opencv

Форк
0
4558 строк · 152.1 Кб
1

2
/* png.c - location for general purpose libpng functions
3
 *
4
 * Copyright (c) 2018-2024 Cosmin Truta
5
 * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
6
 * Copyright (c) 1996-1997 Andreas Dilger
7
 * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
8
 *
9
 * This code is released under the libpng license.
10
 * For conditions of distribution and use, see the disclaimer
11
 * and license in png.h
12
 */
13

14
#include "pngpriv.h"
15

16
/* Generate a compiler error if there is an old png.h in the search path. */
17
typedef png_libpng_version_1_6_43 Your_png_h_is_not_version_1_6_43;
18

19
/* Tells libpng that we have already handled the first "num_bytes" bytes
20
 * of the PNG file signature.  If the PNG data is embedded into another
21
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22
 * or write any of the magic bytes before it starts on the IHDR.
23
 */
24

25
#ifdef PNG_READ_SUPPORTED
26
void PNGAPI
27
png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
28
{
29
   unsigned int nb = (unsigned int)num_bytes;
30

31
   png_debug(1, "in png_set_sig_bytes");
32

33
   if (png_ptr == NULL)
34
      return;
35

36
   if (num_bytes < 0)
37
      nb = 0;
38

39
   if (nb > 8)
40
      png_error(png_ptr, "Too many bytes for PNG signature");
41

42
   png_ptr->sig_bytes = (png_byte)nb;
43
}
44

45
/* Checks whether the supplied bytes match the PNG signature.  We allow
46
 * checking less than the full 8-byte signature so that those apps that
47
 * already read the first few bytes of a file to determine the file type
48
 * can simply check the remaining bytes for extra assurance.  Returns
49
 * an integer less than, equal to, or greater than zero if sig is found,
50
 * respectively, to be less than, to match, or be greater than the correct
51
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
52
 */
53
int PNGAPI
54
png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check)
55
{
56
   static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
57

58
   if (num_to_check > 8)
59
      num_to_check = 8;
60

61
   else if (num_to_check < 1)
62
      return -1;
63

64
   if (start > 7)
65
      return -1;
66

67
   if (start + num_to_check > 8)
68
      num_to_check = 8 - start;
69

70
   return memcmp(&sig[start], &png_signature[start], num_to_check);
71
}
72

73
#endif /* READ */
74

75
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
76
/* Function to allocate memory for zlib */
77
PNG_FUNCTION(voidpf /* PRIVATE */,
78
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
79
{
80
   png_alloc_size_t num_bytes = size;
81

82
   if (png_ptr == NULL)
83
      return NULL;
84

85
   if (items >= (~(png_alloc_size_t)0)/size)
86
   {
87
      png_warning (png_voidcast(png_structrp, png_ptr),
88
          "Potential overflow in png_zalloc()");
89
      return NULL;
90
   }
91

92
   num_bytes *= items;
93
   return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
94
}
95

96
/* Function to free memory for zlib */
97
void /* PRIVATE */
98
png_zfree(voidpf png_ptr, voidpf ptr)
99
{
100
   png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
101
}
102

103
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
104
 * in case CRC is > 32 bits to leave the top bits 0.
105
 */
106
void /* PRIVATE */
107
png_reset_crc(png_structrp png_ptr)
108
{
109
   /* The cast is safe because the crc is a 32-bit value. */
110
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
111
}
112

113
/* Calculate the CRC over a section of data.  We can only pass as
114
 * much data to this routine as the largest single buffer size.  We
115
 * also check that this data will actually be used before going to the
116
 * trouble of calculating it.
117
 */
118
void /* PRIVATE */
119
png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length)
120
{
121
   int need_crc = 1;
122

123
   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
124
   {
125
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
126
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
127
         need_crc = 0;
128
   }
129

130
   else /* critical */
131
   {
132
      if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
133
         need_crc = 0;
134
   }
135

136
   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
137
    * systems it is a 64-bit value.  crc32, however, returns 32 bits so the
138
    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
139
    * necessary to perform a loop here.
140
    */
141
   if (need_crc != 0 && length > 0)
142
   {
143
      uLong crc = png_ptr->crc; /* Should never issue a warning */
144

145
      do
146
      {
147
         uInt safe_length = (uInt)length;
148
#ifndef __COVERITY__
149
         if (safe_length == 0)
150
            safe_length = (uInt)-1; /* evil, but safe */
151
#endif
152

153
         crc = crc32(crc, ptr, safe_length);
154

155
         /* The following should never issue compiler warnings; if they do the
156
          * target system has characteristics that will probably violate other
157
          * assumptions within the libpng code.
158
          */
159
         ptr += safe_length;
160
         length -= safe_length;
161
      }
162
      while (length > 0);
163

164
      /* And the following is always safe because the crc is only 32 bits. */
165
      png_ptr->crc = (png_uint_32)crc;
166
   }
167
}
168

169
/* Check a user supplied version number, called from both read and write
170
 * functions that create a png_struct.
171
 */
172
int
173
png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
174
{
175
   /* Libpng versions 1.0.0 and later are binary compatible if the version
176
    * string matches through the second '.'; we must recompile any
177
    * applications that use any older library version.
178
    */
179

180
   if (user_png_ver != NULL)
181
   {
182
      int i = -1;
183
      int found_dots = 0;
184

185
      do
186
      {
187
         i++;
188
         if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
189
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
190
         if (user_png_ver[i] == '.')
191
            found_dots++;
192
      } while (found_dots < 2 && user_png_ver[i] != 0 &&
193
            PNG_LIBPNG_VER_STRING[i] != 0);
194
   }
195

196
   else
197
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
198

199
   if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
200
   {
201
#ifdef PNG_WARNINGS_SUPPORTED
202
      size_t pos = 0;
203
      char m[128];
204

205
      pos = png_safecat(m, (sizeof m), pos,
206
          "Application built with libpng-");
207
      pos = png_safecat(m, (sizeof m), pos, user_png_ver);
208
      pos = png_safecat(m, (sizeof m), pos, " but running with ");
209
      pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
210
      PNG_UNUSED(pos)
211

212
      png_warning(png_ptr, m);
213
#endif
214

215
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
216
      png_ptr->flags = 0;
217
#endif
218

219
      return 0;
220
   }
221

222
   /* Success return. */
223
   return 1;
224
}
225

226
/* Generic function to create a png_struct for either read or write - this
227
 * contains the common initialization.
228
 */
229
PNG_FUNCTION(png_structp /* PRIVATE */,
230
png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
231
    png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
232
    png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
233
{
234
   png_struct create_struct;
235
#  ifdef PNG_SETJMP_SUPPORTED
236
      jmp_buf create_jmp_buf;
237
#  endif
238

239
   /* This temporary stack-allocated structure is used to provide a place to
240
    * build enough context to allow the user provided memory allocator (if any)
241
    * to be called.
242
    */
243
   memset(&create_struct, 0, (sizeof create_struct));
244

245
   /* Added at libpng-1.2.6 */
246
#  ifdef PNG_USER_LIMITS_SUPPORTED
247
      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
248
      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
249

250
#     ifdef PNG_USER_CHUNK_CACHE_MAX
251
      /* Added at libpng-1.2.43 and 1.4.0 */
252
      create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
253
#     endif
254

255
#     ifdef PNG_USER_CHUNK_MALLOC_MAX
256
      /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists
257
       * in png_struct regardless.
258
       */
259
      create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
260
#     endif
261
#  endif
262

263
   /* The following two API calls simply set fields in png_struct, so it is safe
264
    * to do them now even though error handling is not yet set up.
265
    */
266
#  ifdef PNG_USER_MEM_SUPPORTED
267
      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
268
#  else
269
      PNG_UNUSED(mem_ptr)
270
      PNG_UNUSED(malloc_fn)
271
      PNG_UNUSED(free_fn)
272
#  endif
273

274
   /* (*error_fn) can return control to the caller after the error_ptr is set,
275
    * this will result in a memory leak unless the error_fn does something
276
    * extremely sophisticated.  The design lacks merit but is implicit in the
277
    * API.
278
    */
279
   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
280

281
#  ifdef PNG_SETJMP_SUPPORTED
282
      if (!setjmp(create_jmp_buf))
283
#  endif
284
      {
285
#  ifdef PNG_SETJMP_SUPPORTED
286
         /* Temporarily fake out the longjmp information until we have
287
          * successfully completed this function.  This only works if we have
288
          * setjmp() support compiled in, but it is safe - this stuff should
289
          * never happen.
290
          */
291
         create_struct.jmp_buf_ptr = &create_jmp_buf;
292
         create_struct.jmp_buf_size = 0; /*stack allocation*/
293
         create_struct.longjmp_fn = longjmp;
294
#  endif
295
         /* Call the general version checker (shared with read and write code):
296
          */
297
         if (png_user_version_check(&create_struct, user_png_ver) != 0)
298
         {
299
            png_structrp png_ptr = png_voidcast(png_structrp,
300
                png_malloc_warn(&create_struct, (sizeof *png_ptr)));
301

302
            if (png_ptr != NULL)
303
            {
304
               /* png_ptr->zstream holds a back-pointer to the png_struct, so
305
                * this can only be done now:
306
                */
307
               create_struct.zstream.zalloc = png_zalloc;
308
               create_struct.zstream.zfree = png_zfree;
309
               create_struct.zstream.opaque = png_ptr;
310

311
#              ifdef PNG_SETJMP_SUPPORTED
312
               /* Eliminate the local error handling: */
313
               create_struct.jmp_buf_ptr = NULL;
314
               create_struct.jmp_buf_size = 0;
315
               create_struct.longjmp_fn = 0;
316
#              endif
317

318
               *png_ptr = create_struct;
319

320
               /* This is the successful return point */
321
               return png_ptr;
322
            }
323
         }
324
      }
325

326
   /* A longjmp because of a bug in the application storage allocator or a
327
    * simple failure to allocate the png_struct.
328
    */
329
   return NULL;
330
}
331

332
/* Allocate the memory for an info_struct for the application. */
333
PNG_FUNCTION(png_infop,PNGAPI
334
png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
335
{
336
   png_inforp info_ptr;
337

338
   png_debug(1, "in png_create_info_struct");
339

340
   if (png_ptr == NULL)
341
      return NULL;
342

343
   /* Use the internal API that does not (or at least should not) error out, so
344
    * that this call always returns ok.  The application typically sets up the
345
    * error handling *after* creating the info_struct because this is the way it
346
    * has always been done in 'example.c'.
347
    */
348
   info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
349
       (sizeof *info_ptr)));
350

351
   if (info_ptr != NULL)
352
      memset(info_ptr, 0, (sizeof *info_ptr));
353

354
   return info_ptr;
355
}
356

357
/* This function frees the memory associated with a single info struct.
358
 * Normally, one would use either png_destroy_read_struct() or
359
 * png_destroy_write_struct() to free an info struct, but this may be
360
 * useful for some applications.  From libpng 1.6.0 this function is also used
361
 * internally to implement the png_info release part of the 'struct' destroy
362
 * APIs.  This ensures that all possible approaches free the same data (all of
363
 * it).
364
 */
365
void PNGAPI
366
png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
367
{
368
   png_inforp info_ptr = NULL;
369

370
   png_debug(1, "in png_destroy_info_struct");
371

372
   if (png_ptr == NULL)
373
      return;
374

375
   if (info_ptr_ptr != NULL)
376
      info_ptr = *info_ptr_ptr;
377

378
   if (info_ptr != NULL)
379
   {
380
      /* Do this first in case of an error below; if the app implements its own
381
       * memory management this can lead to png_free calling png_error, which
382
       * will abort this routine and return control to the app error handler.
383
       * An infinite loop may result if it then tries to free the same info
384
       * ptr.
385
       */
386
      *info_ptr_ptr = NULL;
387

388
      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
389
      memset(info_ptr, 0, (sizeof *info_ptr));
390
      png_free(png_ptr, info_ptr);
391
   }
392
}
393

394
/* Initialize the info structure.  This is now an internal function (0.89)
395
 * and applications using it are urged to use png_create_info_struct()
396
 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
397
 * is just a memset).
398
 *
399
 * NOTE: it is almost inconceivable that this API is used because it bypasses
400
 * the user-memory mechanism and the user error handling/warning mechanisms in
401
 * those cases where it does anything other than a memset.
402
 */
403
PNG_FUNCTION(void,PNGAPI
404
png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size),
405
    PNG_DEPRECATED)
406
{
407
   png_inforp info_ptr = *ptr_ptr;
408

409
   png_debug(1, "in png_info_init_3");
410

411
   if (info_ptr == NULL)
412
      return;
413

414
   if ((sizeof (png_info)) > png_info_struct_size)
415
   {
416
      *ptr_ptr = NULL;
417
      /* The following line is why this API should not be used: */
418
      free(info_ptr);
419
      info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
420
          (sizeof *info_ptr)));
421
      if (info_ptr == NULL)
422
         return;
423
      *ptr_ptr = info_ptr;
424
   }
425

426
   /* Set everything to 0 */
427
   memset(info_ptr, 0, (sizeof *info_ptr));
428
}
429

430
void PNGAPI
431
png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
432
    int freer, png_uint_32 mask)
433
{
434
   png_debug(1, "in png_data_freer");
435

436
   if (png_ptr == NULL || info_ptr == NULL)
437
      return;
438

439
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
440
      info_ptr->free_me |= mask;
441

442
   else if (freer == PNG_USER_WILL_FREE_DATA)
443
      info_ptr->free_me &= ~mask;
444

445
   else
446
      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
447
}
448

449
void PNGAPI
450
png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
451
    int num)
452
{
453
   png_debug(1, "in png_free_data");
454

455
   if (png_ptr == NULL || info_ptr == NULL)
456
      return;
457

458
#ifdef PNG_TEXT_SUPPORTED
459
   /* Free text item num or (if num == -1) all text items */
460
   if (info_ptr->text != NULL &&
461
       ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
462
   {
463
      if (num != -1)
464
      {
465
         png_free(png_ptr, info_ptr->text[num].key);
466
         info_ptr->text[num].key = NULL;
467
      }
468

469
      else
470
      {
471
         int i;
472

473
         for (i = 0; i < info_ptr->num_text; i++)
474
            png_free(png_ptr, info_ptr->text[i].key);
475

476
         png_free(png_ptr, info_ptr->text);
477
         info_ptr->text = NULL;
478
         info_ptr->num_text = 0;
479
         info_ptr->max_text = 0;
480
      }
481
   }
482
#endif
483

484
#ifdef PNG_tRNS_SUPPORTED
485
   /* Free any tRNS entry */
486
   if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
487
   {
488
      info_ptr->valid &= ~PNG_INFO_tRNS;
489
      png_free(png_ptr, info_ptr->trans_alpha);
490
      info_ptr->trans_alpha = NULL;
491
      info_ptr->num_trans = 0;
492
   }
493
#endif
494

495
#ifdef PNG_sCAL_SUPPORTED
496
   /* Free any sCAL entry */
497
   if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
498
   {
499
      png_free(png_ptr, info_ptr->scal_s_width);
500
      png_free(png_ptr, info_ptr->scal_s_height);
501
      info_ptr->scal_s_width = NULL;
502
      info_ptr->scal_s_height = NULL;
503
      info_ptr->valid &= ~PNG_INFO_sCAL;
504
   }
505
#endif
506

507
#ifdef PNG_pCAL_SUPPORTED
508
   /* Free any pCAL entry */
509
   if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
510
   {
511
      png_free(png_ptr, info_ptr->pcal_purpose);
512
      png_free(png_ptr, info_ptr->pcal_units);
513
      info_ptr->pcal_purpose = NULL;
514
      info_ptr->pcal_units = NULL;
515

516
      if (info_ptr->pcal_params != NULL)
517
         {
518
            int i;
519

520
            for (i = 0; i < info_ptr->pcal_nparams; i++)
521
               png_free(png_ptr, info_ptr->pcal_params[i]);
522

523
            png_free(png_ptr, info_ptr->pcal_params);
524
            info_ptr->pcal_params = NULL;
525
         }
526
      info_ptr->valid &= ~PNG_INFO_pCAL;
527
   }
528
#endif
529

530
#ifdef PNG_iCCP_SUPPORTED
531
   /* Free any profile entry */
532
   if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
533
   {
534
      png_free(png_ptr, info_ptr->iccp_name);
535
      png_free(png_ptr, info_ptr->iccp_profile);
536
      info_ptr->iccp_name = NULL;
537
      info_ptr->iccp_profile = NULL;
538
      info_ptr->valid &= ~PNG_INFO_iCCP;
539
   }
540
#endif
541

542
#ifdef PNG_sPLT_SUPPORTED
543
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
544
   if (info_ptr->splt_palettes != NULL &&
545
       ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
546
   {
547
      if (num != -1)
548
      {
549
         png_free(png_ptr, info_ptr->splt_palettes[num].name);
550
         png_free(png_ptr, info_ptr->splt_palettes[num].entries);
551
         info_ptr->splt_palettes[num].name = NULL;
552
         info_ptr->splt_palettes[num].entries = NULL;
553
      }
554

