pytorch

Форк
0
/
_jit_internal.py 
1547 строк · 52.4 Кб
1
# mypy: allow-untyped-defs
2
"""
3
The weak_script annotation needs to be here instead of inside torch/jit/ so it
4
can be used in other places in torch/ (namely torch.nn) without running into
5
circular dependency problems
6
"""
7

8
import ast
9
import builtins
10
import collections
11
import contextlib
12
import enum
13
import inspect
14
import io
15
import pickle
16
import sys
17
import textwrap
18
import threading
19
import types
20
import typing
21
import warnings
22
import weakref
23
from typing import (
24
    Any,
25
    Callable,
26
    Dict,
27
    Final,
28
    ForwardRef,
29
    get_args,
30
    get_origin,
31
    List,
32
    Optional,
33
    Tuple,
34
    Type,
35
    Union,
36
)
37

38
import torch
39

40
# This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`.
41
# Explicitly ask to import `torch.distributed.__init__` first.
42
# Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised.
43
import torch.distributed.rpc
44
import torch.package._mangling as package_mangling
45
from torch._awaits import _Await
46
from torch._C import _Await as CAwait, Future as CFuture
47
from torch._sources import fake_range, get_source_lines_and_file, parse_def
48
from torch.futures import Future
49

50

51
IS_PY39_PLUS: Final[bool] = sys.version_info >= (3, 9)
52
IS_PY310_PLUS: Final[bool] = sys.version_info >= (3, 10)
53

54
BuiltinUnionType: Union[Type, Tuple[Type, ...]]
55
if sys.version_info >= (3, 10):
56
    # NOTE: IS_PY310_PLUS doesn't work with mypy.
57
    # cf. https://mypy.readthedocs.io/en/stable/common_issues.html#python-version-and-system-platform-checks
58
    BuiltinUnionType = types.UnionType
59
else:
60
    BuiltinUnionType = ()  # trick: this makes isinstance short circuit.
61

62
LockType: Type
63
try:
64
    import _thread
65

66
    LockType = _thread.LockType
67
except ImportError:
68
    import _dummy_thread  # type: ignore[import-not-found]
69

70
    LockType = _dummy_thread.LockType
71

72
# Wrapper functions that can call either of 2 functions depending on a boolean
73
# argument
74
boolean_dispatched: "weakref.WeakKeyDictionary[Callable, Dict[str, Callable]]" = (
75
    weakref.WeakKeyDictionary()
76
)  # noqa: T484
77

78

79
FAKE_FILENAME_PREFIX = "__torch_jit_dataclass"
80

81

82
def is_final(ann) -> bool:
83
    return (
84
        hasattr(ann, "__module__")
85
        and ann.__module__ in {"typing", "typing_extensions"}
86
        and (get_origin(ann) is Final or isinstance(ann, type(Final)))
87
    )
88

89

90
# allows BroadcastingList instance to be subscriptable
91
class BroadcastingListCls:
92
    def __getitem__(self, types):
93
        return
94

95

96
# mypy doesn't support parameters on types, so we have to explicitly type each
97
# list size
98
BroadcastingList1 = BroadcastingListCls()
99
for i in range(2, 7):
100
    globals()[f"BroadcastingList{i}"] = BroadcastingList1
101

102

103
def is_scripting() -> bool:
104
    r"""
105
    Function that returns True when in compilation and False otherwise. This
106
    is useful especially with the @unused decorator to leave code in your
107
    model that is not yet TorchScript compatible.
108
    .. testcode::
109

110
        import torch
111

112
        @torch.jit.unused
113
        def unsupported_linear_op(x):
114
            return x
115

116
        def linear(x):
117
            if torch.jit.is_scripting():
118
                return torch.linear(x)
119
            else:
120
                return unsupported_linear_op(x)
121
    """
122
    return False
123

124

125
# Retrieves a fully-qualified name (module hierarchy + classname) for a given obj.
126
def _qualified_name(obj, mangle_name=True) -> str:
127
    # This special case allows us to override the qualified name on a type.
128
    # It's currently used in conjunction with tracing, where we create a
129
    # fake module to filter only supported attributes. However, since this
130
    # new type is defined as a local class, we need a mechanism to override
131
    # its qualname so it appears correctly in the TorchScript system. This,
132
    # we set '_jit_override_qualname' with the original traced module's
133
    # qualified name, which is picked up here
134
    if hasattr(obj, "_jit_override_qualname"):
135
        return obj._jit_override_qualname
136
    # short-circuit in cases where the object already has a known qualified name
137
    if isinstance(obj, torch._C.ScriptFunction):
138
        return obj.qualified_name
139

140
    if getattr(obj, "__name__", None):
141
        name = obj.__name__
142
    # Enum classes do not have `__name__` attr, instead they have `name`.
143
    elif isinstance(obj, enum.Enum):
144
        name = obj.name
145
    else:
146
        raise RuntimeError("Could not get name of python class object")
147

148
    if name == "<lambda>":
149
        name = "_lambda"  # make name a valid identifier
150

151
    module_name = obj.__module__
152

153
    # If the module is actually a torchbind module, then we should short circuit
154
    if module_name == "torch._classes":
155
        return obj.qualified_name
156

157
    # The Python docs are very clear that `__module__` can be None, but I can't
158
    # figure out when it actually would be.
159
    if module_name is None:
160
        raise RuntimeError(
161
            f"Could not get qualified name for class '{name}': "
162
            "__module__ can't be None."
163
        )
164

165
    # if getattr(sys.modules[module_name], name) is not obj:
166
    #     raise RuntimeError(f"Could not get qualified name for class '{name}': "
167
    #                        f"the attr {name} on module {module_name} is not the class")
168

169
    # torch.package and TorchScript have separate mangling schemes to avoid
170
    # name collisions from multiple packages. To avoid them interfering with
171
    # each other, normalize the package manging here.
172
    if package_mangling.is_mangled(module_name):
173
        module_name = module_name.replace("<", "_")
174
        module_name = module_name.replace(">", "_")
175

176
    # The PythonExceptionValue C++ class in torch/csrc/jit/python/python_sugared_value.h
177
    # does not need mangle the python class name.
178
    if mangle_name:
179
        # __main__ is a builtin module, so rewrite it to "__torch__".
180
        if module_name == "__main__":
181
            module_name = "__torch__"
182
        else:
183
            # Everything else gets a "__torch__" prefix to avoid name collisions
184
            # with the names of user values.
185
            module_name = "__torch__." + module_name
186

187
    if "." in name:
188
        raise RuntimeError(
189
            f"Could not get qualified name for class '{name}': "
190
            f"'{name}' is not a valid identifier"
191
        )
192

193
    return module_name + "." + name
194

195

196
class SourceLoader:
197
    def __init__(self):
198
        self.content = {}
199

