461
            raise RuntimeError(f"{f.func}: tensor options with output arg")
1462
        for a in ps.tensor_options_args:
1463
            if a.name not in TENSOR_OPTIONS_FIELDS:
1464
                raise RuntimeError(
1465
                    f"{f.func}: unrecognized tensor options field '{a.name}' in python binding arguments"
1466
                )
1467
            if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name):
1468
                raise RuntimeError(
1469
                    f"{f.func}: unrecognized type '{str(a.type)}' for tensor options field '{a.name}'"
1470
                )
1471
        if not all(a in tensor_options_args_names for a in TENSOR_OPTIONS_FIELDS):
1472
            raise RuntimeError(
1473
                f"{f.func}: incomplete tensor options args: {tensor_options_args_names}"
1474
            )
1475

1476
        inits.append(
1477
            f"""\
1478
const auto options = TensorOptions()
1479
    .dtype({arg_parser_outputs['dtype'].expr})
1480
    .device({arg_parser_outputs['device'].expr})
1481
    .layout({arg_parser_outputs['layout'].expr})
1482
    .requires_grad({arg_parser_outputs['requires_grad'].expr})
1483
    .pinned_memory({arg_parser_outputs['pin_memory'].expr});
1484
torch::utils::maybe_initialize_device(options);
1485
"""
1486
        )
1487
        lambda_args_exprs["options"] = "options"
1488

1489
    # 3. special case - access scattered TensorOptions fields without packing
1490
    # TODO: maybe move to the generator side as it's not related to binding.
1491
    if not has_toptions and tensor_options_args_names:
1492
        if "dtype" in tensor_options_args_names:
1493
            # we're an output-arg variant, check these args against output tensor
1494
            if not f.func.is_out_fn():
1495
                raise RuntimeError(
1496
                    f"{f.func}: dtype in tensor_options_args without output arg, {ps} {ps.arguments}"
1497
                )
1498
            if not all(a in tensor_options_args_names for a in ("layout", "device")):
1499
                raise RuntimeError(
1500
                    f"{f.func}: incomplete tensor options for output check"
1501
                )
1502

1503
            inits.append(
1504
                f"""\
1505
check_out_type_matches({arg_parser_outputs['out'].expr}, {arg_parser_outputs['dtype'].expr},
1506
                       {arg_parser_outputs['dtype'].is_none_expr}, {arg_parser_outputs['layout'].expr},
1507
                       {arg_parser_outputs['device'].expr}, {arg_parser_outputs['device'].is_none_expr});
1508
"""
1509
            )
1510
        # we'll set requires_grad on outgoing tensor
1511
        if "requires_grad" not in tensor_options_args_names:
1512
            raise RuntimeError(
1513
                f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]'
1514
            )
1515

1516
    return DispatchLambdaArgumentExprs(
1517
        exprs=tuple(lambda_args_exprs[a.name] for a in lambda_args),
1518
        inits=inits,
1519
    )
1520

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.