555
      else
556
      {
557
         int i;
558

559
         for (i = 0; i < info_ptr->splt_palettes_num; i++)
560
         {
561
            png_free(png_ptr, info_ptr->splt_palettes[i].name);
562
            png_free(png_ptr, info_ptr->splt_palettes[i].entries);
563
         }
564

565
         png_free(png_ptr, info_ptr->splt_palettes);
566
         info_ptr->splt_palettes = NULL;
567
         info_ptr->splt_palettes_num = 0;
568
         info_ptr->valid &= ~PNG_INFO_sPLT;
569
      }
570
   }
571
#endif
572

573
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
574
   if (info_ptr->unknown_chunks != NULL &&
575
       ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
576
   {
577
      if (num != -1)
578
      {
579
          png_free(png_ptr, info_ptr->unknown_chunks[num].data);
580
          info_ptr->unknown_chunks[num].data = NULL;
581
      }
582

583
      else
584
      {
585
         int i;
586

587
         for (i = 0; i < info_ptr->unknown_chunks_num; i++)
588
            png_free(png_ptr, info_ptr->unknown_chunks[i].data);
589

590
         png_free(png_ptr, info_ptr->unknown_chunks);
591
         info_ptr->unknown_chunks = NULL;
592
         info_ptr->unknown_chunks_num = 0;
593
      }
594
   }
595
#endif
596

597
#ifdef PNG_eXIf_SUPPORTED
598
   /* Free any eXIf entry */
599
   if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
600
   {
601
# ifdef PNG_READ_eXIf_SUPPORTED
602
      if (info_ptr->eXIf_buf)
603
      {
604
         png_free(png_ptr, info_ptr->eXIf_buf);
605
         info_ptr->eXIf_buf = NULL;
606
      }
607
# endif
608
      if (info_ptr->exif)
609
      {
610
         png_free(png_ptr, info_ptr->exif);
611
         info_ptr->exif = NULL;
612
      }
613
      info_ptr->valid &= ~PNG_INFO_eXIf;
614
   }
615
#endif
616

617
#ifdef PNG_hIST_SUPPORTED
618
   /* Free any hIST entry */
619
   if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
620
   {
621
      png_free(png_ptr, info_ptr->hist);
622
      info_ptr->hist = NULL;
623
      info_ptr->valid &= ~PNG_INFO_hIST;
624
   }
625
#endif
626

627
   /* Free any PLTE entry that was internally allocated */
628
   if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
629
   {
630
      png_free(png_ptr, info_ptr->palette);
631
      info_ptr->palette = NULL;
632
      info_ptr->valid &= ~PNG_INFO_PLTE;
633
      info_ptr->num_palette = 0;
634
   }
635

636
#ifdef PNG_INFO_IMAGE_SUPPORTED
637
   /* Free any image bits attached to the info structure */
638
   if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
639
   {
640
      if (info_ptr->row_pointers != NULL)
641
      {
642
         png_uint_32 row;
643
         for (row = 0; row < info_ptr->height; row++)
644
            png_free(png_ptr, info_ptr->row_pointers[row]);
645

646
         png_free(png_ptr, info_ptr->row_pointers);
647
         info_ptr->row_pointers = NULL;
648
      }
649
      info_ptr->valid &= ~PNG_INFO_IDAT;
650
   }
651
#endif
652

653
   if (num != -1)
654
      mask &= ~PNG_FREE_MUL;
655

656
   info_ptr->free_me &= ~mask;
657
}
658
#endif /* READ || WRITE */
659

660
/* This function returns a pointer to the io_ptr associated with the user
661
 * functions.  The application should free any memory associated with this
662
 * pointer before png_write_destroy() or png_read_destroy() are called.
663
 */
664
png_voidp PNGAPI
665
png_get_io_ptr(png_const_structrp png_ptr)
666
{
667
   if (png_ptr == NULL)
668
      return NULL;
669

670
   return png_ptr->io_ptr;
671
}
672

673
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
674
#  ifdef PNG_STDIO_SUPPORTED
675
/* Initialize the default input/output functions for the PNG file.  If you
676
 * use your own read or write routines, you can call either png_set_read_fn()
677
 * or png_set_write_fn() instead of png_init_io().  If you have defined
678
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
679
 * function of your own because "FILE *" isn't necessarily available.
680
 */
681
void PNGAPI
682
png_init_io(png_structrp png_ptr, png_FILE_p fp)
683
{
684
   png_debug(1, "in png_init_io");
685

686
   if (png_ptr == NULL)
687
      return;
688

689
   png_ptr->io_ptr = (png_voidp)fp;
690
}
691
#  endif
692

693
#  ifdef PNG_SAVE_INT_32_SUPPORTED
694
/* PNG signed integers are saved in 32-bit 2's complement format.  ANSI C-90
695
 * defines a cast of a signed integer to an unsigned integer either to preserve
696
 * the value, if it is positive, or to calculate:
697
 *
698
 *     (UNSIGNED_MAX+1) + integer
699
 *
700
 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
701
 * negative integral value is added the result will be an unsigned value
702
 * corresponding to the 2's complement representation.
703
 */
704
void PNGAPI
705
png_save_int_32(png_bytep buf, png_int_32 i)
706
{
707
   png_save_uint_32(buf, (png_uint_32)i);
708
}
709
#  endif
710

711
#  ifdef PNG_TIME_RFC1123_SUPPORTED
712
/* Convert the supplied time into an RFC 1123 string suitable for use in
713
 * a "Creation Time" or other text-based time string.
714
 */
715
int PNGAPI
716
png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
717
{
718
   static const char short_months[12][4] =
719
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
720
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
721

722
   if (out == NULL)
723
      return 0;
724

725
   if (ptime->year > 9999 /* RFC1123 limitation */ ||
726
       ptime->month == 0    ||  ptime->month > 12  ||
727
       ptime->day   == 0    ||  ptime->day   > 31  ||
728
       ptime->hour  > 23    ||  ptime->minute > 59 ||
729
       ptime->second > 60)
730
      return 0;
731

732
   {
733
      size_t pos = 0;
734
      char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */
735

736
#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
737
#     define APPEND_NUMBER(format, value)\
738
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
739
#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
740

741
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
742
      APPEND(' ');
743
      APPEND_STRING(short_months[(ptime->month - 1)]);
744
      APPEND(' ');
745
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
746
      APPEND(' ');
747
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
748
      APPEND(':');
749
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
750
      APPEND(':');
751
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
752
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
753
      PNG_UNUSED (pos)
754

755
#     undef APPEND
756
#     undef APPEND_NUMBER
757
#     undef APPEND_STRING
758
   }
759

760
   return 1;
761
}
762

763
#    if PNG_LIBPNG_VER < 10700
764
/* To do: remove the following from libpng-1.7 */
765
/* Original API that uses a private buffer in png_struct.
766
 * Deprecated because it causes png_struct to carry a spurious temporary
767
 * buffer (png_struct::time_buffer), better to have the caller pass this in.
768
 */
769
png_const_charp PNGAPI
770
png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
771
{
772
   if (png_ptr != NULL)
773
   {
774
      /* The only failure above if png_ptr != NULL is from an invalid ptime */
775
      if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
776
         png_warning(png_ptr, "Ignoring invalid time value");
777

778
      else
779
         return png_ptr->time_buffer;
780
   }
781

782
   return NULL;
783
}
784
#    endif /* LIBPNG_VER < 10700 */
785
#  endif /* TIME_RFC1123 */
786

787
#endif /* READ || WRITE */
788

789
png_const_charp PNGAPI
790
png_get_copyright(png_const_structrp png_ptr)
791
{
792
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
793
#ifdef PNG_STRING_COPYRIGHT
794
   return PNG_STRING_COPYRIGHT
795
#else
796
   return PNG_STRING_NEWLINE \
797
      "libpng version 1.6.43" PNG_STRING_NEWLINE \
798
      "Copyright (c) 2018-2024 Cosmin Truta" PNG_STRING_NEWLINE \
799
      "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \
800
      PNG_STRING_NEWLINE \
801
      "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
802
      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
803
      PNG_STRING_NEWLINE;
804
#endif
805
}
806

807
/* The following return the library version as a short string in the
808
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
809
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
810
 * is defined in png.h.
811
 * Note: now there is no difference between png_get_libpng_ver() and
812
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
813
 * it is guaranteed that png.c uses the correct version of png.h.
814
 */
815
png_const_charp PNGAPI
816
png_get_libpng_ver(png_const_structrp png_ptr)
817
{
818
   /* Version of *.c files used when building libpng */
819
   return png_get_header_ver(png_ptr);
820
}
821

822
png_const_charp PNGAPI
823
png_get_header_ver(png_const_structrp png_ptr)
824
{
825
   /* Version of *.h files used when building libpng */
826
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
827
   return PNG_LIBPNG_VER_STRING;
828
}
829

830
png_const_charp PNGAPI
831
png_get_header_version(png_const_structrp png_ptr)
832
{
833
   /* Returns longer string containing both version and date */
834
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
835
#ifdef __STDC__
836
   return PNG_HEADER_VERSION_STRING
837
#  ifndef PNG_READ_SUPPORTED
838
      " (NO READ SUPPORT)"
839
#  endif
840
      PNG_STRING_NEWLINE;
841
#else
842
   return PNG_HEADER_VERSION_STRING;
843
#endif
844
}
845

846
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
847
/* NOTE: this routine is not used internally! */
848
/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
849
 * large of png_color.  This lets grayscale images be treated as
850
 * paletted.  Most useful for gamma correction and simplification
851
 * of code.  This API is not used internally.
852
 */
853
void PNGAPI
854
png_build_grayscale_palette(int bit_depth, png_colorp palette)
855
{
856
   int num_palette;
857
   int color_inc;
858
   int i;
859
   int v;
860

861
   png_debug(1, "in png_do_build_grayscale_palette");
862

863
   if (palette == NULL)
864
      return;
865

866
   switch (bit_depth)
867
   {
868
      case 1:
869
         num_palette = 2;
870
         color_inc = 0xff;
871
         break;
872

873
      case 2:
874
         num_palette = 4;
875
         color_inc = 0x55;
876
         break;
877

878
      case 4:
879
         num_palette = 16;
880
         color_inc = 0x11;
881
         break;
882

883
      case 8:
884
         num_palette = 256;
885
         color_inc = 1;
886
         break;
887

888
      default:
889
         num_palette = 0;
890
         color_inc = 0;
891
         break;
892
   }
893

894
   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
895
   {
896
      palette[i].red = (png_byte)(v & 0xff);
897
      palette[i].green = (png_byte)(v & 0xff);
898
      palette[i].blue = (png_byte)(v & 0xff);
899
   }
900
}
901
#endif
902

903
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
904
int PNGAPI
905
png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
906
{
907
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
908
   png_const_bytep p, p_end;
909

910
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
911
      return PNG_HANDLE_CHUNK_AS_DEFAULT;
912

913
   p_end = png_ptr->chunk_list;
914
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
915

916
   /* The code is the fifth byte after each four byte string.  Historically this
917
    * code was always searched from the end of the list, this is no longer
918
    * necessary because the 'set' routine handles duplicate entries correctly.
919
    */
920
   do /* num_chunk_list > 0, so at least one */
921
   {
922
      p -= 5;
923

924
      if (memcmp(chunk_name, p, 4) == 0)
925
         return p[4];
926
   }
927
   while (p > p_end);
928

929
   /* This means that known chunks should be processed and unknown chunks should
930
    * be handled according to the value of png_ptr->unknown_default; this can be
931
    * confusing because, as a result, there are two levels of defaulting for
932
    * unknown chunks.
933
    */
934
   return PNG_HANDLE_CHUNK_AS_DEFAULT;
935
}
936

937
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
938
   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
939
int /* PRIVATE */
940
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
941
{
942
   png_byte chunk_string[5];
943

944
   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
945
   return png_handle_as_unknown(png_ptr, chunk_string);
946
}
947
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
948
#endif /* SET_UNKNOWN_CHUNKS */
949

950
#ifdef PNG_READ_SUPPORTED
951
/* This function, added to libpng-1.0.6g, is untested. */
952
int PNGAPI
953
png_reset_zstream(png_structrp png_ptr)
954
{
955
   if (png_ptr == NULL)
956
      return Z_STREAM_ERROR;
957

958
   /* WARNING: this resets the window bits to the maximum! */
959
   return inflateReset(&png_ptr->zstream);
960
}
961
#endif /* READ */
962

963
/* This function was added to libpng-1.0.7 */
964
png_uint_32 PNGAPI
965
png_access_version_number(void)
966
{
967
   /* Version of *.c files used when building libpng */
968
   return (png_uint_32)PNG_LIBPNG_VER;
969
}
970

971
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
972
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
973
 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
974
 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
975
 */
976
void /* PRIVATE */
977
png_zstream_error(png_structrp png_ptr, int ret)
978
{
979
   /* Translate 'ret' into an appropriate error string, priority is given to the
980
    * one in zstream if set.  This always returns a string, even in cases like
981
    * Z_OK or Z_STREAM_END where the error code is a success code.
982
    */
983
   if (png_ptr->zstream.msg == NULL) switch (ret)
984
   {
985
      default:
986
      case Z_OK:
987
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
988
         break;
989

990
      case Z_STREAM_END:
991
         /* Normal exit */
992
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
993
         break;
994

995
      case Z_NEED_DICT:
996
         /* This means the deflate stream did not have a dictionary; this
997
          * indicates a bogus PNG.
998
          */
999
         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1000
         break;
1001

1002
      case Z_ERRNO:
1003
         /* gz APIs only: should not happen */
1004
         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1005
         break;
1006

1007
      case Z_STREAM_ERROR:
1008
         /* internal libpng error */
1009
         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1010
         break;
1011

1012
      case Z_DATA_ERROR:
1013
         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1014
         break;
1015

1016
      case Z_MEM_ERROR:
1017
         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1018
         break;
1019

1020
      case Z_BUF_ERROR:
1021
         /* End of input or output; not a problem if the caller is doing
1022
          * incremental read or write.
1023
          */
1024
         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1025
         break;
1026

1027
      case Z_VERSION_ERROR:
1028
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1029
         break;
1030

1031
      case PNG_UNEXPECTED_ZLIB_RETURN:
1032
         /* Compile errors here mean that zlib now uses the value co-opted in
1033
          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1034
          * and change pngpriv.h.  Note that this message is "... return",
1035
          * whereas the default/Z_OK one is "... return code".
1036
          */
1037
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1038
         break;
1039
   }
1040
}
1041

1042
/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
1043
 * at libpng 1.5.5!
1044
 */
1045

1046
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
1047
#ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
1048
static int
1049
png_colorspace_check_gamma(png_const_structrp png_ptr,
1050
    png_colorspacerp colorspace, png_fixed_point gAMA, int from)
1051
   /* This is called to check a new gamma value against an existing one.  The
1052
    * routine returns false if the new gamma value should not be written.
1053
    *
1054
    * 'from' says where the new gamma value comes from:
1055
    *
1056
    *    0: the new gamma value is the libpng estimate for an ICC profile
1057
    *    1: the new gamma value comes from a gAMA chunk
1058
    *    2: the new gamma value comes from an sRGB chunk
1059
    */
1060
{
1061
   png_fixed_point gtest;
1062

1063
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
1064
       (png_muldiv(&gtest, colorspace->gamma, PNG_FP_1, gAMA) == 0  ||
1065
      png_gamma_significant(gtest) != 0))
1066
   {
1067
      /* Either this is an sRGB image, in which case the calculated gamma
1068
       * approximation should match, or this is an image with a profile and the
1069
       * value libpng calculates for the gamma of the profile does not match the
1070
       * value recorded in the file.  The former, sRGB, case is an error, the
1071
       * latter is just a warning.
1072
       */
1073
      if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
1074
      {
1075
         png_chunk_report(png_ptr, "gamma value does not match sRGB",
1076
             PNG_CHUNK_ERROR);
1077
         /* Do not overwrite an sRGB value */
1078
         return from == 2;
1079
      }
1080

1081
      else /* sRGB tag not involved */
1082
      {
1083
         png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
1084
             PNG_CHUNK_WARNING);
1085
         return from == 1;
1086
      }
1087
   }
1088

1089
   return 1;
1090
}
1091

1092
void /* PRIVATE */
1093
png_colorspace_set_gamma(png_const_structrp png_ptr,
1094
    png_colorspacerp colorspace, png_fixed_point gAMA)
1095
{
1096
   /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't
1097
    * occur.  Since the fixed point representation is asymmetrical it is
1098
    * possible for 1/gamma to overflow the limit of 21474 and this means the
1099
    * gamma value must be at least 5/100000 and hence at most 20000.0.  For
1100
    * safety the limits here are a little narrower.  The values are 0.00016 to
1101
    * 6250.0, which are truly ridiculous gamma values (and will produce
1102
    * displays that are all black or all white.)
1103
    *
1104
    * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
1105
    * handling code, which only required the value to be >0.
1106
    */
1107
   png_const_charp errmsg;
1108