200
    def cache(self, fn, source):
201
        self.content[fn] = source
202

203
    def get_source(self, fn):
204
        return self.content.get(fn)
205

206

207
loader = SourceLoader()
208

209

210
def createResolutionCallbackFromEnv(lookup_base):
211
    """
212
    Creates a resolution callback that will look up qualified names in an
213
    environment, starting with `lookup_base` for the base of any qualified
214
    names, then proceeding down the lookup chain with the resolved object.
215

216
    You should not use this directly, it should only be used from the other
217
    createResolutionCallbackFrom* functions.
218
    """
219

220
    def lookupInModule(qualified_name, module):
221
        if "." in qualified_name:
222
            base, remaining_pieces = qualified_name.split(".", maxsplit=1)
223
            module_value = getattr(module, base)
224
            return lookupInModule(remaining_pieces, module_value)
225
        else:
226
            return getattr(module, qualified_name)
227

228
    def parseNestedExpr(expr, module) -> Tuple[Any, int]:
229
        i = 0
230
        while i < len(expr) and expr[i] not in (",", "[", "]"):
231
            i += 1
232

233
        # Special case logic for the empty Tuple as a subscript (used
234
        # in the type annotation `Tuple[()]`)
235
        if expr[:i] == "()":
236
            return (), i
237

238
        base = lookupInModule(expr[:i].strip(), module)
239
        assert base is not None, f"Unresolvable type {expr[:i]}"
240
        if i == len(expr) or expr[i] != "[":
241
            return base, i
242

243
        assert expr[i] == "["
244
        parts = []
245
        while expr[i] != "]":
246
            part_len = 0
247
            i += 1
248
            part, part_len = parseNestedExpr(expr[i:], module)
249
            parts.append(part)
250
            i += part_len
251
        if len(parts) > 1:
252
            return base[tuple(parts)], i + 1
253
        else:
254
            return base[parts[0]], i + 1
255

256
    def parseExpr(expr, module):
257
        try:
258
            value, len_parsed = parseNestedExpr(expr, module)
259
            assert len_parsed == len(
260
                expr
261
            ), "whole expression was not parsed, falling back to c++ parser"
262
            return value
263
        except Exception:
264
            """
265
            The python resolver fails in several cases in known unit tests, and is intended
266
            to fall back gracefully to the c++ resolver in general.  For example, python 2 style
267
            annotations which are frequent in our unit tests often fail with types e.g. int not
268
            resolvable from the calling frame.
269
            """
270
            return None
271

272
    return lambda expr: parseExpr(expr, lookup_base)
273

274

275
def createResolutionCallbackFromFrame(frames_up: int = 0):
276
    """
277
    Creates a function which, given a string variable name,
278
    returns the value of the variable in the scope of the caller of
279
    the function which called createResolutionCallbackFromFrame (by default).
280

281
    This is used to enable access in-scope Python variables inside
282
    TorchScript fragments.
283

284
    frames_up is number of additional frames to go up on the stack.
285
    The default value is 0, which correspond to the frame of the caller
286
    of createResolutionCallbackFromFrame. Also for example, if frames_up is set
287
    to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
288
    will be taken.
289

290
    For example, the following program prints 2::
291

292
        def bar():
293
            cb = createResolutionCallbackFromFrame(1)
294
            print(cb("foo"))
295

296

297
        def baz():
298
            foo = 2
299
            bar()
300

301

302
        baz()
303
    """
304
    frame = inspect.currentframe()
305
    i = 0
306
    while i < frames_up + 1:
307
        assert frame is not None
308
        frame = frame.f_back
309
        i += 1
310

311
    assert frame is not None
312
    f_locals = frame.f_locals
313
    f_globals = frame.f_globals
314

315
    class env:
316
        def __getattr__(self, key):
317
            if key in f_locals:
318
                return f_locals[key]
319
            elif key in f_globals:
320
                return f_globals[key]
321
            elif key in dir(builtins):
322
                return getattr(builtins, key)
323

324
    return createResolutionCallbackFromEnv(env())
325

326

327
def get_closure(fn):
328
    """
329
    Get a dictionary of closed over variables from a function
330
    """
331
    captures = {}
332
    captures.update(fn.__globals__)
333

334
    for index, captured_name in enumerate(fn.__code__.co_freevars):
335
        captures[captured_name] = fn.__closure__[index].cell_contents
336

337
    return captures
338

339

340
# [local resolution in python]
341
# Depending on where a variable is defined, and where it is used, we may
342
# or may not be able to recover its value when recursively compiling a
343
# script function. Remember in the general case, a module or function is
344
# first defined and then later scripted. This means we do not have a
345
# chance to capture the active frames when the function is defined. Hence any
346
# name resolution has to happen later on the created closure. The way
347
# python captures type annotations restricts what we can recover. The
348
# follow example illustrates the different cases:
349
#
350
#         class MyGlobalClass:
351
#         ...
352
#         def my_local_scope():
353
#             @torch.jit.script
354
#             class MyClass:
355
#                 ...
356
#             @torch.jit.script
357
#             class MyClassUsedAsVar:
358
#                 ...
359
#             def eg(x: MyClass, y: MyGlobalClass):
360
#                 a_local_capture : Foo
361
#                 return MyClassUsedAsVar(x)
362
#
363
# MyGlobalClass is defined in the __globals__ dictionary of function
364
# 'eg', so it is always recoverable. my_local_scope introduces a new local
365
# variable scope in the function. Classes defined here are only visible as
366
# local variables. For the case of MyClassUsedAsVar, it is captured
367
# because it is used as a variable inside the body of the function, and we
368
# can resolve it using the captures returned from `get_closure`. However,
369
# the type annotations are not captured by the closure. In Python
370
# 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
371
# annotations on `eg``, but starting in Python 4.0, they will represented as
372
# strings and no longer present. Furthermore, since the body of `eg` does
373
# not reference those names, they do not appear in the list of closed over
374
# variables. In Python 2.x, type annotations are in comments, leading to a
375
# similar situation where their definitions are not available. We anticipate
376
# that most users will not run into this issue because their modules and
377
# functions will be defined at a global scope like MyGlobalClass. In cases
378
# where they are not, it is possible to work around issues by declaring the
379
# values global in the function.
380
# In Python 3.9 declaring class as global will make it invisible to
381
# `inspect.getsource`, see https://bugs.python.org/issue42666 .
382
# This could be worked around by manualy adding it to `global()` dictionary.
383

384

385
def createResolutionCallbackFromClosure(fn):
386
    """
387
    Create a resolutionCallback by introspecting the function instead of
388
    looking up the stack for the enclosing scope
389
    """
390
    closure = get_closure(fn)
391

392
    class closure_lookup:
393
        # This is a class since `closure` is a dict and it's easier in
394
        # `env_helper` if everything just works with `getattr` calls
395
        def __getattr__(self, key):
396
            if key in closure:
397
                return closure[key]
398
            elif hasattr(typing, key):
399
                return getattr(typing, key)
400
            elif hasattr(builtins, key):
401
                return getattr(builtins, key)
402
            return None
403