1109
   if (gAMA < 16 || gAMA > 625000000)
1110
      errmsg = "gamma value out of range";
1111

1112
#  ifdef PNG_READ_gAMA_SUPPORTED
1113
   /* Allow the application to set the gamma value more than once */
1114
   else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
1115
      (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
1116
      errmsg = "duplicate";
1117
#  endif
1118

1119
   /* Do nothing if the colorspace is already invalid */
1120
   else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1121
      return;
1122

1123
   else
1124
   {
1125
      if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA,
1126
          1/*from gAMA*/) != 0)
1127
      {
1128
         /* Store this gamma value. */
1129
         colorspace->gamma = gAMA;
1130
         colorspace->flags |=
1131
            (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
1132
      }
1133

1134
      /* At present if the check_gamma test fails the gamma of the colorspace is
1135
       * not updated however the colorspace is not invalidated.  This
1136
       * corresponds to the case where the existing gamma comes from an sRGB
1137
       * chunk or profile.  An error message has already been output.
1138
       */
1139
      return;
1140
   }
1141

1142
   /* Error exit - errmsg has been set. */
1143
   colorspace->flags |= PNG_COLORSPACE_INVALID;
1144
   png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
1145
}
1146

1147
void /* PRIVATE */
1148
png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr)
1149
{
1150
   if ((info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0)
1151
   {
1152
      /* Everything is invalid */
1153
      info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB|
1154
         PNG_INFO_iCCP);
1155

1156
#     ifdef PNG_COLORSPACE_SUPPORTED
1157
      /* Clean up the iCCP profile now if it won't be used. */
1158
      png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/);
1159
#     else
1160
      PNG_UNUSED(png_ptr)
1161
#     endif
1162
   }
1163

1164
   else
1165
   {
1166
#     ifdef PNG_COLORSPACE_SUPPORTED
1167
      /* Leave the INFO_iCCP flag set if the pngset.c code has already set
1168
       * it; this allows a PNG to contain a profile which matches sRGB and
1169
       * yet still have that profile retrievable by the application.
1170
       */
1171
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) != 0)
1172
         info_ptr->valid |= PNG_INFO_sRGB;
1173

1174
      else
1175
         info_ptr->valid &= ~PNG_INFO_sRGB;
1176

1177
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1178
         info_ptr->valid |= PNG_INFO_cHRM;
1179

1180
      else
1181
         info_ptr->valid &= ~PNG_INFO_cHRM;
1182
#     endif
1183

1184
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) != 0)
1185
         info_ptr->valid |= PNG_INFO_gAMA;
1186

1187
      else
1188
         info_ptr->valid &= ~PNG_INFO_gAMA;
1189
   }
1190
}
1191

1192
#ifdef PNG_READ_SUPPORTED
1193
void /* PRIVATE */
1194
png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr)
1195
{
1196
   if (info_ptr == NULL) /* reduce code size; check here not in the caller */
1197
      return;
1198

1199
   info_ptr->colorspace = png_ptr->colorspace;
1200
   png_colorspace_sync_info(png_ptr, info_ptr);
1201
}
1202
#endif
1203
#endif /* GAMMA */
1204

1205
#ifdef PNG_COLORSPACE_SUPPORTED
1206
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1207
 * cHRM, as opposed to using chromaticities.  These internal APIs return
1208
 * non-zero on a parameter error.  The X, Y and Z values are required to be
1209
 * positive and less than 1.0.
1210
 */
1211
static int
1212
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1213
{
1214
   png_int_32 d, dwhite, whiteX, whiteY;
1215

1216
   d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
1217
   if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0)
1218
      return 1;
1219
   if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0)
1220
      return 1;
1221
   dwhite = d;
1222
   whiteX = XYZ->red_X;
1223
   whiteY = XYZ->red_Y;
1224

1225
   d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
1226
   if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0)
1227
      return 1;
1228
   if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0)
1229
      return 1;
1230
   dwhite += d;
1231
   whiteX += XYZ->green_X;
1232
   whiteY += XYZ->green_Y;
1233

1234
   d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
1235
   if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0)
1236
      return 1;
1237
   if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0)
1238
      return 1;
1239
   dwhite += d;
1240
   whiteX += XYZ->blue_X;
1241
   whiteY += XYZ->blue_Y;
1242

1243
   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors,
1244
    * thus:
1245
    */
1246
   if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1247
      return 1;
1248
   if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1249
      return 1;
1250

1251
   return 0;
1252
}
1253

1254
static int
1255
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1256
{
1257
   png_fixed_point red_inverse, green_inverse, blue_scale;
1258
   png_fixed_point left, right, denominator;
1259

1260
   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1261
    * have end points with 0 tristimulus values (these are impossible end
1262
    * points, but they are used to cover the possible colors).  We check
1263
    * xy->whitey against 5, not 0, to avoid a possible integer overflow.
1264
    */
1265
   if (xy->redx   < 0 || xy->redx > PNG_FP_1) return 1;
1266
   if (xy->redy   < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
1267
   if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
1268
   if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
1269
   if (xy->bluex  < 0 || xy->bluex > PNG_FP_1) return 1;
1270
   if (xy->bluey  < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
1271
   if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
1272
   if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
1273

1274
   /* The reverse calculation is more difficult because the original tristimulus
1275
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1276
    * derived values were recorded in the cHRM chunk;
1277
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1278
    * therefore an arbitrary ninth value has to be introduced to undo the
1279
    * original transformations.
1280
    *
1281
    * Think of the original end-points as points in (X,Y,Z) space.  The
1282
    * chromaticity values (c) have the property:
1283
    *
1284
    *           C
1285
    *   c = ---------
1286
    *       X + Y + Z
1287
    *
1288
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1289
    * three chromaticity values (x,y,z) for each end-point obey the
1290
    * relationship:
1291
    *
1292
    *   x + y + z = 1
1293
    *
1294
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1295
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1296
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1297
    * and chromaticity is the intersection of the vector from the origin to the
1298
    * (X,Y,Z) value with the chromaticity plane.
1299
    *
1300
    * To fully invert the chromaticity calculation we would need the three
1301
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1302
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1303
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1304
    * given all three of the scale factors since:
1305
    *
1306
    *    color-C = color-c * color-scale
1307
    *    white-C = red-C + green-C + blue-C
1308
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1309
    *
1310
    * But cHRM records only white-x and white-y, so we have lost the white scale
1311
    * factor:
1312
    *
1313
    *    white-C = white-c*white-scale
1314
    *
1315
    * To handle this the inverse transformation makes an arbitrary assumption
1316
    * about white-scale:
1317
    *
1318
    *    Assume: white-Y = 1.0
1319
    *    Hence:  white-scale = 1/white-y
1320
    *    Or:     red-Y + green-Y + blue-Y = 1.0
1321
    *
1322
    * Notice the last statement of the assumption gives an equation in three of
1323
    * the nine values we want to calculate.  8 more equations come from the
1324
    * above routine as summarised at the top above (the chromaticity
1325
    * calculation):
1326
    *
1327
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1328
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1329
    *
1330
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1331
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1332
    * determinants, however this is not as bad as it seems because only 28 of
1333
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1334
    * Cramer's rule is notoriously numerically unstable because the determinant
1335
    * calculation involves the difference of large, but similar, numbers.  It is
1336
    * difficult to be sure that the calculation is stable for real world values
1337
    * and it is certain that it becomes unstable where the end points are close
1338
    * together.
1339
    *
1340
    * So this code uses the perhaps slightly less optimal but more
1341
    * understandable and totally obvious approach of calculating color-scale.
1342
    *
1343
    * This algorithm depends on the precision in white-scale and that is
1344
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1345
    * accuracy inherent in the cHRM chunk drops off substantially.
1346
    *
1347
    * libpng arithmetic: a simple inversion of the above equations
1348
    * ------------------------------------------------------------
1349
    *
1350
    *    white_scale = 1/white-y
1351
    *    white-X = white-x * white-scale
1352
    *    white-Y = 1.0
1353
    *    white-Z = (1 - white-x - white-y) * white_scale
1354
    *
1355
    *    white-C = red-C + green-C + blue-C
1356
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1357
    *
1358
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1359
    * all the coefficients are now known:
1360
    *
1361
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1362
    *       = white-x/white-y
1363
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1364
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1365
    *       = (1 - white-x - white-y)/white-y
1366
    *
1367
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1368
    * three equations together to get an alternative third:
1369
    *
1370
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1371
    *
1372
    * So now we have a Cramer's rule solution where the determinants are just
1373
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1374
    * multiplication of three coefficients so we can't guarantee to avoid
1375
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1376
    * floating point is probably a good choice here, but it's not an option for
1377
    * fixed point.  Instead proceed to simplify the first two equations by
1378
    * eliminating what is likely to be the largest value, blue-scale:
1379
    *
1380
    *    blue-scale = white-scale - red-scale - green-scale
1381
    *
1382
    * Hence:
1383
    *
1384
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1385
    *                (white-x - blue-x)*white-scale
1386
    *
1387
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1388
    *                1 - blue-y*white-scale
1389
    *
1390
    * And now we can trivially solve for (red-scale,green-scale):
1391
    *
1392
    *    green-scale =
1393
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1394
    *                -----------------------------------------------------------
1395
    *                                  green-x - blue-x
1396
    *
1397
    *    red-scale =
1398
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1399
    *                ---------------------------------------------------------
1400
    *                                  red-y - blue-y
1401
    *
1402
    * Hence:
1403
    *
1404
    *    red-scale =
1405
    *          ( (green-x - blue-x) * (white-y - blue-y) -
1406
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1407
    * -------------------------------------------------------------------------
1408
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1409
    *
1410
    *    green-scale =
1411
    *          ( (red-y - blue-y) * (white-x - blue-x) -
1412
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1413
    * -------------------------------------------------------------------------
1414
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1415
    *
1416
    * Accuracy:
1417
    * The input values have 5 decimal digits of accuracy.  The values are all in
1418
    * the range 0 < value < 1, so simple products are in the same range but may
1419
    * need up to 10 decimal digits to preserve the original precision and avoid
1420
    * underflow.  Because we are using a 32-bit signed representation we cannot
1421
    * match this; the best is a little over 9 decimal digits, less than 10.
1422
    *
1423
    * The approach used here is to preserve the maximum precision within the
1424
    * signed representation.  Because the red-scale calculation above uses the
1425
    * difference between two products of values that must be in the range -1..+1
1426
    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
1427
    * factor is irrelevant in the calculation because it is applied to both
1428
    * numerator and denominator.
1429
    *
1430
    * Note that the values of the differences of the products of the
1431
    * chromaticities in the above equations tend to be small, for example for
1432
    * the sRGB chromaticities they are:
1433
    *
1434
    * red numerator:    -0.04751
1435
    * green numerator:  -0.08788
1436
    * denominator:      -0.2241 (without white-y multiplication)
1437
    *
1438
    *  The resultant Y coefficients from the chromaticities of some widely used
1439
    *  color space definitions are (to 15 decimal places):
1440
    *
1441
    *  sRGB
1442
    *    0.212639005871510 0.715168678767756 0.072192315360734
1443
    *  Kodak ProPhoto
1444
    *    0.288071128229293 0.711843217810102 0.000085653960605
1445
    *  Adobe RGB
1446
    *    0.297344975250536 0.627363566255466 0.075291458493998
1447
    *  Adobe Wide Gamut RGB
1448
    *    0.258728243040113 0.724682314948566 0.016589442011321
1449
    */
1450
   /* By the argument, above overflow should be impossible here. The return
1451
    * value of 2 indicates an internal error to the caller.
1452
    */
1453
   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0)
1454
      return 2;
1455
   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0)
1456
      return 2;
1457
   denominator = left - right;
1458

1459
   /* Now find the red numerator. */
1460
   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1461
      return 2;
1462
   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1463
      return 2;
1464

1465
   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1466
    * chunk values.  This calculation actually returns the reciprocal of the
1467
    * scale value because this allows us to delay the multiplication of white-y
1468
    * into the denominator, which tends to produce a small number.
1469
    */
1470
   if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 ||
1471
       red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1472
      return 1;
1473

1474
   /* Similarly for green_inverse: */
1475
   if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1476
      return 2;
1477
   if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1478
      return 2;
1479
   if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 ||
1480
       green_inverse <= xy->whitey)
1481
      return 1;
1482

1483
   /* And the blue scale, the checks above guarantee this can't overflow but it
1484
    * can still produce 0 for extreme cHRM values.
1485
    */
1486
   blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
1487
       png_reciprocal(green_inverse);
1488
   if (blue_scale <= 0)
1489
      return 1;
1490

1491

1492
   /* And fill in the png_XYZ: */
1493
   if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1494
      return 1;
1495
   if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1496
      return 1;
1497
   if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1498
       red_inverse) == 0)
1499
      return 1;
1500

1501
   if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1502
      return 1;
1503
   if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1504
      return 1;
1505
   if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1506
       green_inverse) == 0)
1507
      return 1;
1508

1509
   if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1510
      return 1;
1511
   if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1512
      return 1;
1513
   if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1514
       PNG_FP_1) == 0)
1515
      return 1;
1516

1517
   return 0; /*success*/
1518
}
1519

1520
static int
1521
png_XYZ_normalize(png_XYZ *XYZ)
1522
{
1523
   png_int_32 Y;
1524

1525
   if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
1526
      XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
1527
      XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
1528
      return 1;
1529

1530
   /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
1531
    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1532
    * relying on addition of two positive values producing a negative one is not
1533
    * safe.
1534
    */
1535
   Y = XYZ->red_Y;
1536
   if (0x7fffffff - Y < XYZ->green_X)
1537
      return 1;
1538
   Y += XYZ->green_Y;
1539
   if (0x7fffffff - Y < XYZ->blue_X)
1540
      return 1;
1541
   Y += XYZ->blue_Y;
1542

1543
   if (Y != PNG_FP_1)
1544
   {
1545
      if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0)
1546
         return 1;
1547
      if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0)
1548
         return 1;
1549
      if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0)
1550
         return 1;
1551

1552
      if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0)
1553
         return 1;
1554
      if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0)
1555
         return 1;
1556
      if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0)
1557
         return 1;
1558

1559
      if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0)
1560
         return 1;
1561
      if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0)
1562
         return 1;
1563
      if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0)
1564
         return 1;
1565
   }
1566

1567
   return 0;
1568
}
1569

1570
static int
1571
png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta)
1572
{
1573
   /* Allow an error of +/-0.01 (absolute value) on each chromaticity */
1574
   if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
1575
       PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
1576
       PNG_OUT_OF_RANGE(xy1->redx,   xy2->redx,  delta) ||
1577
       PNG_OUT_OF_RANGE(xy1->redy,   xy2->redy,  delta) ||
1578
       PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
1579
       PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
1580
       PNG_OUT_OF_RANGE(xy1->bluex,  xy2->bluex, delta) ||
1581
       PNG_OUT_OF_RANGE(xy1->bluey,  xy2->bluey, delta))
1582
      return 0;
1583
   return 1;
1584
}
1585

1586
/* Added in libpng-1.6.0, a different check for the validity of a set of cHRM
1587
 * chunk chromaticities.  Earlier checks used to simply look for the overflow
1588
 * condition (where the determinant of the matrix to solve for XYZ ends up zero
1589
 * because the chromaticity values are not all distinct.)  Despite this it is
1590
 * theoretically possible to produce chromaticities that are apparently valid
1591
 * but that rapidly degrade to invalid, potentially crashing, sets because of
1592
 * arithmetic inaccuracies when calculations are performed on them.  The new
1593
 * check is to round-trip xy -> XYZ -> xy and then check that the result is
1594
 * within a small percentage of the original.
1595
 */
1596
static int
1597
png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy)
1598
{
1599
   int result;
1600
   png_xy xy_test;
1601

1602
   /* As a side-effect this routine also returns the XYZ endpoints. */
1603
   result = png_XYZ_from_xy(XYZ, xy);
1604
   if (result != 0)
1605
      return result;
1606

1607
   result = png_xy_from_XYZ(&xy_test, XYZ);
1608
   if (result != 0)
1609
      return result;
1610

1611
   if (png_colorspace_endpoints_match(xy, &xy_test,
1612
       5/*actually, the math is pretty accurate*/) != 0)
1613
      return 0;
1614

1615
   /* Too much slip */
1616
   return 1;
1617
}
1618

1619
/* This is the check going the other way.  The XYZ is modified to normalize it
1620
 * (another side-effect) and the xy chromaticities are returned.
1621
 */
1622
static int
1623
png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ)
1624
{
1625
   int result;
1626
   png_XYZ XYZtemp;
1627

1628
   result = png_XYZ_normalize(XYZ);
1629
   if (result != 0)
1630
      return result;
1631

1632
   result = png_xy_from_XYZ(xy, XYZ);
1633
   if (result != 0)
1634
      return result;
1635

1636
   XYZtemp = *XYZ;
1637
   return png_colorspace_check_xy(&XYZtemp, xy);
1638
}
1639

1640
/* Used to check for an endpoint match against sRGB */
1641
static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
1642
{
1643
   /* color      x       y */
1644
   /* red   */ 64000, 33000,
1645
   /* green */ 30000, 60000,
1646
   /* blue  */ 15000,  6000,
1647
   /* white */ 31270, 32900
1648
};
1649

1650
static int
1651
png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr,
1652
    png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
1653
    int preferred)
1654
{
1655
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1656
      return 0;
1657

1658
   /* The consistency check is performed on the chromaticities; this factors out
1659
    * variations because of the normalization (or not) of the end point Y
1660
    * values.
1661
    */
1662
   if (preferred < 2 &&
1663
       (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1664
   {
1665
      /* The end points must be reasonably close to any we already have.  The
1666
       * following allows an error of up to +/-.001
1667
       */
1668
      if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy,
1669
          100) == 0)
1670
      {
1671
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1672
         png_benign_error(png_ptr, "inconsistent chromaticities");
1673
         return 0; /* failed */
1674
      }
1675

1676
      /* Only overwrite with preferred values */
1677
      if (preferred == 0)
1678
         return 1; /* ok, but no change */
1679
   }
1680

1681
   colorspace->end_points_xy = *xy;
1682
   colorspace->end_points_XYZ = *XYZ;
1683
   colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
1684

1685
   /* The end points are normally quoted to two decimal digits, so allow +/-0.01
1686
    * on this test.
1687
    */
1688
   if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0)
1689
      colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
1690

1691
   else
1692
      colorspace->flags &= PNG_COLORSPACE_CANCEL(
1693
         PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1694

1695
   return 2; /* ok and changed */
1696
}
1697

1698
int /* PRIVATE */
1699
png_colorspace_set_chromaticities(png_const_structrp png_ptr,
1700
    png_colorspacerp colorspace, const png_xy *xy, int preferred)
1701
{
1702
   /* We must check the end points to ensure they are reasonable - in the past
1703
    * color management systems have crashed as a result of getting bogus
1704
    * colorant values, while this isn't the fault of libpng it is the
1705
    * responsibility of libpng because PNG carries the bomb and libpng is in a
1706
    * position to protect against it.
1707
    */
1708
   png_XYZ XYZ;
1709

1710
   switch (png_colorspace_check_xy(&XYZ, xy))
1711
   {
1712
      case 0: /* success */
1713
         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
1714
             preferred);
1715

1716
      case 1:
1717
         /* We can't invert the chromaticities so we can't produce value XYZ
1718
          * values.  Likely as not a color management system will fail too.
1719
          */
1720
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1721
         png_benign_error(png_ptr, "invalid chromaticities");
1722
         break;
1723

1724
      default:
1725
         /* libpng is broken; this should be a warning but if it happens we
1726
          * want error reports so for the moment it is an error.
1727
          */
1728
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1729
         png_error(png_ptr, "internal error checking chromaticities");
1730
   }
1731

1732
   return 0; /* failed */
1733
}
1734

1735
int /* PRIVATE */
1736
png_colorspace_set_endpoints(png_const_structrp png_ptr,
1737
    png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
1738
{
1739
   png_XYZ XYZ = *XYZ_in;
1740
   png_xy xy;
1741

1742
   switch (png_colorspace_check_XYZ(&xy, &XYZ))
1743
   {
1744
      case 0:
1745
         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
1746
             preferred);
1747

1748
      case 1:
1749
         /* End points are invalid. */
1750
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1751
         png_benign_error(png_ptr, "invalid end points");
1752
         break;
1753

1754
      default:
1755
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1756
         png_error(png_ptr, "internal error checking chromaticities");
1757
   }
1758

1759
   return 0; /* failed */
1760
}
1761

1762
#if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED)
1763
/* Error message generation */
1764
static char
1765
png_icc_tag_char(png_uint_32 byte)
1766
{
1767
   byte &= 0xff;
1768
   if (byte >= 32 && byte <= 126)
1769
      return (char)byte;
1770
   else
1771
      return '?';
1772
}
1773

1774
static void
1775
png_icc_tag_name(char *name, png_uint_32 tag)
1776
{
1777
   name[0] = '\'';
1778
   name[1] = png_icc_tag_char(tag >> 24);
1779
   name[2] = png_icc_tag_char(tag >> 16);
1780
   name[3] = png_icc_tag_char(tag >>  8);
1781
   name[4] = png_icc_tag_char(tag      );
1782
   name[5] = '\'';
1783
}
1784

1785
static int
1786
is_ICC_signature_char(png_alloc_size_t it)
1787
{
1788
   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1789
      (it >= 97 && it <= 122);
1790
}
1791

1792
static int
1793
is_ICC_signature(png_alloc_size_t it)
1794
{
1795
   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1796
      is_ICC_signature_char((it >> 16) & 0xff) &&
1797
      is_ICC_signature_char((it >> 8) & 0xff) &&
1798
      is_ICC_signature_char(it & 0xff);
1799
}
1800

1801
static int
1802
png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace,
1803
    png_const_charp name, png_alloc_size_t value, png_const_charp reason)
1804
{
1805
   size_t pos;
1806
   char message[196]; /* see below for calculation */
1807

1808
   if (colorspace != NULL)
1809
      colorspace->flags |= PNG_COLORSPACE_INVALID;
1810

1811
   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1812
   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1813
   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1814
   if (is_ICC_signature(value) != 0)
1815
   {
1816
      /* So 'value' is at most 4 bytes and the following cast is safe */
1817
      png_icc_tag_name(message+pos, (png_uint_32)value);
1818
      pos += 6; /* total +8; less than the else clause */
1819
      message[pos++] = ':';
1820
      message[pos++] = ' ';
1821
   }
1822
#  ifdef PNG_WARNINGS_SUPPORTED
1823
   else
1824
   {
1825
      char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */
1826

1827
      pos = png_safecat(message, (sizeof message), pos,
1828
          png_format_number(number, number+(sizeof number),
1829
          PNG_NUMBER_FORMAT_x, value));
1830
      pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */
1831
   }
1832
#  endif
1833
   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1834
   pos = png_safecat(message, (sizeof message), pos, reason);
1835
   PNG_UNUSED(pos)
1836

1837
   /* This is recoverable, but make it unconditionally an app_error on write to
1838
    * avoid writing invalid ICC profiles into PNG files (i.e., we handle them
1839
    * on read, with a warning, but on write unless the app turns off
1840
    * application errors the PNG won't be written.)
1841
    */
1842
   png_chunk_report(png_ptr, message,
1843
       (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
1844

1845
   return 0;
1846
}
1847
#endif /* sRGB || iCCP */
1848

1849
#ifdef PNG_sRGB_SUPPORTED
1850
int /* PRIVATE */
1851
png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace,
1852
    int intent)
1853
{
1854
   /* sRGB sets known gamma, end points and (from the chunk) intent. */
1855
   /* IMPORTANT: these are not necessarily the values found in an ICC profile
1856
    * because ICC profiles store values adapted to a D50 environment; it is
1857
    * expected that the ICC profile mediaWhitePointTag will be D50; see the
1858
    * checks and code elsewhere to understand this better.
1859
    *
1860
    * These XYZ values, which are accurate to 5dp, produce rgb to gray
1861
    * coefficients of (6968,23435,2366), which are reduced (because they add up
1862
    * to 32769 not 32768) to (6968,23434,2366).  These are the values that
1863
    * libpng has traditionally used (and are the best values given the 15bit
1864
    * algorithm used by the rgb to gray code.)
1865
    */
1866
   static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */
1867
   {
1868
      /* color      X      Y      Z */
1869
      /* red   */ 41239, 21264,  1933,
1870
      /* green */ 35758, 71517, 11919,
1871
      /* blue  */ 18048,  7219, 95053
1872
   };
1873

1874
   /* Do nothing if the colorspace is already invalidated. */
1875
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1876
      return 0;
1877

1878
   /* Check the intent, then check for existing settings.  It is valid for the
1879
    * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
1880
    * be consistent with the correct values.  If, however, this function is
1881
    * called below because an iCCP chunk matches sRGB then it is quite
1882
    * conceivable that an older app recorded incorrect gAMA and cHRM because of
1883
    * an incorrect calculation based on the values in the profile - this does
1884
    * *not* invalidate the profile (though it still produces an error, which can
1885
    * be ignored.)
1886
    */
1887
   if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST)
1888
      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1889
          (png_alloc_size_t)intent, "invalid sRGB rendering intent");
1890

1891
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 &&
1892
       colorspace->rendering_intent != intent)
1893
      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1894
         (png_alloc_size_t)intent, "inconsistent rendering intents");
1895

1896
   if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0)
1897
   {
1898
      png_benign_error(png_ptr, "duplicate sRGB information ignored");
1899
      return 0;
1900
   }
1901

1902
   /* If the standard sRGB cHRM chunk does not match the one from the PNG file
1903
    * warn but overwrite the value with the correct one.
1904
    */
1905
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 &&
1906
       !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
1907
       100))
1908
      png_chunk_report(png_ptr, "cHRM chunk does not match sRGB",
1909
         PNG_CHUNK_ERROR);
1910

1911
   /* This check is just done for the error reporting - the routine always
1912
    * returns true when the 'from' argument corresponds to sRGB (2).
1913
    */
1914
   (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE,
1915
       2/*from sRGB*/);
1916

1917
   /* intent: bugs in GCC force 'int' to be used as the parameter type. */
1918
   colorspace->rendering_intent = (png_uint_16)intent;
1919
   colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT;
1920

1921
   /* endpoints */
1922
   colorspace->end_points_xy = sRGB_xy;
1923
   colorspace->end_points_XYZ = sRGB_XYZ;
1924
   colorspace->flags |=
1925
      (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1926

1927
   /* gamma */
1928
   colorspace->gamma = PNG_GAMMA_sRGB_INVERSE;
1929
   colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA;
1930

1931
   /* Finally record that we have an sRGB profile */
1932
   colorspace->flags |=
1933
      (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB);
1934

1935
   return 1; /* set */
1936
}
1937
#endif /* sRGB */
1938

1939
#ifdef PNG_iCCP_SUPPORTED
1940
/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1941
 * is XYZ(0.9642,1.0,0.8249), which scales to:
1942
 *
1943
 *    (63189.8112, 65536, 54060.6464)
1944
 */
1945
static const png_byte D50_nCIEXYZ[12] =
1946
   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1947

1948
static int /* bool */
1949
icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1950
    png_const_charp name, png_uint_32 profile_length)
1951
{
1952
   if (profile_length < 132)
1953
      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1954
          "too short");
1955
   return 1;
1956
}
1957

1958
#ifdef PNG_READ_iCCP_SUPPORTED
1959
int /* PRIVATE */
1960
png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1961
    png_const_charp name, png_uint_32 profile_length)
1962
{
1963
   if (!icc_check_length(png_ptr, colorspace, name, profile_length))
1964
      return 0;
1965

1966
   /* This needs to be here because the 'normal' check is in
1967
    * png_decompress_chunk, yet this happens after the attempt to
1968
    * png_malloc_base the required data.  We only need this on read; on write
1969
    * the caller supplies the profile buffer so libpng doesn't allocate it.  See
1970
    * the call to icc_check_length below (the write case).
1971
    */
1972
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
1973
      else if (png_ptr->user_chunk_malloc_max > 0 &&
1974
               png_ptr->user_chunk_malloc_max < profile_length)
1975
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1976
             "exceeds application limits");
1977
#  elif PNG_USER_CHUNK_MALLOC_MAX > 0
1978
      else if (PNG_USER_CHUNK_MALLOC_MAX < profile_length)
1979
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1980
             "exceeds libpng limits");
1981
#  else /* !SET_USER_LIMITS */
1982
      /* This will get compiled out on all 32-bit and better systems. */
1983
      else if (PNG_SIZE_MAX < profile_length)
1984
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1985
             "exceeds system limits");
1986
#  endif /* !SET_USER_LIMITS */
1987

1988
   return 1;
1989
}
1990
#endif /* READ_iCCP */
1991

1992
int /* PRIVATE */
1993
png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace,
1994
    png_const_charp name, png_uint_32 profile_length,
1995
    png_const_bytep profile/* first 132 bytes only */, int color_type)
1996
{
1997
   png_uint_32 temp;
1998

1999
   /* Length check; this cannot be ignored in this code because profile_length
2000
    * is used later to check the tag table, so even if the profile seems over
2001
    * long profile_length from the caller must be correct.  The caller can fix
2002
    * this up on read or write by just passing in the profile header length.
2003
    */
2004
   temp = png_get_uint_32(profile);
2005
   if (temp != profile_length)
2006
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2007
          "length does not match profile");
2008

2009
   temp = (png_uint_32) (*(profile+8));
2010
   if (temp > 3 && (profile_length & 3))
2011
      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2012
          "invalid length");
2013

2014
   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
2015
   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
2016
      profile_length < 132+12*temp) /* truncated tag table */
2017
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2018
          "tag count too large");
2019

2020
   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
2021
    * 16 bits.
2022
    */
2023
   temp = png_get_uint_32(profile+64);
2024
   if (temp >= 0xffff) /* The ICC limit */
2025
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2026
          "invalid rendering intent");
2027

2028
   /* This is just a warning because the profile may be valid in future
2029
    * versions.
2030
    */
2031
   if (temp >= PNG_sRGB_INTENT_LAST)
2032
      (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2033
          "intent outside defined range");
2034

2035
   /* At this point the tag table can't be checked because it hasn't necessarily
2036
    * been loaded; however, various header fields can be checked.  These checks
2037
    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
2038
    * restricts the profiles that can be passed in an iCCP chunk (they must be
2039
    * appropriate to processing PNG data!)
2040
    */
2041

2042
   /* Data checks (could be skipped).  These checks must be independent of the
2043
    * version number; however, the version number doesn't accommodate changes in
2044
    * the header fields (just the known tags and the interpretation of the
2045
    * data.)
2046
    */
2047
   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
2048
   if (temp != 0x61637370)
2049
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2050
          "invalid signature");
2051

2052
   /* Currently the PCS illuminant/adopted white point (the computational
2053
    * white point) are required to be D50,
2054
    * however the profile contains a record of the illuminant so perhaps ICC
2055
    * expects to be able to change this in the future (despite the rationale in
2056
    * the introduction for using a fixed PCS adopted white.)  Consequently the
2057
    * following is just a warning.
2058
    */
2059
   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
2060
      (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
2061
          "PCS illuminant is not D50");
2062

2063
   /* The PNG spec requires this:
2064
    * "If the iCCP chunk is present, the image samples conform to the colour
2065
    * space represented by the embedded ICC profile as defined by the
2066
    * International Color Consortium [ICC]. The colour space of the ICC profile
2067
    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
2068
    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
2069
    * and 4)."
2070
    *
2071
    * This checking code ensures the embedded profile (on either read or write)
2072
    * conforms to the specification requirements.  Notice that an ICC 'gray'
2073
    * color-space profile contains the information to transform the monochrome
2074
    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
2075
    * should be used in preference to the standard libpng K channel replication
2076
    * into R, G and B channels.
2077
    *
2078
    * Previously it was suggested that an RGB profile on grayscale data could be
2079
    * handled.  However it it is clear that using an RGB profile in this context
2080
    * must be an error - there is no specification of what it means.  Thus it is
2081
    * almost certainly more correct to ignore the profile.
2082
    */
2083
   temp = png_get_uint_32(profile+16); /* data colour space field */
2084
   switch (temp)
2085
   {
2086
      case 0x52474220: /* 'RGB ' */
2087
         if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
2088
            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2089
                "RGB color space not permitted on grayscale PNG");
2090
         break;
2091

2092
      case 0x47524159: /* 'GRAY' */
2093
         if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
2094
            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2095
                "Gray color space not permitted on RGB PNG");
2096
         break;
2097

2098
      default:
2099
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2100
             "invalid ICC profile color space");
2101
   }
2102

2103
   /* It is up to the application to check that the profile class matches the
2104
    * application requirements; the spec provides no guidance, but it's pretty
2105
    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
2106
    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
2107
    * cases.  Issue an error for device link or abstract profiles - these don't
2108
    * contain the records necessary to transform the color-space to anything
2109
    * other than the target device (and not even that for an abstract profile).
2110
    * Profiles of these classes may not be embedded in images.
2111
    */
2112
   temp = png_get_uint_32(profile+12); /* profile/device class */
2113
   switch (temp)
2114
   {
2115
      case 0x73636e72: /* 'scnr' */
2116
      case 0x6d6e7472: /* 'mntr' */
2117
      case 0x70727472: /* 'prtr' */
2118
      case 0x73706163: /* 'spac' */
2119
         /* All supported */
2120
         break;
2121