404
    return createResolutionCallbackFromEnv(closure_lookup())
405

406

407
def can_compile_class(cls) -> bool:
408
    # If any of the functions on a type don't have a code object, this type can't
409
    # be compiled and is probably a builtin / bound from C
410
    if is_ignored_fn(cls):
411
        return False
412

413
    # Ignore the following list of built-in classes.
414
    ignored_builtin_classes = (torch.nn.Module, tuple, list, Exception)
415
    if issubclass(cls, ignored_builtin_classes):
416
        return False
417

418
    names = cls.__dict__
419
    fns = [
420
        getattr(cls, name)
421
        for name in names
422
        if inspect.isroutine(getattr(cls, name, None))
423
    ]
424
    has_code = [hasattr(fn, "__code__") for fn in fns]
425
    return all(has_code)
426

427

428
def get_callable_argument_names(fn) -> List[str]:
429
    """
430
    Gets names of all POSITIONAL_OR_KEYWORD arguments for callable `fn`.
431
    Returns an empty list when other types of arguments are present.
432

433
    This is used by `torch.jit.trace` to assign meaningful argument names to
434
    traced functions and modules.
435

436
    Args:
437
        fn: A callable.
438
    Returns:
439
        Argument names: List[str]
440
    """
441
    # inspect.signature may fail, give up in that case.
442
    try:
443
        callable_signature = inspect.signature(fn)
444
    except Exception:
445
        return []
446

447
    argument_names = []
448
    for name, param in callable_signature.parameters.items():
449
        # All four other types of arguments do not map to individual values
450
        # with a keyword as name.
451
        if not param.kind == param.POSITIONAL_OR_KEYWORD:
452
            continue
453

454
        argument_names.append(name)
455

456
    return argument_names
457

458

459
def get_annotation_str(annotation):
460
    """
461
    Convert an AST node containing a type annotation to the string present in the source
462
    that represents the same annotation.
463
    """
464
    if isinstance(annotation, ast.Name):
465
        return annotation.id
466
    elif isinstance(annotation, ast.Attribute):
467
        return ".".join([get_annotation_str(annotation.value), annotation.attr])
468
    elif isinstance(annotation, ast.Subscript):
469
        # In Python3.9+ subscript indicies are not wrapped in ast.Index
470
        subscript_slice = annotation.slice if IS_PY39_PLUS else annotation.slice.value  # type: ignore[attr-defined]
471
        return f"{get_annotation_str(annotation.value)}[{get_annotation_str(subscript_slice)}]"
472
    elif isinstance(annotation, ast.Tuple):
473
        return ",".join([get_annotation_str(elt) for elt in annotation.elts])
474
    elif isinstance(annotation, ast.Constant):
475
        return f"{annotation.value}"
476

477
    # If an AST node is not handled here, it's probably handled in ScriptTypeParser.
478
    return None
479

480

481
def get_type_hint_captures(fn):
482
    """
483
    Get a dictionary containing type resolution mappings necessary to resolve types
484
    for the literal annotations on 'fn'. These are not considered to be closed-over by fn
485
    and must be obtained separately (e.g. using this function).
486

487
    Args:
488
        fn: A callable.
489
    Returns:
490
        A Dict[str, Any] containing a mapping from the literal annotations used on
491
        fn to the Python objects they refer to.
492
    """
493
    # First, try to get the source of the function. We'll need to parse it to find the actual string names
494
    # that were used to annotate the types, since inspect.signature() will only return the class object that
495
    # the annotation refers to, not the string name. If we can't get the source, simply return an empty dict.
496
    # This may happen in cases where the function is synthesized dynamically at runtime.
497
    src = loader.get_source(fn)
498
    if src is None:
499
        try:
500
            src = inspect.getsource(fn)
501
        except OSError as e:
502
            raise OSError(
503
                f"Failed to get source for {fn} using inspect.getsource"
504
            ) from e
505

506
    # Gather a dictionary of parameter name -> type, skipping any parameters whose annotated
507
    # types are strings. These are only understood by TorchScript in the context of a type annotation
508
    # that refers to a class in its own definition, but trying to include a mapping for this in the result
509
    # function would cause infinite recursion because the class is currently being compiled.
510
    # In addition, there is logic in ScriptTypeParser to handle this.
511
    signature = inspect.signature(fn)
512
    name_to_type = {
513
        name: parameter.annotation
514
        for name, parameter in signature.parameters.items()
515
        if parameter.annotation is not inspect.Parameter.empty
516
        and not isinstance(parameter.annotation, str)
517
    }
518

519
    # Then, get the literal type annotations from the function declaration
520
    # by source inspection. This accounts for the case in which aliases are used
521
    # to annotate the arguments (e.g device_t = torch.device, and then d: device_t).
522
    # frontend.py cannot be used here because it includes _jit_internal, so use ast instead.
523
    a = ast.parse(textwrap.dedent(src))
524
    if len(a.body) != 1 or not isinstance(a.body[0], ast.FunctionDef):
525
        raise RuntimeError(f"Expected {fn} to be a function")
526
    f = a.body[0]
527

528
    # Prepare a dictionary of source annotation -> type, which will be the final result of this function,
529
    # by using the parsed AST (f) to reconstruct source annotations as strings for each parameter and mapping
530
    # them to the type object corresponding to the annotation via name_to_type using the parameter name.
531
    annotation_to_type = {}
532

533
    for arg in f.args.args:
534
        # Get the source type annotation string for this argument if possible.
535
        arg_annotation_str = (
536
            get_annotation_str(arg.annotation) if arg.annotation else None
537
        )
538

539
        # If the argument has no annotation or get_annotation_str cannot convert it to a string,
540
        # arg_annotation_str will be None. Skip this arg; ScriptTypeParser will probably handle
541
        # this in the latter case.
542
        if arg_annotation_str is None:
543
            continue
544

545
        # Insert {arg_annotation_str: type} into annotation_to_type if possible. One reason arg_name may not
546
        # be present in name_to_type is that the annotation itself is a string and not a type object
547
        # (common for self-refential annotations in classes). Once again, let ScriptTypeParser handle this.
548
        arg_name = arg.arg
549
        if arg_name in name_to_type:
550
            annotation_to_type[arg_annotation_str] = name_to_type[arg_name]
551

552
    # If there is a valid return annotation, include it in annotation_to_type. As with argument annotations,
553
    # the literal annotation has to be convertible to a string by get_annotation_str, and the actual type
554
    # of the annotation cannot be a string.
555
    literal_return_annotation = get_annotation_str(f.returns)
556
    valid_literal_annotation = literal_return_annotation is not None
557
    return_annotation = signature.return_annotation
558
    valid_return_annotation_type = (
559
        return_annotation is not inspect.Parameter.empty
560
        and not isinstance(return_annotation, str)
561
    )
562
    if valid_literal_annotation and valid_return_annotation_type:
563
        annotation_to_type[literal_return_annotation] = return_annotation
564