2122
      case 0x61627374: /* 'abst' */
2123
         /* May not be embedded in an image */
2124
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2125
             "invalid embedded Abstract ICC profile");
2126

2127
      case 0x6c696e6b: /* 'link' */
2128
         /* DeviceLink profiles cannot be interpreted in a non-device specific
2129
          * fashion, if an app uses the AToB0Tag in the profile the results are
2130
          * undefined unless the result is sent to the intended device,
2131
          * therefore a DeviceLink profile should not be found embedded in a
2132
          * PNG.
2133
          */
2134
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2135
             "unexpected DeviceLink ICC profile class");
2136

2137
      case 0x6e6d636c: /* 'nmcl' */
2138
         /* A NamedColor profile is also device specific, however it doesn't
2139
          * contain an AToB0 tag that is open to misinterpretation.  Almost
2140
          * certainly it will fail the tests below.
2141
          */
2142
         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2143
             "unexpected NamedColor ICC profile class");
2144
         break;
2145

2146
      default:
2147
         /* To allow for future enhancements to the profile accept unrecognized
2148
          * profile classes with a warning, these then hit the test below on the
2149
          * tag content to ensure they are backward compatible with one of the
2150
          * understood profiles.
2151
          */
2152
         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2153
             "unrecognized ICC profile class");
2154
         break;
2155
   }
2156

2157
   /* For any profile other than a device link one the PCS must be encoded
2158
    * either in XYZ or Lab.
2159
    */
2160
   temp = png_get_uint_32(profile+20);
2161
   switch (temp)
2162
   {
2163
      case 0x58595a20: /* 'XYZ ' */
2164
      case 0x4c616220: /* 'Lab ' */
2165
         break;
2166

2167
      default:
2168
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2169
             "unexpected ICC PCS encoding");
2170
   }
2171

2172
   return 1;
2173
}
2174

2175
int /* PRIVATE */
2176
png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace,
2177
    png_const_charp name, png_uint_32 profile_length,
2178
    png_const_bytep profile /* header plus whole tag table */)
2179
{
2180
   png_uint_32 tag_count = png_get_uint_32(profile+128);
2181
   png_uint_32 itag;
2182
   png_const_bytep tag = profile+132; /* The first tag */
2183

2184
   /* First scan all the tags in the table and add bits to the icc_info value
2185
    * (temporarily in 'tags').
2186
    */
2187
   for (itag=0; itag < tag_count; ++itag, tag += 12)
2188
   {
2189
      png_uint_32 tag_id = png_get_uint_32(tag+0);
2190
      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
2191
      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
2192

2193
      /* The ICC specification does not exclude zero length tags, therefore the
2194
       * start might actually be anywhere if there is no data, but this would be
2195
       * a clear abuse of the intent of the standard so the start is checked for
2196
       * being in range.  All defined tag types have an 8 byte header - a 4 byte
2197
       * type signature then 0.
2198
       */
2199

2200
      /* This is a hard error; potentially it can cause read outside the
2201
       * profile.
2202
       */
2203
      if (tag_start > profile_length || tag_length > profile_length - tag_start)
2204
         return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
2205
             "ICC profile tag outside profile");
2206

2207
      if ((tag_start & 3) != 0)
2208
      {
2209
         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
2210
          * only a warning here because libpng does not care about the
2211
          * alignment.
2212
          */
2213
         (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
2214
             "ICC profile tag start not a multiple of 4");
2215
      }
2216
   }
2217

2218
   return 1; /* success, maybe with warnings */
2219
}
2220

2221
#ifdef PNG_sRGB_SUPPORTED
2222
#if PNG_sRGB_PROFILE_CHECKS >= 0
2223
/* Information about the known ICC sRGB profiles */
2224
static const struct
2225
{
2226
   png_uint_32 adler, crc, length;
2227
   png_uint_32 md5[4];
2228
   png_byte    have_md5;
2229
   png_byte    is_broken;
2230
   png_uint_16 intent;
2231

2232
#  define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
2233
#  define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
2234
      { adler, crc, length, md5, broke, intent },
2235

2236
} png_sRGB_checks[] =
2237
{
2238
   /* This data comes from contrib/tools/checksum-icc run on downloads of
2239
    * all four ICC sRGB profiles from www.color.org.
2240
    */
2241
   /* adler32, crc32, MD5[4], intent, date, length, file-name */
2242
   PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
2243
       PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
2244
       "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
2245

2246
   /* ICC sRGB v2 perceptual no black-compensation: */
2247
   PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
2248
       PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
2249
       "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
2250

2251
   PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
2252
       PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
2253
       "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
2254

2255
   /* ICC sRGB v4 perceptual */
2256
   PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
2257
       PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
2258
       "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
2259

2260
   /* The following profiles have no known MD5 checksum. If there is a match
2261
    * on the (empty) MD5 the other fields are used to attempt a match and
2262
    * a warning is produced.  The first two of these profiles have a 'cprt' tag
2263
    * which suggests that they were also made by Hewlett Packard.
2264
    */
2265
   PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
2266
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
2267
       "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
2268

2269
   /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
2270
    * match the D50 PCS illuminant in the header (it is in fact the D65 values,
2271
    * so the white point is recorded as the un-adapted value.)  The profiles
2272
    * below only differ in one byte - the intent - and are basically the same as
2273
    * the previous profile except for the mediaWhitePointTag error and a missing
2274
    * chromaticAdaptationTag.
2275
    */
2276
   PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
2277
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
2278
       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
2279

2280
   PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
2281
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
2282
       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
2283
};
2284

2285
static int
2286
png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr,
2287
    png_const_bytep profile, uLong adler)
2288
{
2289
   /* The quick check is to verify just the MD5 signature and trust the
2290
    * rest of the data.  Because the profile has already been verified for
2291
    * correctness this is safe.  png_colorspace_set_sRGB will check the 'intent'
2292
    * field too, so if the profile has been edited with an intent not defined
2293
    * by sRGB (but maybe defined by a later ICC specification) the read of
2294
    * the profile will fail at that point.
2295
    */
2296

2297
   png_uint_32 length = 0;
2298
   png_uint_32 intent = 0x10000; /* invalid */
2299
#if PNG_sRGB_PROFILE_CHECKS > 1
2300
   uLong crc = 0; /* the value for 0 length data */
2301
#endif
2302
   unsigned int i;
2303

2304
#ifdef PNG_SET_OPTION_SUPPORTED
2305
   /* First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on" */
2306
   if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) ==
2307
               PNG_OPTION_ON)
2308
      return 0;
2309
#endif
2310

2311
   for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
2312
   {
2313
      if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
2314
         png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
2315
         png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
2316
         png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
2317
      {
2318
         /* This may be one of the old HP profiles without an MD5, in that
2319
          * case we can only use the length and Adler32 (note that these
2320
          * are not used by default if there is an MD5!)
2321
          */
2322
#        if PNG_sRGB_PROFILE_CHECKS == 0
2323
            if (png_sRGB_checks[i].have_md5 != 0)
2324
               return 1+png_sRGB_checks[i].is_broken;
2325
#        endif
2326

2327
         /* Profile is unsigned or more checks have been configured in. */
2328
         if (length == 0)
2329
         {
2330
            length = png_get_uint_32(profile);
2331
            intent = png_get_uint_32(profile+64);
2332
         }
2333

2334
         /* Length *and* intent must match */
2335
         if (length == (png_uint_32) png_sRGB_checks[i].length &&
2336
            intent == (png_uint_32) png_sRGB_checks[i].intent)
2337
         {
2338
            /* Now calculate the adler32 if not done already. */
2339
            if (adler == 0)
2340
            {
2341
               adler = adler32(0, NULL, 0);
2342
               adler = adler32(adler, profile, length);
2343
            }
2344

2345
            if (adler == png_sRGB_checks[i].adler)
2346
            {
2347
               /* These basic checks suggest that the data has not been
2348
                * modified, but if the check level is more than 1 perform
2349
                * our own crc32 checksum on the data.
2350
                */
2351
#              if PNG_sRGB_PROFILE_CHECKS > 1
2352
                  if (crc == 0)
2353
                  {
2354
                     crc = crc32(0, NULL, 0);
2355
                     crc = crc32(crc, profile, length);
2356
                  }
2357

2358
                  /* So this check must pass for the 'return' below to happen.
2359
                   */
2360
                  if (crc == png_sRGB_checks[i].crc)
2361
#              endif
2362
               {
2363
                  if (png_sRGB_checks[i].is_broken != 0)
2364
                  {
2365
                     /* These profiles are known to have bad data that may cause
2366
                      * problems if they are used, therefore attempt to
2367
                      * discourage their use, skip the 'have_md5' warning below,
2368
                      * which is made irrelevant by this error.
2369
                      */
2370
                     png_chunk_report(png_ptr, "known incorrect sRGB profile",
2371
                         PNG_CHUNK_ERROR);
2372
                  }
2373

2374
                  /* Warn that this being done; this isn't even an error since
2375
                   * the profile is perfectly valid, but it would be nice if
2376
                   * people used the up-to-date ones.
2377
                   */
2378
                  else if (png_sRGB_checks[i].have_md5 == 0)
2379
                  {
2380
                     png_chunk_report(png_ptr,
2381
                         "out-of-date sRGB profile with no signature",
2382
                         PNG_CHUNK_WARNING);
2383
                  }
2384

2385
                  return 1+png_sRGB_checks[i].is_broken;
2386
               }
2387
            }
2388

2389
# if PNG_sRGB_PROFILE_CHECKS > 0
2390
         /* The signature matched, but the profile had been changed in some
2391
          * way.  This probably indicates a data error or uninformed hacking.
2392
          * Fall through to "no match".
2393
          */
2394
         png_chunk_report(png_ptr,
2395
             "Not recognizing known sRGB profile that has been edited",
2396
             PNG_CHUNK_WARNING);
2397
         break;
2398
# endif
2399
         }
2400
      }
2401
   }
2402

2403
   return 0; /* no match */
2404
}
2405

2406
void /* PRIVATE */
2407
png_icc_set_sRGB(png_const_structrp png_ptr,
2408
    png_colorspacerp colorspace, png_const_bytep profile, uLong adler)
2409
{
2410
   /* Is this profile one of the known ICC sRGB profiles?  If it is, just set
2411
    * the sRGB information.
2412
    */
2413
   if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0)
2414
      (void)png_colorspace_set_sRGB(png_ptr, colorspace,
2415
         (int)/*already checked*/png_get_uint_32(profile+64));
2416
}
2417
#endif /* PNG_sRGB_PROFILE_CHECKS >= 0 */
2418
#endif /* sRGB */
2419

2420
int /* PRIVATE */
2421
png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace,
2422
    png_const_charp name, png_uint_32 profile_length, png_const_bytep profile,
2423
    int color_type)
2424
{
2425
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
2426
      return 0;
2427

2428
   if (icc_check_length(png_ptr, colorspace, name, profile_length) != 0 &&
2429
       png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
2430
           color_type) != 0 &&
2431
       png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
2432
           profile) != 0)
2433
   {
2434
#     if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0
2435
         /* If no sRGB support, don't try storing sRGB information */
2436
         png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
2437
#     endif
2438
      return 1;
2439
   }
2440

2441
   /* Failure case */
2442
   return 0;
2443
}
2444
#endif /* iCCP */
2445

2446
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
2447
void /* PRIVATE */
2448
png_colorspace_set_rgb_coefficients(png_structrp png_ptr)
2449
{
2450
   /* Set the rgb_to_gray coefficients from the colorspace. */
2451
   if (png_ptr->rgb_to_gray_coefficients_set == 0 &&
2452
      (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
2453
   {
2454
      /* png_set_background has not been called, get the coefficients from the Y
2455
       * values of the colorspace colorants.
2456
       */
2457
      png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
2458
      png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
2459
      png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
2460
      png_fixed_point total = r+g+b;
2461

2462
      if (total > 0 &&
2463
         r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
2464
         g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
2465
         b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
2466
         r+g+b <= 32769)
2467
      {
2468
         /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
2469
          * all of the coefficients were rounded up.  Handle this by
2470
          * reducing the *largest* coefficient by 1; this matches the
2471
          * approach used for the default coefficients in pngrtran.c
2472
          */
2473
         int add = 0;
2474

2475
         if (r+g+b > 32768)
2476
            add = -1;
2477
         else if (r+g+b < 32768)
2478
            add = 1;
2479

2480
         if (add != 0)
2481
         {
2482
            if (g >= r && g >= b)
2483
               g += add;
2484
            else if (r >= g && r >= b)
2485
               r += add;
2486
            else
2487
               b += add;
2488
         }
2489

2490
         /* Check for an internal error. */
2491
         if (r+g+b != 32768)
2492
            png_error(png_ptr,
2493
                "internal error handling cHRM coefficients");
2494

2495
         else
2496
         {
2497
            png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
2498
            png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
2499
         }
2500
      }
2501

2502
      /* This is a png_error at present even though it could be ignored -
2503
       * it should never happen, but it is important that if it does, the
2504
       * bug is fixed.
2505
       */
2506
      else
2507
         png_error(png_ptr, "internal error handling cHRM->XYZ");
2508
   }
2509
}
2510
#endif /* READ_RGB_TO_GRAY */
2511

2512
#endif /* COLORSPACE */
2513

2514
void /* PRIVATE */
2515
png_check_IHDR(png_const_structrp png_ptr,
2516
    png_uint_32 width, png_uint_32 height, int bit_depth,
2517
    int color_type, int interlace_type, int compression_type,
2518
    int filter_type)
2519
{
2520
   int error = 0;
2521

2522
   /* Check for width and height valid values */
2523
   if (width == 0)
2524
   {
2525
      png_warning(png_ptr, "Image width is zero in IHDR");
2526
      error = 1;
2527
   }
2528

2529
   if (width > PNG_UINT_31_MAX)
2530
   {
2531
      png_warning(png_ptr, "Invalid image width in IHDR");
2532
      error = 1;
2533
   }
2534

2535
   /* The bit mask on the first line below must be at least as big as a
2536
    * png_uint_32.  "~7U" is not adequate on 16-bit systems because it will
2537
    * be an unsigned 16-bit value.  Casting to (png_alloc_size_t) makes the
2538
    * type of the result at least as bit (in bits) as the RHS of the > operator
2539
    * which also avoids a common warning on 64-bit systems that the comparison
2540
    * of (png_uint_32) against the constant value on the RHS will always be
2541
    * false.
2542
    */
2543
   if (((width + 7) & ~(png_alloc_size_t)7) >
2544
       (((PNG_SIZE_MAX
2545
           - 48        /* big_row_buf hack */
2546
           - 1)        /* filter byte */
2547
           / 8)        /* 8-byte RGBA pixels */
2548
           - 1))       /* extra max_pixel_depth pad */
2549
   {
2550
      /* The size of the row must be within the limits of this architecture.
2551
       * Because the read code can perform arbitrary transformations the
2552
       * maximum size is checked here.  Because the code in png_read_start_row
2553
       * adds extra space "for safety's sake" in several places a conservative
2554
       * limit is used here.
2555
       *
2556
       * NOTE: it would be far better to check the size that is actually used,
2557
       * but the effect in the real world is minor and the changes are more
2558
       * extensive, therefore much more dangerous and much more difficult to
2559
       * write in a way that avoids compiler warnings.
2560
       */
2561
      png_warning(png_ptr, "Image width is too large for this architecture");
2562
      error = 1;
2563
   }
2564

2565
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2566
   if (width > png_ptr->user_width_max)
2567
#else
2568
   if (width > PNG_USER_WIDTH_MAX)
2569
#endif
2570
   {
2571
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2572
      error = 1;
2573
   }
2574

2575
   if (height == 0)
2576
   {
2577
      png_warning(png_ptr, "Image height is zero in IHDR");
2578
      error = 1;
2579
   }
2580

2581
   if (height > PNG_UINT_31_MAX)
2582
   {
2583
      png_warning(png_ptr, "Invalid image height in IHDR");
2584
      error = 1;
2585
   }
2586

2587
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2588
   if (height > png_ptr->user_height_max)
2589
#else
2590
   if (height > PNG_USER_HEIGHT_MAX)
2591
#endif
2592
   {
2593
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2594
      error = 1;
2595
   }
2596

2597
   /* Check other values */
2598
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2599
       bit_depth != 8 && bit_depth != 16)
2600
   {
2601
      png_warning(png_ptr, "Invalid bit depth in IHDR");
2602
      error = 1;
2603
   }
2604

2605
   if (color_type < 0 || color_type == 1 ||
2606
       color_type == 5 || color_type > 6)
2607
   {
2608
      png_warning(png_ptr, "Invalid color type in IHDR");
2609
      error = 1;
2610
   }
2611

2612
   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2613
       ((color_type == PNG_COLOR_TYPE_RGB ||
2614
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2615
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2616
   {
2617
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2618
      error = 1;
2619
   }
2620

2621
   if (interlace_type >= PNG_INTERLACE_LAST)
2622
   {
2623
      png_warning(png_ptr, "Unknown interlace method in IHDR");
2624
      error = 1;
2625
   }
2626

2627
   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2628
   {
2629
      png_warning(png_ptr, "Unknown compression method in IHDR");
2630
      error = 1;
2631
   }
2632

2633
#ifdef PNG_MNG_FEATURES_SUPPORTED
2634
   /* Accept filter_method 64 (intrapixel differencing) only if
2635
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2636
    * 2. Libpng did not read a PNG signature (this filter_method is only
2637
    *    used in PNG datastreams that are embedded in MNG datastreams) and
2638
    * 3. The application called png_permit_mng_features with a mask that
2639
    *    included PNG_FLAG_MNG_FILTER_64 and
2640
    * 4. The filter_method is 64 and
2641
    * 5. The color_type is RGB or RGBA
2642
    */
2643
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2644
       png_ptr->mng_features_permitted != 0)
2645
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2646

2647
   if (filter_type != PNG_FILTER_TYPE_BASE)
2648
   {
2649
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2650
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2651
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2652
          (color_type == PNG_COLOR_TYPE_RGB ||
2653
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2654
      {
2655
         png_warning(png_ptr, "Unknown filter method in IHDR");
2656
         error = 1;
2657
      }
2658

2659
      if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2660
      {
2661
         png_warning(png_ptr, "Invalid filter method in IHDR");
2662
         error = 1;
2663
      }
2664
   }
2665

2666
#else
2667
   if (filter_type != PNG_FILTER_TYPE_BASE)
2668
   {
2669
      png_warning(png_ptr, "Unknown filter method in IHDR");
2670
      error = 1;
2671
   }
2672
#endif
2673

2674
   if (error == 1)
2675
      png_error(png_ptr, "Invalid IHDR data");
2676
}
2677

2678
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2679
/* ASCII to fp functions */
2680
/* Check an ASCII formatted floating point value, see the more detailed
2681
 * comments in pngpriv.h
2682
 */
2683
/* The following is used internally to preserve the sticky flags */
2684
#define png_fp_add(state, flags) ((state) |= (flags))
2685
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2686

2687
int /* PRIVATE */
2688
png_check_fp_number(png_const_charp string, size_t size, int *statep,
2689
    size_t *whereami)
2690
{
2691
   int state = *statep;
2692
   size_t i = *whereami;
2693

2694
   while (i < size)
2695
   {
2696
      int type;
2697
      /* First find the type of the next character */
2698
      switch (string[i])
2699
      {
2700
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2701
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2702
      case 46:  type = PNG_FP_SAW_DOT;                    break;
2703
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2704
      case 49: case 50: case 51: case 52:
2705
      case 53: case 54: case 55: case 56:
2706
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2707
      case 69:
2708
      case 101: type = PNG_FP_SAW_E;                      break;
2709
      default:  goto PNG_FP_End;
2710
      }
2711

2712
      /* Now deal with this type according to the current
2713
       * state, the type is arranged to not overlap the
2714
       * bits of the PNG_FP_STATE.
2715
       */
2716
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2717
      {
2718
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2719
         if ((state & PNG_FP_SAW_ANY) != 0)
2720
            goto PNG_FP_End; /* not a part of the number */
2721

2722
         png_fp_add(state, type);
2723
         break;
2724

2725
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2726
         /* Ok as trailer, ok as lead of fraction. */
2727
         if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2728
            goto PNG_FP_End;
2729

2730
         else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2731
            png_fp_add(state, type);
2732

2733
         else
2734
            png_fp_set(state, PNG_FP_FRACTION | type);
2735

2736
         break;
2737

2738
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2739
         if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2740
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2741

2742
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2743

2744
         break;
2745

2746
      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2747
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2748
            goto PNG_FP_End;
2749

2750
         png_fp_set(state, PNG_FP_EXPONENT);
2751

2752
         break;
2753

2754
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2755
         goto PNG_FP_End; ** no sign in fraction */
2756

2757
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2758
         goto PNG_FP_End; ** Because SAW_DOT is always set */
2759

2760
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2761
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2762
         break;
2763

2764
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2765
         /* This is correct because the trailing '.' on an
2766
          * integer is handled above - so we can only get here
2767
          * with the sequence ".E" (with no preceding digits).
2768
          */
2769
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2770
            goto PNG_FP_End;
2771

2772
         png_fp_set(state, PNG_FP_EXPONENT);
2773

2774
         break;
2775

2776
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2777
         if ((state & PNG_FP_SAW_ANY) != 0)
2778
            goto PNG_FP_End; /* not a part of the number */
2779

2780
         png_fp_add(state, PNG_FP_SAW_SIGN);
2781

2782
         break;
2783

2784
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2785
         goto PNG_FP_End; */
2786

2787
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2788
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2789

2790
         break;
2791

2792
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2793
         goto PNG_FP_End; */
2794

2795
      default: goto PNG_FP_End; /* I.e. break 2 */
2796
      }
2797

2798
      /* The character seems ok, continue. */
2799
      ++i;
2800
   }
2801

2802
PNG_FP_End:
2803
   /* Here at the end, update the state and return the correct
2804
    * return code.
2805
    */
2806
   *statep = state;
2807
   *whereami = i;
2808

2809
   return (state & PNG_FP_SAW_DIGIT) != 0;
2810
}
2811

2812

2813
/* The same but for a complete string. */
2814
int
2815
png_check_fp_string(png_const_charp string, size_t size)
2816
{
2817
   int        state=0;
2818
   size_t char_index=0;
2819

2820
   if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2821
      (char_index == size || string[char_index] == 0))
2822
      return state /* must be non-zero - see above */;
2823

2824
   return 0; /* i.e. fail */
2825
}
2826
#endif /* pCAL || sCAL */
2827

2828
#ifdef PNG_sCAL_SUPPORTED
2829
#  ifdef PNG_FLOATING_POINT_SUPPORTED
2830
/* Utility used below - a simple accurate power of ten from an integral
2831
 * exponent.
2832
 */
2833
static double
2834
png_pow10(int power)
2835
{
2836
   int recip = 0;
2837
   double d = 1;
2838

2839
   /* Handle negative exponent with a reciprocal at the end because
2840
    * 10 is exact whereas .1 is inexact in base 2
2841
    */
2842
   if (power < 0)
2843
   {
2844
      if (power < DBL_MIN_10_EXP) return 0;
2845
      recip = 1; power = -power;
2846
   }
2847

2848
   if (power > 0)
2849
   {
2850
      /* Decompose power bitwise. */
2851
      double mult = 10;
2852
      do
2853
      {
2854
         if (power & 1) d *= mult;
2855
         mult *= mult;
2856
         power >>= 1;
2857
      }
2858
      while (power > 0);
2859

2860
      if (recip != 0) d = 1/d;
2861
   }
2862
   /* else power is 0 and d is 1 */
2863

2864
   return d;
2865
}
2866

2867
/* Function to format a floating point value in ASCII with a given
2868
 * precision.
2869
 */
2870
void /* PRIVATE */
2871
png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size,
2872
    double fp, unsigned int precision)
2873
{
2874
   /* We use standard functions from math.h, but not printf because
2875
    * that would require stdio.  The caller must supply a buffer of
2876
    * sufficient size or we will png_error.  The tests on size and
2877
    * the space in ascii[] consumed are indicated below.
2878
    */
2879
   if (precision < 1)
2880
      precision = DBL_DIG;
2881

2882
   /* Enforce the limit of the implementation precision too. */
2883
   if (precision > DBL_DIG+1)
2884
      precision = DBL_DIG+1;
2885

2886
   /* Basic sanity checks */
2887
   if (size >= precision+5) /* See the requirements below. */
2888
   {
2889
      if (fp < 0)
2890
      {
2891
         fp = -fp;
2892
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2893
         --size;
2894
      }
2895

2896
      if (fp >= DBL_MIN && fp <= DBL_MAX)
2897
      {
2898
         int exp_b10;   /* A base 10 exponent */
2899
         double base;   /* 10^exp_b10 */
2900

2901
         /* First extract a base 10 exponent of the number,
2902
          * the calculation below rounds down when converting
2903
          * from base 2 to base 10 (multiply by log10(2) -
2904
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2905
          * be increased.  Note that the arithmetic shift
2906
          * performs a floor() unlike C arithmetic - using a
2907
          * C multiply would break the following for negative
2908
          * exponents.
2909
          */
2910
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2911

2912
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2913

2914
         /* Avoid underflow here. */
2915
         base = png_pow10(exp_b10); /* May underflow */
2916

2917
         while (base < DBL_MIN || base < fp)
2918
         {
2919
            /* And this may overflow. */
2920
            double test = png_pow10(exp_b10+1);
2921

2922
            if (test <= DBL_MAX)
2923
            {
2924
               ++exp_b10; base = test;
2925
            }
2926

2927
            else
2928
               break;
2929
         }
2930

2931
         /* Normalize fp and correct exp_b10, after this fp is in the
2932
          * range [.1,1) and exp_b10 is both the exponent and the digit
2933
          * *before* which the decimal point should be inserted
2934
          * (starting with 0 for the first digit).  Note that this
2935
          * works even if 10^exp_b10 is out of range because of the
2936
          * test on DBL_MAX above.
2937
          */
2938
         fp /= base;
2939
         while (fp >= 1)
2940
         {
2941
            fp /= 10; ++exp_b10;
2942
         }
2943

2944
         /* Because of the code above fp may, at this point, be
2945
          * less than .1, this is ok because the code below can
2946
          * handle the leading zeros this generates, so no attempt
2947
          * is made to correct that here.
2948
          */
2949

2950
         {
2951
            unsigned int czero, clead, cdigits;
2952
            char exponent[10];
2953

2954
            /* Allow up to two leading zeros - this will not lengthen
2955
             * the number compared to using E-n.
2956
             */
2957
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2958
            {
2959
               czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
2960
               exp_b10 = 0;      /* Dot added below before first output. */
2961
            }
2962
            else
2963
               czero = 0;    /* No zeros to add */
2964

2965
            /* Generate the digit list, stripping trailing zeros and
2966
             * inserting a '.' before a digit if the exponent is 0.
2967
             */
2968
            clead = czero; /* Count of leading zeros */
2969
            cdigits = 0;   /* Count of digits in list. */
2970

2971
            do
2972
            {
2973
               double d;
2974

2975
               fp *= 10;
2976
               /* Use modf here, not floor and subtract, so that
2977
                * the separation is done in one step.  At the end
2978
                * of the loop don't break the number into parts so
2979
                * that the final digit is rounded.
2980
                */
2981
               if (cdigits+czero+1 < precision+clead)
2982
                  fp = modf(fp, &d);
2983

2984
               else
2985
               {
2986
                  d = floor(fp + .5);
2987

2988
                  if (d > 9)
2989
                  {
2990
                     /* Rounding up to 10, handle that here. */
2991
                     if (czero > 0)
2992
                     {
2993
                        --czero; d = 1;
2994
                        if (cdigits == 0) --clead;
2995
                     }
2996
                     else
2997
                     {
2998
                        while (cdigits > 0 && d > 9)
2999
                        {
3000
                           int ch = *--ascii;
3001

3002
                           if (exp_b10 != (-1))
3003
                              ++exp_b10;
3004

3005
                           else if (ch == 46)
3006
                           {
3007
                              ch = *--ascii; ++size;
3008
                              /* Advance exp_b10 to '1', so that the
3009
                               * decimal point happens after the
3010
                               * previous digit.
3011
                               */
3012
                              exp_b10 = 1;
3013
                           }
3014

3015
                           --cdigits;
3016
                           d = ch - 47;  /* I.e. 1+(ch-48) */
3017
                        }
3018

3019
                        /* Did we reach the beginning? If so adjust the
3020
                         * exponent but take into account the leading
3021
                         * decimal point.
3022
                         */
3023
                        if (d > 9)  /* cdigits == 0 */
3024
                        {
3025
                           if (exp_b10 == (-1))
3026
                           {
3027
                              /* Leading decimal point (plus zeros?), if
3028
                               * we lose the decimal point here it must
3029
                               * be reentered below.
3030
                               */
3031
                              int ch = *--ascii;
3032

3033
                              if (ch == 46)
3034
                              {
3035
                                 ++size; exp_b10 = 1;
3036
                              }
3037

3038
                              /* Else lost a leading zero, so 'exp_b10' is
3039
                               * still ok at (-1)
3040
                               */
3041
                           }
3042
                           else
3043
                              ++exp_b10;
3044

3045
                           /* In all cases we output a '1' */
3046
                           d = 1;
3047
                        }
3048
                     }
3049
                  }
3050
                  fp = 0; /* Guarantees termination below. */
3051
               }
3052

3053
               if (d == 0)
3054
               {
3055
                  ++czero;
3056
                  if (cdigits == 0) ++clead;
3057
               }
3058
               else
3059
               {
3060
                  /* Included embedded zeros in the digit count. */
3061
                  cdigits += czero - clead;
3062
                  clead = 0;
3063

3064
                  while (czero > 0)
3065
                  {
3066
                     /* exp_b10 == (-1) means we just output the decimal
3067
                      * place - after the DP don't adjust 'exp_b10' any
3068
                      * more!
3069
                      */
3070
                     if (exp_b10 != (-1))
3071
                     {
3072
                        if (exp_b10 == 0)
3073
                        {
3074
                           *ascii++ = 46; --size;
3075
                        }
3076
                        /* PLUS 1: TOTAL 4 */
3077
                        --exp_b10;
3078
                     }
3079
                     *ascii++ = 48; --czero;
3080
                  }
3081

3082
                  if (exp_b10 != (-1))
3083
                  {
3084
                     if (exp_b10 == 0)
3085
                     {
3086
                        *ascii++ = 46; --size; /* counted above */
3087
                     }
3088

3089
                     --exp_b10;
3090
                  }
3091
                  *ascii++ = (char)(48 + (int)d); ++cdigits;
3092
               }
3093
            }
3094
            while (cdigits+czero < precision+clead && fp > DBL_MIN);
3095

3096
            /* The total output count (max) is now 4+precision */
3097

3098
            /* Check for an exponent, if we don't need one we are
3099
             * done and just need to terminate the string.  At this
3100
             * point, exp_b10==(-1) is effectively a flag: it got
3101
             * to '-1' because of the decrement, after outputting
3102
             * the decimal point above. (The exponent required is
3103
             * *not* -1.)
3104
             */
3105
            if (exp_b10 >= (-1) && exp_b10 <= 2)
3106
            {
3107
               /* The following only happens if we didn't output the
3108
                * leading zeros above for negative exponent, so this
3109
                * doesn't add to the digit requirement.  Note that the
3110
                * two zeros here can only be output if the two leading
3111
                * zeros were *not* output, so this doesn't increase
3112
                * the output count.
3113
                */
3114
               while (exp_b10-- > 0) *ascii++ = 48;
3115

3116
               *ascii = 0;
3117

3118
               /* Total buffer requirement (including the '\0') is
3119
                * 5+precision - see check at the start.
3120
                */
3121
               return;
3122
            }
3123

3124
            /* Here if an exponent is required, adjust size for
3125
             * the digits we output but did not count.  The total
3126
             * digit output here so far is at most 1+precision - no
3127
             * decimal point and no leading or trailing zeros have
3128
             * been output.
3129
             */
3130
            size -= cdigits;
3131

3132
            *ascii++ = 69; --size;    /* 'E': PLUS 1 TOTAL 2+precision */
3133

3134
            /* The following use of an unsigned temporary avoids ambiguities in
3135
             * the signed arithmetic on exp_b10 and permits GCC at least to do
3136
             * better optimization.
3137
             */
3138
            {
3139
               unsigned int uexp_b10;
3140

3141
               if (exp_b10 < 0)
3142
               {
3143
                  *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
3144
                  uexp_b10 = 0U-exp_b10;
3145
               }
3146

3147
               else
3148
                  uexp_b10 = 0U+exp_b10;
3149

3150
               cdigits = 0;
3151

3152
               while (uexp_b10 > 0)
3153
               {
3154
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
3155
                  uexp_b10 /= 10;
3156
               }
3157
            }
3158

3159
            /* Need another size check here for the exponent digits, so
3160
             * this need not be considered above.
3161
             */
3162
            if (size > cdigits)
3163
            {
3164
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
3165

3166
               *ascii = 0;
3167

3168
               return;
3169
            }
3170
         }
3171
      }
3172
      else if (!(fp >= DBL_MIN))
3173
      {
3174
         *ascii++ = 48; /* '0' */
3175
         *ascii = 0;
3176
         return;
3177
      }
3178
      else
3179
      {
3180
         *ascii++ = 105; /* 'i' */
3181
         *ascii++ = 110; /* 'n' */
3182
         *ascii++ = 102; /* 'f' */
3183
         *ascii = 0;
3184
         return;
3185
      }
3186
   }
3187

3188
   /* Here on buffer too small. */
3189
   png_error(png_ptr, "ASCII conversion buffer too small");
3190
}
3191
#  endif /* FLOATING_POINT */
3192