565
    return annotation_to_type
566

567

568
def createResolutionCallbackForClassMethods(cls):
569
    """
570
    This looks at all the methods defined in a class and pulls their closed-over
571
    variables into a dictionary and uses that to resolve variables.
572
    """
573
    # cls is a type here, so `ismethod` is false since the methods on the type
574
    # aren't bound to anything, so Python treats them as regular functions
575
    fns = [
576
        getattr(cls, name)
577
        for name in cls.__dict__
578
        if inspect.isroutine(getattr(cls, name))
579
    ]
580
    # Skip built-ins, as they do not have global scope nor type hints
581
    # Needed to support `enum.Enum` derived classes in Python-3.11
582
    # That adds `_new_member_` property which is an alias to `__new__`
583
    fns = [fn for fn in fns if not inspect.isbuiltin(fn) and hasattr(fn, "__globals__")]
584
    captures = {}
585

586
    for fn in fns:
587
        captures.update(get_closure(fn))
588
        captures.update(get_type_hint_captures(fn))
589

590
    def lookup_in_class(key):
591
        if key in captures:
592
            return captures[key]
593
        else:
594
            return getattr(builtins, key, None)
595

596
    return lookup_in_class
597

598

599
def boolean_dispatch(
600
    arg_name,
601
    arg_index,
602
    default,
603
    if_true,
604
    if_false,
605
    module_name,
606
    func_name,
607
):
608
    """
609
    Dispatches to either of 2 script functions based on a boolean argument.
610
    In TorchScript, the boolean argument must be constant so that the correct
611
    function to use can be determined at compile time.
612
    """
613

614
    def fn(*args, **kwargs):
615
        dispatch_flag = default
616
        if arg_name in kwargs:
617
            dispatch_flag = kwargs[arg_name]
618
        elif arg_index < len(args):
619
            dispatch_flag = args[arg_index]
620

621
        if dispatch_flag:
622
            return if_true(*args, **kwargs)
623
        else:
624
            return if_false(*args, **kwargs)
625

626
    if if_true.__doc__ is None and if_false.__doc__ is not None:
627
        doc = if_false.__doc__
628
        if_true.__doc__ = doc
629
    elif if_false.__doc__ is None and if_true.__doc__ is not None:
630
        doc = if_true.__doc__
631
        if_false.__doc__ = doc
632
    elif if_false.__doc__ is None and if_true.__doc__ is None:
633
        # neither function has a docstring
634
        doc = None
635
    else:
636
        raise RuntimeError("only one function can have a docstring")
637
    fn.__doc__ = doc
638

639
    if module_name is not None:
640
        fn.__module__ = module_name
641
    if func_name is not None:
642
        fn.__name__ = func_name
643

644
    boolean_dispatched[fn] = {
645
        "if_true": if_true,
646
        "if_false": if_false,
647
        "index": arg_index,
648
        "default": default,
649
        "arg_name": arg_name,
650
    }
651
    return fn
652

653

654
class FunctionModifiers:
655
    """
656
    Used to denote the behavior of a function in TorchScript. See export() and
657
    ignore() for details.
658
    """
659

660
    UNUSED = "unused (ignored and replaced with raising of an exception)"
661
    IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
662
    EXPORT = "export (compile this function even if nothing calls it)"
663
    DEFAULT = "default (compile if called from a exported function / forward)"
664
    COPY_TO_SCRIPT_WRAPPER = (
665
        "if this method is not scripted, copy the python method onto the scripted model"
666
    )
667
    _DROP = "_drop (function is fully ignored, declaration can be unscriptable)"
668

669

670
def export(fn):
671
    """
672
    This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
673
    :class:`ScriptModule` and should be compiled.
674

675
    ``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
676
    Functions and methods called from ``forward`` are compiled as they are seen
677
    by the compiler, so they do not need this decorator either.
678

679
    Example (using ``@torch.jit.export`` on a method):
680

681
    .. testcode::
682

683
        import torch
684
        import torch.nn as nn
685

686
        class MyModule(nn.Module):
687
            def implicitly_compiled_method(self, x):
688
                return x + 99
689

690
            # `forward` is implicitly decorated with `@torch.jit.export`,
691
            # so adding it here would have no effect
692
            def forward(self, x):
693
                return x + 10
694

695
            @torch.jit.export
696
            def another_forward(self, x):
697
                # When the compiler sees this call, it will compile
698
                # `implicitly_compiled_method`
699
                return self.implicitly_compiled_method(x)
700

701
            def unused_method(self, x):
702
                return x - 20
703

704
        # `m` will contain compiled methods:
705
        #     `forward`
706
        #     `another_forward`
707
        #     `implicitly_compiled_method`
708
        # `unused_method` will not be compiled since it was not called from
709
        # any compiled methods and wasn't decorated with `@torch.jit.export`
710
        m = torch.jit.script(MyModule())
711
    """
712
    fn._torchscript_modifier = FunctionModifiers.EXPORT
713
    return fn
714

715

716
def unused(fn):
717
    """
718
    This decorator indicates to the compiler that a function or method should
719
    be ignored and replaced with the raising of an exception. This allows you
720
    to leave code in your model that is not yet TorchScript compatible and still
721
    export your model.
722

723
        Example (using ``@torch.jit.unused`` on a method)::
724

725
            import torch
726
            import torch.nn as nn
727

728

729
            class MyModule(nn.Module):
730
                def __init__(self, use_memory_efficient):
731
                    super().__init__()
732
                    self.use_memory_efficient = use_memory_efficient
733

734
                @torch.jit.unused
735
                def memory_efficient(self, x):
736
                    import pdb
737

738
                    pdb.set_trace()
739
                    return x + 10
740

741
                def forward(self, x):
742
                    # Use not-yet-scriptable memory efficient mode
743
                    if self.use_memory_efficient:
744
                        return self.memory_efficient(x)
745
                    else:
746
                        return x + 10
747

748

749
            m = torch.jit.script(MyModule(use_memory_efficient=False))
750
            m.save("m.pt")
751

752
            m = torch.jit.script(MyModule(use_memory_efficient=True))
753
            # exception raised
754
            m(torch.rand(100))
755
    """
756
    if isinstance(fn, property):
757
        prop = fn
758
        setattr(  # noqa: B010
759
            prop.fget, "_torchscript_modifier", FunctionModifiers.UNUSED
760
        )
761

762
        if prop.fset:
763
            setattr(  # noqa: B010
764
                prop.fset, "_torchscript_modifier", FunctionModifiers.UNUSED
765
            )
766

767
        return prop
768

769
    fn._torchscript_modifier = FunctionModifiers.UNUSED
770
    return fn
771

772

773
# No op context manager from python side
774
class _IgnoreContextManager(contextlib.AbstractContextManager):
775
    def __init__(self, **kwargs):
776
        pass
777

778
    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
779
        pass
780

781

782
def ignore(drop=False, **kwargs):
783
    """
784
    This decorator indicates to the compiler that a function or method should
785
    be ignored and left as a Python function. This allows you to leave code in
786
    your model that is not yet TorchScript compatible. If called from TorchScript,
787
    ignored functions will dispatch the call to the Python interpreter. Models with ignored
788
    functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
789

790
    Example (using ``@torch.jit.ignore`` on a method)::
791

792
        import torch
793
        import torch.nn as nn
794

795

796
        class MyModule(nn.Module):
797
            @torch.jit.ignore
798
            def debugger(self, x):
799
                import pdb
800

801
                pdb.set_trace()
802

803
            def forward(self, x):
804
                x += 10
805
                # The compiler would normally try to compile `debugger`,
806
                # but since it is `@ignore`d, it will be left as a call
807
                # to Python
808
                self.debugger(x)
809
                return x
810

811

812
        m = torch.jit.script(MyModule())
813

814
        # Error! The call `debugger` cannot be saved since it calls into Python
815
        m.save("m.pt")
816

817
    Example (using ``@torch.jit.ignore(drop=True)`` on a method):
818

819
    .. testcode::
820

821
        import torch
822
        import torch.nn as nn
823

824
        class MyModule(nn.Module):
825
            @torch.jit.ignore(drop=True)
826
            def training_method(self, x):
827
                import pdb
828
                pdb.set_trace()
829

830
            def forward(self, x):
831
                if self.training:
832
                    self.training_method(x)
833
                return x
834

835
        m = torch.jit.script(MyModule())
836

837
        # This is OK since `training_method` is not saved, the call is replaced
838
        # with a `raise`.
839
        m.save("m.pt")
840

841
    .. testcleanup::
842

843
        import os
844
        os.remove('m.pt')
845
    """
846

847
    if callable(drop):
848
        # used without any args, so drop is actually a function
849
        #   @torch.jit.ignore
850
        #   def fn(...):
851
        fn = drop
852
        fn._torchscript_modifier = FunctionModifiers.IGNORE
853
        return fn
854

855
    if not isinstance(drop, bool):
856
        raise RuntimeError(
857
            "Argument to @torch.jit.ignore must be a bool or "
858
            f"a function but got {drop}"
859
        )
860

861
    # for backwards compat
862
    drop_on_export = kwargs.pop("drop_on_export", None)
863
    if drop_on_export:
864
        warnings.warn(
865
            "ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
866
            "call on compilation. Use torch.jit.unused now. {}",
867
            category=FutureWarning,
868
        )
869

870
        drop = drop_on_export
871
    elif drop:
872
        warnings.warn(
873
            "ignore(True) has been deprecated. TorchScript will now drop the function "
874
            "call on compilation. Use torch.jit.unused now. {}",
875
            category=FutureWarning,
876
        )
877

878
    def decorator(fn):
879
        if drop:
880
            fn._torchscript_modifier = FunctionModifiers.UNUSED
881
        else:
882
            fn._torchscript_modifier = FunctionModifiers.IGNORE
883
        return fn
884

885
    return decorator
886

887

888
def _drop(fn):
889
    fn._torchscript_modifier = FunctionModifiers._DROP
890
    return fn
891

892

893
def _copy_to_script_wrapper(fn):
894
    fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
895
    return fn
896

897

898
def module_has_exports(mod):
899
    for name in dir(mod):
900
        if hasattr(mod, name):
901
            item = getattr(mod, name)
902
            if callable(item):
903
                if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
904
                    return True
905
    return False
906

907

908
# WARNING: should_drop is currently being used by our JIT code coverage plug-in to mark JIT'd code as covered. If you
909
# rename this function, please update references in tools/coverage_plugins_package/src/coverage_plugins/jit_plugin.py to
910
# allow JIT'd code to still be covered.
911
def should_drop(fn) -> bool:
912
    attr = get_torchscript_modifier(fn)
913
    if attr is None:
914
        return False
915
    return attr is FunctionModifiers.UNUSED or attr is FunctionModifiers._DROP
916

917

918
def is_ignored_fn(fn) -> bool:
919
    mod = get_torchscript_modifier(fn)
920
    return (
921
        mod is FunctionModifiers.UNUSED
922
        or mod is FunctionModifiers.IGNORE
923
        or mod is FunctionModifiers._DROP
924
    )
925

926

927
def _is_drop_fn(fn) -> bool:
928
    mod = get_torchscript_modifier(fn)
929
    return mod is FunctionModifiers._DROP
930

931

932
def is_static_fn(cls, fn) -> bool:
933
    return isinstance(inspect.getattr_static(cls, fn, default=None), staticmethod)
934

935

936
def get_static_fn(cls, fn):
937
    return inspect.getattr_static(cls, fn).__func__
938

939

940
def get_torchscript_modifier(fn):
941
    if not callable(fn):
942
        return None
943
    if hasattr(fn, "__func__"):
944
        fn = fn.__func__
945
    return getattr(fn, "_torchscript_modifier", FunctionModifiers.DEFAULT)
946

947

948
def copy_torchscript_modifier(orig, new) -> None:
949
    attr = get_torchscript_modifier(orig)
950
    if attr is None:
951
        return
952
    new._torchscript_modifier = attr
953

954

955
# overloading registration
956
# overloads get registered in this file, and compiled in torch/jit/__init__.py
957
# so that they can be imported in nn/functional.py without an import cycle
958

959
# qualified_name => list[overload_functions]
960
_overloaded_fns: Dict[str, List[Callable]] = {}  # noqa: T484
961

962

963
_OVERLOAD_EXAMPLE = """
964
Example usage of overload function:
965
@torch.jit._overload
966
def my_function(x: type0) -> type0: # decl 1
967
    pass
968

969
@torch.jit._overload
970
def my_function(x: type1) -> type1: # decl 2
971
    pass
972

973
def my_function(x):                 # implementation
974
    if isinstance(x, type0):
975
        return x
976
    elif isinstance(x, type1):
977
        return x
978
"""
979

980

981
def get_overload_no_implementation_error_message(kind, obj):
982
    sourcelines, file_lineno, filename = get_source_lines_and_file(obj)
983
    return (
984
        f'Implementation for the {kind} "{_qualified_name(obj)}" is missing. Please make '
985
        f"sure a definition is provided and defined after all overload declarations.\n"
986
        f'File "{filename}", line {file_lineno}:\n'
987
        + "".join(sourcelines)
988
        + "\n"
989
        + _OVERLOAD_EXAMPLE
990
    )
991

992

993
def _check_overload_body(func):
994
    try:
995
        parsed_def = parse_def(func)
996
    except OSError as e:
997
        # Parsing the function definition can raise an OSError if source is unavailable.
998
        # Since this is just an initial check, just raise a warning if this is the case.
999
        warnings.warn(
1000
            f"Unable to retrieve source for @torch.jit._overload function: {func}."
1001
        )
1002
        return
1003

1004
    body = parsed_def.ast.body[0].body
1005

1006
    def is_pass(x):
1007
        return isinstance(x, ast.Pass)
1008

1009
    def is_ellipsis(x):
1010
        return (
1011
            isinstance(x, ast.Expr)
1012
            and isinstance(x.value, ast.Constant)
1013
            and x.value.value is Ellipsis
1014
        )
1015