3193
#  ifdef PNG_FIXED_POINT_SUPPORTED
3194
/* Function to format a fixed point value in ASCII.
3195
 */
3196
void /* PRIVATE */
3197
png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
3198
    size_t size, png_fixed_point fp)
3199
{
3200
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
3201
    * trailing \0, 13 characters:
3202
    */
3203
   if (size > 12)
3204
   {
3205
      png_uint_32 num;
3206

3207
      /* Avoid overflow here on the minimum integer. */
3208
      if (fp < 0)
3209
      {
3210
         *ascii++ = 45; num = (png_uint_32)(-fp);
3211
      }
3212
      else
3213
         num = (png_uint_32)fp;
3214

3215
      if (num <= 0x80000000) /* else overflowed */
3216
      {
3217
         unsigned int ndigits = 0, first = 16 /* flag value */;
3218
         char digits[10] = {0};
3219

3220
         while (num)
3221
         {
3222
            /* Split the low digit off num: */
3223
            unsigned int tmp = num/10;
3224
            num -= tmp*10;
3225
            digits[ndigits++] = (char)(48 + num);
3226
            /* Record the first non-zero digit, note that this is a number
3227
             * starting at 1, it's not actually the array index.
3228
             */
3229
            if (first == 16 && num > 0)
3230
               first = ndigits;
3231
            num = tmp;
3232
         }
3233

3234
         if (ndigits > 0)
3235
         {
3236
            while (ndigits > 5) *ascii++ = digits[--ndigits];
3237
            /* The remaining digits are fractional digits, ndigits is '5' or
3238
             * smaller at this point.  It is certainly not zero.  Check for a
3239
             * non-zero fractional digit:
3240
             */
3241
            if (first <= 5)
3242
            {
3243
               unsigned int i;
3244
               *ascii++ = 46; /* decimal point */
3245
               /* ndigits may be <5 for small numbers, output leading zeros
3246
                * then ndigits digits to first:
3247
                */
3248
               i = 5;
3249
               while (ndigits < i)
3250
               {
3251
                  *ascii++ = 48; --i;
3252
               }
3253
               while (ndigits >= first) *ascii++ = digits[--ndigits];
3254
               /* Don't output the trailing zeros! */
3255
            }
3256
         }
3257
         else
3258
            *ascii++ = 48;
3259

3260
         /* And null terminate the string: */
3261
         *ascii = 0;
3262
         return;
3263
      }
3264
   }
3265

3266
   /* Here on buffer too small. */
3267
   png_error(png_ptr, "ASCII conversion buffer too small");
3268
}
3269
#   endif /* FIXED_POINT */
3270
#endif /* SCAL */
3271

3272
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
3273
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
3274
   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
3275
   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3276
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
3277
   (defined(PNG_sCAL_SUPPORTED) && \
3278
   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
3279
png_fixed_point
3280
png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
3281
{
3282
   double r = floor(100000 * fp + .5);
3283

3284
   if (r > 2147483647. || r < -2147483648.)
3285
      png_fixed_error(png_ptr, text);
3286

3287
#  ifndef PNG_ERROR_TEXT_SUPPORTED
3288
   PNG_UNUSED(text)
3289
#  endif
3290

3291
   return (png_fixed_point)r;
3292
}
3293
#endif
3294

3295
#if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
3296
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
3297
/* muldiv functions */
3298
/* This API takes signed arguments and rounds the result to the nearest
3299
 * integer (or, for a fixed point number - the standard argument - to
3300
 * the nearest .00001).  Overflow and divide by zero are signalled in
3301
 * the result, a boolean - true on success, false on overflow.
3302
 */
3303
int
3304
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
3305
    png_int_32 divisor)
3306
{
3307
   /* Return a * times / divisor, rounded. */
3308
   if (divisor != 0)
3309
   {
3310
      if (a == 0 || times == 0)
3311
      {
3312
         *res = 0;
3313
         return 1;
3314
      }
3315
      else
3316
      {
3317
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3318
         double r = a;
3319
         r *= times;
3320
         r /= divisor;
3321
         r = floor(r+.5);
3322

3323
         /* A png_fixed_point is a 32-bit integer. */
3324
         if (r <= 2147483647. && r >= -2147483648.)
3325
         {
3326
            *res = (png_fixed_point)r;
3327
            return 1;
3328
         }
3329
#else
3330
         int negative = 0;
3331
         png_uint_32 A, T, D;
3332
         png_uint_32 s16, s32, s00;
3333

3334
         if (a < 0)
3335
            negative = 1, A = -a;
3336
         else
3337
            A = a;
3338

3339
         if (times < 0)
3340
            negative = !negative, T = -times;
3341
         else
3342
            T = times;
3343

3344
         if (divisor < 0)
3345
            negative = !negative, D = -divisor;
3346
         else
3347
            D = divisor;
3348

3349
         /* Following can't overflow because the arguments only
3350
          * have 31 bits each, however the result may be 32 bits.
3351
          */
3352
         s16 = (A >> 16) * (T & 0xffff) +
3353
                           (A & 0xffff) * (T >> 16);
3354
         /* Can't overflow because the a*times bit is only 30
3355
          * bits at most.
3356
          */
3357
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
3358
         s00 = (A & 0xffff) * (T & 0xffff);
3359

3360
         s16 = (s16 & 0xffff) << 16;
3361
         s00 += s16;
3362

3363
         if (s00 < s16)
3364
            ++s32; /* carry */
3365

3366
         if (s32 < D) /* else overflow */
3367
         {
3368
            /* s32.s00 is now the 64-bit product, do a standard
3369
             * division, we know that s32 < D, so the maximum
3370
             * required shift is 31.
3371
             */
3372
            int bitshift = 32;
3373
            png_fixed_point result = 0; /* NOTE: signed */
3374

3375
            while (--bitshift >= 0)
3376
            {
3377
               png_uint_32 d32, d00;
3378

3379
               if (bitshift > 0)
3380
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
3381

3382
               else
3383
                  d32 = 0, d00 = D;
3384

3385
               if (s32 > d32)
3386
               {
3387
                  if (s00 < d00) --s32; /* carry */
3388
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
3389
               }
3390

3391
               else
3392
                  if (s32 == d32 && s00 >= d00)
3393
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
3394
            }
3395

3396
            /* Handle the rounding. */
3397
            if (s00 >= (D >> 1))
3398
               ++result;
3399

3400
            if (negative != 0)
3401
               result = -result;
3402

3403
            /* Check for overflow. */
3404
            if ((negative != 0 && result <= 0) ||
3405
                (negative == 0 && result >= 0))
3406
            {
3407
               *res = result;
3408
               return 1;
3409
            }
3410
         }
3411
#endif
3412
      }
3413
   }
3414

3415
   return 0;
3416
}
3417
#endif /* READ_GAMMA || INCH_CONVERSIONS */
3418

3419
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
3420
/* The following is for when the caller doesn't much care about the
3421
 * result.
3422
 */
3423
png_fixed_point
3424
png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times,
3425
    png_int_32 divisor)
3426
{
3427
   png_fixed_point result;
3428

3429
   if (png_muldiv(&result, a, times, divisor) != 0)
3430
      return result;
3431

3432
   png_warning(png_ptr, "fixed point overflow ignored");
3433
   return 0;
3434
}
3435
#endif
3436

3437
#ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */
3438
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
3439
png_fixed_point
3440
png_reciprocal(png_fixed_point a)
3441
{
3442
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3443
   double r = floor(1E10/a+.5);
3444

3445
   if (r <= 2147483647. && r >= -2147483648.)
3446
      return (png_fixed_point)r;
3447
#else
3448
   png_fixed_point res;
3449

3450
   if (png_muldiv(&res, 100000, 100000, a) != 0)
3451
      return res;
3452
#endif
3453

3454
   return 0; /* error/overflow */
3455
}
3456

3457
/* This is the shared test on whether a gamma value is 'significant' - whether
3458
 * it is worth doing gamma correction.
3459
 */
3460
int /* PRIVATE */
3461
png_gamma_significant(png_fixed_point gamma_val)
3462
{
3463
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
3464
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
3465
}
3466
#endif
3467

3468
#ifdef PNG_READ_GAMMA_SUPPORTED
3469
#ifdef PNG_16BIT_SUPPORTED
3470
/* A local convenience routine. */
3471
static png_fixed_point
3472
png_product2(png_fixed_point a, png_fixed_point b)
3473
{
3474
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3475
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3476
   double r = a * 1E-5;
3477
   r *= b;
3478
   r = floor(r+.5);
3479

3480
   if (r <= 2147483647. && r >= -2147483648.)
3481
      return (png_fixed_point)r;
3482
#else
3483
   png_fixed_point res;
3484

3485
   if (png_muldiv(&res, a, b, 100000) != 0)
3486
      return res;
3487
#endif
3488

3489
   return 0; /* overflow */
3490
}
3491
#endif /* 16BIT */
3492

3493
/* The inverse of the above. */
3494
png_fixed_point
3495
png_reciprocal2(png_fixed_point a, png_fixed_point b)
3496
{
3497
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3498
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3499
   if (a != 0 && b != 0)
3500
   {
3501
      double r = 1E15/a;
3502
      r /= b;
3503
      r = floor(r+.5);
3504

3505
      if (r <= 2147483647. && r >= -2147483648.)
3506
         return (png_fixed_point)r;
3507
   }
3508
#else
3509
   /* This may overflow because the range of png_fixed_point isn't symmetric,
3510
    * but this API is only used for the product of file and screen gamma so it
3511
    * doesn't matter that the smallest number it can produce is 1/21474, not
3512
    * 1/100000
3513
    */
3514
   png_fixed_point res = png_product2(a, b);
3515

3516
   if (res != 0)
3517
      return png_reciprocal(res);
3518
#endif
3519

3520
   return 0; /* overflow */
3521
}
3522
#endif /* READ_GAMMA */
3523

3524
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
3525
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
3526
/* Fixed point gamma.
3527
 *
3528
 * The code to calculate the tables used below can be found in the shell script
3529
 * contrib/tools/intgamma.sh
3530
 *
3531
 * To calculate gamma this code implements fast log() and exp() calls using only
3532
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
3533
 * or 16-bit sample values.
3534
 *
3535
 * The tables used here were calculated using simple 'bc' programs, but C double
3536
 * precision floating point arithmetic would work fine.
3537
 *
3538
 * 8-bit log table
3539
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
3540
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
3541
 *   mantissa.  The numbers are 32-bit fractions.
3542
 */
3543
static const png_uint_32
3544
png_8bit_l2[128] =
3545
{
3546
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3547
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3548
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3549
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3550
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3551
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3552
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3553
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3554
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3555
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3556
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3557
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3558
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3559
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3560
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3561
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3562
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3563
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3564
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3565
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3566
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3567
   24347096U, 0U
3568

3569
#if 0
3570
   /* The following are the values for 16-bit tables - these work fine for the
3571
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3572
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3573
    * use these all the shifts below must be adjusted appropriately.
3574
    */
3575
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3576
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3577
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3578
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3579
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3580
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3581
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3582
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3583
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3584
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3585
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3586
   1119, 744, 372
3587
#endif
3588
};
3589

3590
static png_int_32
3591
png_log8bit(unsigned int x)
3592
{
3593
   unsigned int lg2 = 0;
3594
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3595
    * because the log is actually negate that means adding 1.  The final
3596
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3597
    * input), return -1 for the overflow (log 0) case, - so the result is
3598
    * always at most 19 bits.
3599
    */
3600
   if ((x &= 0xff) == 0)
3601
      return -1;
3602

3603
   if ((x & 0xf0) == 0)
3604
      lg2  = 4, x <<= 4;
3605

3606
   if ((x & 0xc0) == 0)
3607
      lg2 += 2, x <<= 2;
3608

3609
   if ((x & 0x80) == 0)
3610
      lg2 += 1, x <<= 1;
3611

3612
   /* result is at most 19 bits, so this cast is safe: */
3613
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3614
}
3615

3616
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3617
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3618
 * get an approximation then multiply the approximation by a correction factor
3619
 * determined by the remaining up to 8 bits.  This requires an additional step
3620
 * in the 16-bit case.
3621
 *
3622
 * We want log2(value/65535), we have log2(v'/255), where:
3623
 *
3624
 *    value = v' * 256 + v''
3625
 *          = v' * f
3626
 *
3627
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3628
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3629
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3630
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3631
 *
3632
 * This gives a final formula using a calculated value 'x' which is value/v' and
3633
 * scaling by 65536 to match the above table:
3634
 *
3635
 *   log2(x/257) * 65536
3636
 *
3637
 * Since these numbers are so close to '1' we can use simple linear
3638
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3639
 * (result 367.179).  The values used below are scaled by a further 64 to give
3640
 * 16-bit precision in the interpolation:
3641
 *
3642
 * Start (256): -23591
3643
 * Zero  (257):      0
3644
 * End   (258):  23499
3645
 */
3646
#ifdef PNG_16BIT_SUPPORTED
3647
static png_int_32
3648
png_log16bit(png_uint_32 x)
3649
{
3650
   unsigned int lg2 = 0;
3651

3652
   /* As above, but now the input has 16 bits. */
3653
   if ((x &= 0xffff) == 0)
3654
      return -1;
3655

3656
   if ((x & 0xff00) == 0)
3657
      lg2  = 8, x <<= 8;
3658

3659
   if ((x & 0xf000) == 0)
3660
      lg2 += 4, x <<= 4;
3661

3662
   if ((x & 0xc000) == 0)
3663
      lg2 += 2, x <<= 2;
3664

3665
   if ((x & 0x8000) == 0)
3666
      lg2 += 1, x <<= 1;
3667

3668
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3669
    * value.
3670
    */
3671
   lg2 <<= 28;
3672
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3673

3674
   /* Now we need to interpolate the factor, this requires a division by the top
3675
    * 8 bits.  Do this with maximum precision.
3676
    */
3677
   x = ((x << 16) + (x >> 9)) / (x >> 8);
3678

3679
   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3680
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3681
    * 16 bits to interpolate to get the low bits of the result.  Round the
3682
    * answer.  Note that the end point values are scaled by 64 to retain overall
3683
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3684
    * the overall scaling by 6-12.  Round at every step.
3685
    */
3686
   x -= 1U << 24;
3687

3688
   if (x <= 65536U) /* <= '257' */
3689
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3690

3691
   else
3692
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3693

3694
   /* Safe, because the result can't have more than 20 bits: */
3695
   return (png_int_32)((lg2 + 2048) >> 12);
3696
}
3697
#endif /* 16BIT */
3698

3699
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3700
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3701
 * each case only the low 16 bits are relevant - the fraction - since the
3702
 * integer bits (the top 4) simply determine a shift.
3703
 *
3704
 * The worst case is the 16-bit distinction between 65535 and 65534. This
3705
 * requires perhaps spurious accuracy in the decoding of the logarithm to
3706
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3707
 * of getting this accuracy in practice.
3708
 *
3709
 * To deal with this the following exp() function works out the exponent of the
3710
 * fractional part of the logarithm by using an accurate 32-bit value from the
3711
 * top four fractional bits then multiplying in the remaining bits.
3712
 */
3713
static const png_uint_32
3714
png_32bit_exp[16] =
3715
{
3716
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3717
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3718
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3719
   2553802834U, 2445529972U, 2341847524U, 2242560872U
3720
};
3721

3722
/* Adjustment table; provided to explain the numbers in the code below. */
3723
#if 0
3724
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3725
   11 44937.64284865548751208448
3726
   10 45180.98734845585101160448
3727
    9 45303.31936980687359311872
3728
    8 45364.65110595323018870784
3729
    7 45395.35850361789624614912
3730
    6 45410.72259715102037508096
3731
    5 45418.40724413220722311168
3732
    4 45422.25021786898173001728
3733
    3 45424.17186732298419044352
3734
    2 45425.13273269940811464704
3735
    1 45425.61317555035558641664
3736
    0 45425.85339951654943850496
3737
#endif
3738

3739
static png_uint_32
3740
png_exp(png_fixed_point x)
3741
{
3742
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3743
   {
3744
      /* Obtain a 4-bit approximation */
3745
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3746

3747
      /* Incorporate the low 12 bits - these decrease the returned value by
3748
       * multiplying by a number less than 1 if the bit is set.  The multiplier
3749
       * is determined by the above table and the shift. Notice that the values
3750
       * converge on 45426 and this is used to allow linear interpolation of the
3751
       * low bits.
3752
       */
3753
      if (x & 0x800)
3754
         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3755

3756
      if (x & 0x400)
3757
         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3758

3759
      if (x & 0x200)
3760
         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3761

3762
      if (x & 0x100)
3763
         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3764

3765
      if (x & 0x080)
3766
         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3767

3768
      if (x & 0x040)
3769
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3770

3771
      /* And handle the low 6 bits in a single block. */
3772
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3773

3774
      /* Handle the upper bits of x. */
3775
      e >>= x >> 16;
3776
      return e;
3777
   }
3778