1016
    if len(body) != 1 or not (is_pass(body[0]) or is_ellipsis(body[0])):
1017
        msg = (
1018
            "Only `pass` statement or `...` can be the body of overload declaration:\n"
1019
        )
1020
        msg += "\n".join(parsed_def.source.split("\n")[:3])
1021
        msg += " <- Expecting `pass` or `...` here!\n" + _OVERLOAD_EXAMPLE
1022
        raise RuntimeError(msg)
1023

1024

1025
def _overload(func):
1026
    _check_overload_body(func)
1027
    qual_name = _qualified_name(func)
1028
    global _overloaded_fns
1029
    fn_overload_list = _overloaded_fns.get(qual_name)
1030
    if fn_overload_list is None:
1031
        fn_overload_list = []
1032
        _overloaded_fns[qual_name] = fn_overload_list
1033
    fn_overload_list.append(func)
1034
    return func
1035

1036

1037
def _get_fn_overloads(qual_name):
1038
    return _overloaded_fns.get(qual_name)
1039

1040

1041
def _clear_fn_overloads(qual_name) -> None:
1042
    del _overloaded_fns[qual_name]
1043

1044

1045
def get_class_name_lineno(method) -> Tuple[str, int]:
1046
    current_frame = inspect.currentframe()
1047

1048
    # one for the get_class_name call, one for _overload_method call
1049
    for i in range(2):
1050
        assert (
1051
            current_frame is not None
1052
        )  # assert current frame is not an Optional[FrameType]
1053
        current_frame = current_frame.f_back
1054

1055
    assert current_frame is not None  # same here
1056
    class_name = current_frame.f_code.co_name
1057
    line_no = current_frame.f_code.co_firstlineno
1058
    return class_name, line_no
1059

1060

1061
# At the point the decorator is applied to class methods the method
1062
# has no reference to its owning class. _qualified_name would not include
1063
# the class it is defined in, so any methods with the same name in the same file
1064
# would have the same _qualified_name, even if they were defined in different
1065
# classes. This problem only exists in python 2.
1066
# We get around this problem by looking at the stack frame and identifying
1067
# the class name, and throwing an error whenever overloads are used
1068
# when modules of the same name are in the same file
1069

1070
# qualified_name => class name => list[overload_functions]
1071
_overloaded_methods: Dict[str, Dict[str, List[Callable]]] = {}  # noqa: T484
1072

1073

1074
# (qualified_name, class name) => class_fileno
1075
_overloaded_method_class_fileno: Dict[Tuple[str, str], int] = {}
1076

1077

1078
def _overload_method(func):
1079
    _check_overload_body(func)
1080
    qual_name = _qualified_name(func)
1081
    global _overloaded_methods
1082
    class_name_map = _overloaded_methods.get(qual_name, None)
1083
    if class_name_map is None:
1084
        class_name_map = {}
1085
        _overloaded_methods[qual_name] = class_name_map
1086

1087
    class_name, line_no = get_class_name_lineno(func)
1088
    method_overloads = class_name_map.get(class_name, None)
1089
    if method_overloads is None:
1090
        method_overloads = []
1091
        class_name_map[class_name] = method_overloads
1092
        _overloaded_method_class_fileno[(qual_name, class_name)] = line_no
1093
    else:
1094
        existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
1095
        if existing_lineno != line_no:
1096
            raise RuntimeError(
1097
                "Cannot currently overload the same method name in two different"
1098
                " classes with the same name in the same module"
1099
            )
1100

1101
    method_overloads.append(func)
1102
    return func
1103

1104

1105
def _get_overloaded_methods(method, mod_class):
1106
    # TODO: __name__ not set for submodules in recursive script
1107
    if not hasattr(method, "__name__"):
1108
        return None
1109
    qual_name = _qualified_name(method)
1110
    class_name_map = _overloaded_methods.get(qual_name, None)
1111
    if class_name_map is None:
1112
        return None
1113
    overloads = class_name_map.get(mod_class.__name__, None)
1114
    if overloads is None:
1115
        return None
1116

1117
    method_line_no = get_source_lines_and_file(method)[1]
1118
    mod_class_fileno = get_source_lines_and_file(mod_class)[1]
1119
    mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
1120
    if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
1121
        raise AssertionError(
1122
            "Overloads are not useable when a module is redeclared within the same file: "
1123
            + str(method)
1124
        )
1125
    return overloads
1126

1127

1128
def is_tuple(ann) -> bool:
1129
    if ann is Tuple:
1130
        raise_error_container_parameter_missing("Tuple")
1131

1132
    # For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
1133
    if not hasattr(ann, "__module__"):
1134
        return False
1135

1136
    ann_origin = get_origin(ann)
1137
    if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is tuple:
1138
        return True
1139
    return ann.__module__ == "typing" and (ann_origin is Tuple or ann_origin is tuple)
1140

1141

1142
def is_list(ann) -> bool:
1143
    if ann is List:
1144
        raise_error_container_parameter_missing("List")
1145

1146
    if not hasattr(ann, "__module__"):
1147
        return False
1148

1149
    ann_origin = get_origin(ann)
1150
    if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is list:
1151
        return True
1152
    return ann.__module__ == "typing" and (ann_origin is List or ann_origin is list)
1153

1154

1155
def is_dict(ann) -> bool:
1156
    if ann is Dict:
1157
        raise_error_container_parameter_missing("Dict")
1158

1159
    if not hasattr(ann, "__module__"):
1160
        return False
1161

1162
    ann_origin = get_origin(ann)
1163
    if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is dict:
1164
        return True
1165
    return ann.__module__ == "typing" and (ann_origin is Dict or ann_origin is dict)
1166

1167

1168
def is_union(ann):
1169
    if ann is Union:
1170
        raise_error_container_parameter_missing("Union")
1171

1172
    return isinstance(ann, BuiltinUnionType) or (
1173
        hasattr(ann, "__module__")
1174
        and ann.__module__ == "typing"
1175
        and (get_origin(ann) is Union)
1176
    )
1177

1178

1179
def is_optional(ann):
1180
    if ann is Optional:
1181
        raise_error_container_parameter_missing("Optional")
1182

1183
    def is_optional_as_optional(ann):
1184
        return (
1185
            hasattr(ann, "__module__")
1186
            and ann.__module__ == "typing"
1187
            and (get_origin(ann) is Optional)
1188
        )
1189

1190
    def is_union_as_optional(ann):
1191
        ann_args = get_args(ann)
1192
        return len(ann_args) == 2 and (None in ann_args or type(None) in ann_args)
1193

1194
    return is_optional_as_optional(ann) or (is_union(ann) and is_union_as_optional(ann))
1195

1196

1197
def is_future(ann) -> bool:
1198
    if ann is Future:
1199
        raise RuntimeError(
1200
            "Attempted to use Future without a "
1201
            "contained type. Please add a contained type, e.g. "
1202
            "Future[int]"
1203
        )
1204
    return get_origin(ann) is Future
1205

1206

1207
def is_await(ann) -> bool:
1208
    if ann is _Await:
1209
        return True
1210
    return get_origin(ann) is _Await
1211

1212

1213
if torch.distributed.rpc.is_available():
1214
    from torch._C._distributed_rpc import PyRRef
1215
    from torch.distributed.rpc import RRef
1216

1217
    def is_rref(ann) -> bool:
1218
        if ann is RRef:
1219
            raise RuntimeError(
1220
                "Attempted to use RRef without a "
1221
                "contained type. Please add a contained type, e.g. "
1222
                "RRef[int]"
1223
            )
1224
        return get_origin(ann) is RRef
1225

1226
    def is_rref_instance(obj) -> bool:
1227
        return isinstance(obj, PyRRef)
1228

1229
else:
1230

1231
    def is_rref_instance(obj) -> bool:
1232
        # If the RPC module doesn't exist then RRefs don't exist either.
1233
        return False
1234

1235

1236
def _try_get_dispatched_fn(fn):
1237
    if not callable(fn):
1238
        return None
1239
    return boolean_dispatched.get(fn)
1240

1241

1242
def _get_named_tuple_properties(
1243
    obj,
1244
    loc: Optional[torch._C._jit_tree_views.SourceRange] = None,
1245
    rcb=None,
1246
):
1247
    if loc is None:
1248
        loc = fake_range()
1249

1250
    assert issubclass(obj, tuple) and hasattr(obj, "_fields")
1251
    if hasattr(obj, "_field_defaults"):
1252
        defaults = [
1253
            obj._field_defaults[field]
1254
            for field in obj._fields
1255
            if field in obj._field_defaults
1256
        ]
1257
    else:
1258
        defaults = []
1259
    # In 3.10 recommended way to get annotations is to call `inspect.get_annotations` function
1260
    # Also, annotations from base class are not inherited so they need to be queried explicitly
1261
    if sys.version_info[:2] < (3, 10):
1262
        obj_annotations = getattr(obj, "__annotations__", {})
1263
    else:
1264
        obj_annotations = inspect.get_annotations(obj)
1265
        if len(obj_annotations) == 0 and hasattr(obj, "__base__"):
1266
            obj_annotations = inspect.get_annotations(obj.__base__)
1267

1268
    annotations = []
1269
    for field in obj._fields:
1270
        if field in obj_annotations:
1271
            field_type = obj_annotations[field]
1272
            # [Note: ForwardRef annotations in NamedTuple attributes]
1273
            # NamedTuple types are slightly different from normal types.
1274
            #
1275
            # Normally, annotations are evaluted like this (during jit.script):
1276
            # 1. Load strings of python code into c++ and parse.
1277
            # 2. Get annotations as strings
1278
            # 3. Use the PythonResolver's resolution callback (rcb) to convert
1279
            #    the string into a python object
1280
            # 4. We call into annotations.py:ann_to_type to convert python obj
1281
            #    from step 3 into a type that torchscript understands.
1282
            #
1283
            # NamedTuples are more complicated, because it has sub-types.
1284
            # Normally, once we have the NamedTuple type object from #3,
1285
            # we can just look at the annotation literal values and use
1286
            # ann_to_type directly on them.
1287
            #
1288
            # But sometimes, users will annotate with string literals, e.g.
1289
            #    x: 'int'
1290
            # This also happens with PEP563 (from __forward__ import annotations)
1291
            #
1292
            # These annotations appear in the annotation dict as ForwardRef('int').
1293
            #
1294
            # Then, we need to convert the string into a python object. This
1295
            # requires having local context for custom objects or imported types.
1296
            # rcb() is what gives us this. So, we plumb rcb through the stack so
1297
            # it can be used in this context for the if block below.
1298
            #
1299
            # FAQ:
1300
            # - Why do we need this special handling for NamedTuple but string
1301
            #   annotations work fine for normal types? Normally, we parse the
1302
            #   string directly and then call rcb() directly from C++.
1303
            # - Why not use ForwardRef._evaluate? For that, we need globals()
1304
            #   and locals() for the local context where the NamedTuple was defined.
1305
            #   rcb is what lets us look up into these. So, basically rcb does the
1306
            #   hard work for us.
1307
            if isinstance(field_type, ForwardRef) and rcb is not None:
1308
                rcb_type = rcb(field_type.__forward_arg__)
1309
                # rcb returns None if it can't find anything.
1310
                if rcb_type is None:
1311
                    raise ValueError(
1312
                        f"Unknown type annotation: '{field_type}' in NamedTuple {obj.__name__}."
1313
                        f" Likely due to partial support for ForwardRef parameters in NamedTuples, see #95858."
1314
                        f" Issue occurred at {loc.highlight()}"
1315
                    )
1316
                field_type = rcb_type
1317
            the_type = torch.jit.annotations.ann_to_type(field_type, loc, rcb)
1318
            annotations.append(the_type)
1319
        else:
1320
            annotations.append(torch._C.TensorType.getInferred())
1321
    return type(obj).__name__, obj._fields, annotations, defaults
1322

1323

1324
def _create_named_tuple(
1325
    t,
1326
    unqual_name: str,
1327
    field_names: List[str],
1328
    defaults: Tuple[Any, ...],
1329
):
1330
    TupleType = collections.namedtuple(unqual_name, field_names, defaults=defaults)  # type: ignore[call-arg, no-redef, misc]
1331
    return TupleType(*t)
1332

1333

1334
@contextlib.contextmanager
1335
def _disable_emit_hooks():
1336
    hooks = torch._C._jit_get_emit_hooks()
1337
    torch._C._jit_set_emit_hooks(None, None)
1338
    try:
1339
        yield
1340
    finally:
1341
        torch._C._jit_set_emit_hooks(hooks[0], hooks[1])
1342

1343

1344
def _disable_emit_hooks_decorator(_DecoratorContextManager) -> None:  # noqa: F811
1345
    def __enter__(self) -> None:
1346
        self.hooks = torch._C._jit_get_emit_hooks()
1347
        torch._C._jit_set_emit_hooks(None, None)
1348

1349
    def __exit__(self, *args) -> None:
1350
        torch._C._jit_set_emit_hooks(self.hooks[0], self.hooks[1])
1351

1352

1353
def _is_exception(obj) -> bool:
1354
    if not inspect.isclass(obj):
1355
        return False
1356
    return issubclass(obj, Exception)
1357

1358

1359
def raise_error_container_parameter_missing(target_type) -> None:
1360
    if target_type == "Dict":
1361
        raise RuntimeError(
1362
            "Attempted to use Dict without "
1363
            "contained types. Please add contained type, e.g. "
1364
            "Dict[int, int]"
1365
        )
1366
    raise RuntimeError(
1367
        f"Attempted to use {target_type} without a "
1368
        "contained type. Please add a contained type, e.g. "
1369
        f"{target_type}[int]"
1370
    )
1371

1372

1373
def check_args_exist(target_type) -> None:
1374
    if target_type is List or target_type is list:
1375
        raise_error_container_parameter_missing("List")
1376
    elif target_type is Tuple or target_type is tuple:
1377
        raise_error_container_parameter_missing("Tuple")
1378
    elif target_type is Dict or target_type is dict:
1379
        raise_error_container_parameter_missing("Dict")
1380
    elif target_type is None or target_type is Optional:
1381
        raise_error_container_parameter_missing("Optional")
1382

1383

1384
def check_empty_containers(obj) -> None:
1385
    if obj == [] or obj == {} or obj == ():
1386
        warnings.warn(
1387
            "The inner type of a container is lost when "
1388
            "calling torch.jit.isinstance in eager mode. For "
1389
            "example, List[int] would become list and "
1390
            "therefore falsely return True for List[float] or"
1391
            " List[str]."
1392
        )
1393

1394

1395
# supports List/Dict/Tuple and Optional types
1396
# TODO support future
1397
def container_checker(obj, target_type) -> bool:
1398
    origin_type = get_origin(target_type)
1399
    check_args_exist(target_type)
1400
    if origin_type is None:
1401
        return False
1402
    elif origin_type is list or origin_type is List:
1403
        check_empty_containers(obj)
1404
        if not isinstance(obj, list):
1405
            return False
1406
        arg_type = get_args(target_type)[0]
1407
        arg_origin = get_origin(arg_type)
1408
        for el in obj:
1409
            # check if nested container, ex: List[List[str]]
1410
            if arg_origin:  # processes nested container, ex: List[List[str]]
1411
                if not container_checker(el, arg_type):
1412
                    return False
1413
            elif not isinstance(el, arg_type):
1414
                return False
1415
        return True
1416
    elif origin_type is Dict or origin_type is dict:
1417
        check_empty_containers(obj)
1418
        if not isinstance(obj, dict):
1419
            return False
1420
        key_type = get_args(target_type)[0]
1421
        val_type = get_args(target_type)[1]
1422
        for key, val in obj.items():
1423
            # check if keys are of right type
1424
            if not isinstance(key, key_type):
1425
                return False
1426
            val_origin = get_origin(val_type)
1427
            if val_origin:
1428
                if not container_checker(val, val_type):
1429
                    return False
1430
            elif not isinstance(val, val_type):
1431
                return False
1432
        return True
1433
    elif origin_type is Tuple or origin_type is tuple:
1434
        check_empty_containers(obj)
1435
        if not isinstance(obj, tuple):
1436
            return False
1437
        arg_types = get_args(target_type)
1438
        if len(obj) != len(arg_types):
1439
            return False
1440
        for el, el_type in zip(obj, arg_types):
1441
            el_origin = get_origin(el_type)
1442
            if el_origin:
1443
                if not container_checker(el, el_type):
1444
                    return False
1445
            elif not isinstance(el, el_type):
1446
                return False
1447
        return True
1448
    elif origin_type is Union or issubclass(
1449
        origin_type, BuiltinUnionType
1450
    ):  # also handles Optional
1451
        if obj is None:  # check before recursion because None is always fine
1452
            return True
1453
        inner_types = get_args(target_type)
1454
        for t in inner_types:
1455
            t_origin = get_origin(t)
1456
            if t_origin:
1457
                return container_checker(obj, t)
1458
            elif isinstance(obj, t):
1459
                return True
1460
    return False
1461

1462

1463
def _isinstance(obj, target_type) -> bool:
1464
    if isinstance(target_type, collections.abc.Container):
1465
        if not isinstance(target_type, tuple):
1466
            raise RuntimeError(
1467
                "The second argument to "
1468
                "`torch.jit.isinstance` must be a type "
1469
                "or a tuple of types"
1470
            )
1471
        for t_type in target_type:
1472
            if _isinstance(obj, t_type):
1473
                return True
1474
        return False
1475

1476
    origin_type = get_origin(target_type)
1477
    if origin_type:
1478
        return container_checker(obj, target_type)
1479

1480
    # Check to handle non-typed optional origin returns as none instead
1481
    #    of as optional in 3.7-3.8
1482
    check_args_exist(target_type)
1483

1484
    # handle non-containers
1485
    return isinstance(obj, target_type)
1486

1487

1488
class _TensorExtractor(pickle.Pickler):
1489
    def __init__(self, *args, tensors: List[torch.Tensor], **kwargs):
1490
        super().__init__(*args, **kwargs)
1491
        self.tensors = tensors
1492

1493
    def persistent_id(self, obj):
1494
        if isinstance(obj, torch.Tensor):
1495
            self.tensors.append(obj)
1496
            return ""
1497
        # Since we just want to extract tensors, we don't mind if an object is
1498
        # unpicklable if it doesn't contain tensors, as we can just ignore/skip
1499
        # it. To play it safe, we only do so for common objects that we're sure
1500
        # don't contain tensors. Feel free to add new types here. Note also that
1501
        # even if a type isn't listed here this won't block users, since thet
1502
        # can just add a __getstate__ or __reduce__ method to their class.
1503
        if isinstance(obj, LockType):
1504
            return ""
1505
        # Futures and RRefs don't technically contain a value, they just offer
1506
        # the means to access a value.
1507
        if isinstance(obj, CFuture) or is_rref_instance(obj):
1508
            return ""
1509
        if isinstance(obj, CAwait):
1510
            return ""
1511
        if isinstance(obj, torch.cuda.Event):
1512
            return ""
1513
        if isinstance(obj, threading.Thread):
1514
            return ""
1515
        return None
1516

1517

1518
def _extract_tensors(obj):
1519
    r"""
1520
    This function is exclusively called from C++.
1521
    See ``torch/csrc/jit/python/python_ivalue.h``.
1522

1523
    It extracts the tensors contained in the given object, through pickling.
1524
    """
1525
    tensors: List[torch.Tensor] = []
1526
    extractor = _TensorExtractor(io.BytesIO(), protocol=-1, tensors=tensors)
1527
    extractor.dump(obj)
1528
    return tensors
1529

1530

1531
def _get_model_id(obj) -> Optional[str]:
1532
    if isinstance(obj, torch.jit.ScriptModule):
1533
        return str(obj._c._type())
1534
    elif isinstance(obj, torch.jit.ScriptFunction):
1535
        return obj.qualified_name
1536
    else:
1537
        return None
1538

1539

1540
# In Python-3.11+ typed enums (i.e. IntEnum for example) retain number of base class methods in subclass
1541
# that were previously dropped. To preserve the behavior, explicitly drop them there
1542

1543
if sys.version_info > (3, 10):
1544
    _drop(enum.Enum.__new__)
1545
    _drop(enum.Enum.__format__)
1546
    _drop(enum.Enum.__repr__)
1547
    _drop(enum.Enum.__str__)
1548

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.