3779
   /* Check for overflow */
3780
   if (x <= 0)
3781
      return png_32bit_exp[0];
3782

3783
   /* Else underflow */
3784
   return 0;
3785
}
3786

3787
static png_byte
3788
png_exp8bit(png_fixed_point lg2)
3789
{
3790
   /* Get a 32-bit value: */
3791
   png_uint_32 x = png_exp(lg2);
3792

3793
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3794
    * second, rounding, step can't overflow because of the first, subtraction,
3795
    * step.
3796
    */
3797
   x -= x >> 8;
3798
   return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3799
}
3800

3801
#ifdef PNG_16BIT_SUPPORTED
3802
static png_uint_16
3803
png_exp16bit(png_fixed_point lg2)
3804
{
3805
   /* Get a 32-bit value: */
3806
   png_uint_32 x = png_exp(lg2);
3807

3808
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3809
   x -= x >> 16;
3810
   return (png_uint_16)((x + 32767U) >> 16);
3811
}
3812
#endif /* 16BIT */
3813
#endif /* FLOATING_ARITHMETIC */
3814

3815
png_byte
3816
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3817
{
3818
   if (value > 0 && value < 255)
3819
   {
3820
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3821
         /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3822
          * convert this to a floating point value.  This includes values that
3823
          * would overflow if 'value' were to be converted to 'int'.
3824
          *
3825
          * Apparently GCC, however, does an intermediate conversion to (int)
3826
          * on some (ARM) but not all (x86) platforms, possibly because of
3827
          * hardware FP limitations.  (E.g. if the hardware conversion always
3828
          * assumes the integer register contains a signed value.)  This results
3829
          * in ANSI-C undefined behavior for large values.
3830
          *
3831
          * Other implementations on the same machine might actually be ANSI-C90
3832
          * conformant and therefore compile spurious extra code for the large
3833
          * values.
3834
          *
3835
          * We can be reasonably sure that an unsigned to float conversion
3836
          * won't be faster than an int to float one.  Therefore this code
3837
          * assumes responsibility for the undefined behavior, which it knows
3838
          * can't happen because of the check above.
3839
          *
3840
          * Note the argument to this routine is an (unsigned int) because, on
3841
          * 16-bit platforms, it is assigned a value which might be out of
3842
          * range for an (int); that would result in undefined behavior in the
3843
          * caller if the *argument* ('value') were to be declared (int).
3844
          */
3845
         double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3846
         return (png_byte)r;
3847
#     else
3848
         png_int_32 lg2 = png_log8bit(value);
3849
         png_fixed_point res;
3850

3851
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3852
            return png_exp8bit(res);
3853

3854
         /* Overflow. */
3855
         value = 0;
3856
#     endif
3857
   }
3858

3859
   return (png_byte)(value & 0xff);
3860
}
3861

3862
#ifdef PNG_16BIT_SUPPORTED
3863
png_uint_16
3864
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3865
{
3866
   if (value > 0 && value < 65535)
3867
   {
3868
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3869
      /* The same (unsigned int)->(double) constraints apply here as above,
3870
       * however in this case the (unsigned int) to (int) conversion can
3871
       * overflow on an ANSI-C90 compliant system so the cast needs to ensure
3872
       * that this is not possible.
3873
       */
3874
      double r = floor(65535*pow((png_int_32)value/65535.,
3875
          gamma_val*.00001)+.5);
3876
      return (png_uint_16)r;
3877
# else
3878
      png_int_32 lg2 = png_log16bit(value);
3879
      png_fixed_point res;
3880

3881
      if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3882
         return png_exp16bit(res);
3883

3884
      /* Overflow. */
3885
      value = 0;
3886
# endif
3887
   }
3888

3889
   return (png_uint_16)value;
3890
}
3891
#endif /* 16BIT */
3892

3893
/* This does the right thing based on the bit_depth field of the
3894
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3895
 * is nominally a 16-bit value if bit depth is 8 then the result is
3896
 * 8-bit (as are the arguments.)
3897
 */
3898
png_uint_16 /* PRIVATE */
3899
png_gamma_correct(png_structrp png_ptr, unsigned int value,
3900
    png_fixed_point gamma_val)
3901
{
3902
   if (png_ptr->bit_depth == 8)
3903
      return png_gamma_8bit_correct(value, gamma_val);
3904

3905
#ifdef PNG_16BIT_SUPPORTED
3906
   else
3907
      return png_gamma_16bit_correct(value, gamma_val);
3908
#else
3909
      /* should not reach this */
3910
      return 0;
3911
#endif /* 16BIT */
3912
}
3913

3914
#ifdef PNG_16BIT_SUPPORTED
3915
/* Internal function to build a single 16-bit table - the table consists of
3916
 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3917
 * to shift the input values right (or 16-number_of_signifiant_bits).
3918
 *
3919
 * The caller is responsible for ensuring that the table gets cleaned up on
3920
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3921
 * should be somewhere that will be cleaned.
3922
 */
3923
static void
3924
png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3925
    unsigned int shift, png_fixed_point gamma_val)
3926
{
3927
   /* Various values derived from 'shift': */
3928
   unsigned int num = 1U << (8U - shift);
3929
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3930
   /* CSE the division and work round wacky GCC warnings (see the comments
3931
    * in png_gamma_8bit_correct for where these come from.)
3932
    */
3933
   double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1);
3934
#endif
3935
   unsigned int max = (1U << (16U - shift)) - 1U;
3936
   unsigned int max_by_2 = 1U << (15U - shift);
3937
   unsigned int i;
3938

3939
   png_uint_16pp table = *ptable =
3940
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3941

3942
   for (i = 0; i < num; i++)
3943
   {
3944
      png_uint_16p sub_table = table[i] =
3945
          (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3946

3947
      /* The 'threshold' test is repeated here because it can arise for one of
3948
       * the 16-bit tables even if the others don't hit it.
3949
       */
3950
      if (png_gamma_significant(gamma_val) != 0)
3951
      {
3952
         /* The old code would overflow at the end and this would cause the
3953
          * 'pow' function to return a result >1, resulting in an
3954
          * arithmetic error.  This code follows the spec exactly; ig is
3955
          * the recovered input sample, it always has 8-16 bits.
3956
          *
3957
          * We want input * 65535/max, rounded, the arithmetic fits in 32
3958
          * bits (unsigned) so long as max <= 32767.
3959
          */
3960
         unsigned int j;
3961
         for (j = 0; j < 256; j++)
3962
         {
3963
            png_uint_32 ig = (j << (8-shift)) + i;
3964
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3965
               /* Inline the 'max' scaling operation: */
3966
               /* See png_gamma_8bit_correct for why the cast to (int) is
3967
                * required here.
3968
                */
3969
               double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3970
               sub_table[j] = (png_uint_16)d;
3971
#           else
3972
               if (shift != 0)
3973
                  ig = (ig * 65535U + max_by_2)/max;
3974

3975
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3976
#           endif
3977
         }
3978
      }
3979
      else
3980
      {
3981
         /* We must still build a table, but do it the fast way. */
3982
         unsigned int j;
3983

3984
         for (j = 0; j < 256; j++)
3985
         {
3986
            png_uint_32 ig = (j << (8-shift)) + i;
3987

3988
            if (shift != 0)
3989
               ig = (ig * 65535U + max_by_2)/max;
3990

3991
            sub_table[j] = (png_uint_16)ig;
3992
         }
3993
      }
3994
   }
3995
}
3996

3997
/* NOTE: this function expects the *inverse* of the overall gamma transformation
3998
 * required.
3999
 */
4000
static void
4001
png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
4002
    unsigned int shift, png_fixed_point gamma_val)
4003
{
4004
   unsigned int num = 1U << (8U - shift);
4005
   unsigned int max = (1U << (16U - shift))-1U;
4006
   unsigned int i;
4007
   png_uint_32 last;
4008

4009
   png_uint_16pp table = *ptable =
4010
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
4011

4012
   /* 'num' is the number of tables and also the number of low bits of low
4013
    * bits of the input 16-bit value used to select a table.  Each table is
4014
    * itself indexed by the high 8 bits of the value.
4015
    */
4016
   for (i = 0; i < num; i++)
4017
      table[i] = (png_uint_16p)png_malloc(png_ptr,
4018
          256 * (sizeof (png_uint_16)));
4019

4020
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
4021
    * pow(out,g) is an *input* value.  'last' is the last input value set.
4022
    *
4023
    * In the loop 'i' is used to find output values.  Since the output is
4024
    * 8-bit there are only 256 possible values.  The tables are set up to
4025
    * select the closest possible output value for each input by finding
4026
    * the input value at the boundary between each pair of output values
4027
    * and filling the table up to that boundary with the lower output
4028
    * value.
4029
    *
4030
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
4031
    * values the code below uses a 16-bit value in i; the values start at
4032
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
4033
    * entries are filled with 255).  Start i at 128 and fill all 'last'
4034
    * table entries <= 'max'
4035
    */
4036
   last = 0;
4037
   for (i = 0; i < 255; ++i) /* 8-bit output value */
4038
   {
4039
      /* Find the corresponding maximum input value */
4040
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
4041

4042
      /* Find the boundary value in 16 bits: */
4043
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
4044

4045
      /* Adjust (round) to (16-shift) bits: */
4046
      bound = (bound * max + 32768U)/65535U + 1U;
4047

4048
      while (last < bound)
4049
      {
4050
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
4051
         last++;
4052
      }
4053
   }
4054

4055
   /* And fill in the final entries. */
4056
   while (last < (num << 8))
4057
   {
4058
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
4059
      last++;
4060
   }
4061
}
4062
#endif /* 16BIT */
4063

4064
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
4065
 * typically much faster).  Note that libpng currently does no sBIT processing
4066
 * (apparently contrary to the spec) so a 256-entry table is always generated.
4067
 */
4068
static void
4069
png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
4070
    png_fixed_point gamma_val)
4071
{
4072
   unsigned int i;
4073
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
4074

4075
   if (png_gamma_significant(gamma_val) != 0)
4076
      for (i=0; i<256; i++)
4077
         table[i] = png_gamma_8bit_correct(i, gamma_val);
4078

4079
   else
4080
      for (i=0; i<256; ++i)
4081
         table[i] = (png_byte)(i & 0xff);
4082
}
4083

4084
/* Used from png_read_destroy and below to release the memory used by the gamma
4085
 * tables.
4086
 */
4087
void /* PRIVATE */
4088
png_destroy_gamma_table(png_structrp png_ptr)
4089
{
4090
   png_free(png_ptr, png_ptr->gamma_table);
4091
   png_ptr->gamma_table = NULL;
4092

4093
#ifdef PNG_16BIT_SUPPORTED
4094
   if (png_ptr->gamma_16_table != NULL)
4095
   {
4096
      int i;
4097
      int istop = (1 << (8 - png_ptr->gamma_shift));
4098
      for (i = 0; i < istop; i++)
4099
      {
4100
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
4101
      }
4102
   png_free(png_ptr, png_ptr->gamma_16_table);
4103
   png_ptr->gamma_16_table = NULL;
4104
   }
4105
#endif /* 16BIT */
4106

4107
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4108
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4109
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4110
   png_free(png_ptr, png_ptr->gamma_from_1);
4111
   png_ptr->gamma_from_1 = NULL;
4112
   png_free(png_ptr, png_ptr->gamma_to_1);
4113
   png_ptr->gamma_to_1 = NULL;
4114

4115
#ifdef PNG_16BIT_SUPPORTED
4116
   if (png_ptr->gamma_16_from_1 != NULL)
4117
   {
4118
      int i;
4119
      int istop = (1 << (8 - png_ptr->gamma_shift));
4120
      for (i = 0; i < istop; i++)
4121
      {
4122
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
4123
      }
4124
   png_free(png_ptr, png_ptr->gamma_16_from_1);
4125
   png_ptr->gamma_16_from_1 = NULL;
4126
   }
4127
   if (png_ptr->gamma_16_to_1 != NULL)
4128
   {
4129
      int i;
4130
      int istop = (1 << (8 - png_ptr->gamma_shift));
4131
      for (i = 0; i < istop; i++)
4132
      {
4133
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
4134
      }
4135
   png_free(png_ptr, png_ptr->gamma_16_to_1);
4136
   png_ptr->gamma_16_to_1 = NULL;
4137
   }
4138
#endif /* 16BIT */
4139
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4140
}
4141

4142
/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
4143
 * tables, we don't make a full table if we are reducing to 8-bit in
4144
 * the future.  Note also how the gamma_16 tables are segmented so that
4145
 * we don't need to allocate > 64K chunks for a full 16-bit table.
4146
 */
4147
void /* PRIVATE */
4148
png_build_gamma_table(png_structrp png_ptr, int bit_depth)
4149
{
4150
   png_debug(1, "in png_build_gamma_table");
4151

4152
   /* Remove any existing table; this copes with multiple calls to
4153
    * png_read_update_info. The warning is because building the gamma tables
4154
    * multiple times is a performance hit - it's harmless but the ability to
4155
    * call png_read_update_info() multiple times is new in 1.5.6 so it seems
4156
    * sensible to warn if the app introduces such a hit.
4157
    */
4158
   if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
4159
   {
4160
      png_warning(png_ptr, "gamma table being rebuilt");
4161
      png_destroy_gamma_table(png_ptr);
4162
   }
4163

4164
   if (bit_depth <= 8)
4165
   {
4166
      png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
4167
          png_ptr->screen_gamma > 0 ?
4168
          png_reciprocal2(png_ptr->colorspace.gamma,
4169
          png_ptr->screen_gamma) : PNG_FP_1);
4170

4171
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4172
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4173
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4174
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4175
      {
4176
         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
4177
             png_reciprocal(png_ptr->colorspace.gamma));
4178

4179
         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
4180
             png_ptr->screen_gamma > 0 ?
4181
             png_reciprocal(png_ptr->screen_gamma) :
4182
             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4183
      }
4184
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4185
   }
4186
#ifdef PNG_16BIT_SUPPORTED
4187
   else
4188
   {
4189
      png_byte shift, sig_bit;
4190

4191
      if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
4192
      {
4193
         sig_bit = png_ptr->sig_bit.red;
4194

4195
         if (png_ptr->sig_bit.green > sig_bit)
4196
            sig_bit = png_ptr->sig_bit.green;
4197

4198
         if (png_ptr->sig_bit.blue > sig_bit)
4199
            sig_bit = png_ptr->sig_bit.blue;
4200
      }
4201
      else
4202
         sig_bit = png_ptr->sig_bit.gray;
4203

4204
      /* 16-bit gamma code uses this equation:
4205
       *
4206
       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
4207
       *
4208
       * Where 'iv' is the input color value and 'ov' is the output value -
4209
       * pow(iv, gamma).
4210
       *
4211
       * Thus the gamma table consists of up to 256 256-entry tables.  The table
4212
       * is selected by the (8-gamma_shift) most significant of the low 8 bits
4213
       * of the color value then indexed by the upper 8 bits:
4214
       *
4215
       *   table[low bits][high 8 bits]
4216
       *
4217
       * So the table 'n' corresponds to all those 'iv' of:
4218
       *
4219
       *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
4220
       *
4221
       */
4222
      if (sig_bit > 0 && sig_bit < 16U)
4223
         /* shift == insignificant bits */
4224
         shift = (png_byte)((16U - sig_bit) & 0xff);
4225

4226
      else
4227
         shift = 0; /* keep all 16 bits */
4228

4229
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4230
      {
4231
         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
4232
          * the significant bits in the *input* when the output will
4233
          * eventually be 8 bits.  By default it is 11.
4234
          */
4235
         if (shift < (16U - PNG_MAX_GAMMA_8))
4236
            shift = (16U - PNG_MAX_GAMMA_8);
4237
      }
4238

4239
      if (shift > 8U)
4240
         shift = 8U; /* Guarantees at least one table! */
4241

4242
      png_ptr->gamma_shift = shift;
4243

4244
      /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
4245
       * PNG_COMPOSE).  This effectively smashed the background calculation for
4246
       * 16-bit output because the 8-bit table assumes the result will be
4247
       * reduced to 8 bits.
4248
       */
4249
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4250
          png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
4251
          png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
4252
          png_ptr->screen_gamma) : PNG_FP_1);
4253

4254
      else
4255
          png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
4256
          png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
4257
          png_ptr->screen_gamma) : PNG_FP_1);
4258

4259
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4260
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4261
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4262
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4263
      {
4264
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
4265
             png_reciprocal(png_ptr->colorspace.gamma));
4266

4267
         /* Notice that the '16 from 1' table should be full precision, however
4268
          * the lookup on this table still uses gamma_shift, so it can't be.
4269
          * TODO: fix this.
4270
          */
4271
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
4272
             png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
4273
             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4274
      }
4275
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4276
   }
4277
#endif /* 16BIT */
4278
}
4279
#endif /* READ_GAMMA */
4280

4281
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
4282
#ifdef PNG_SET_OPTION_SUPPORTED
4283
int PNGAPI
4284
png_set_option(png_structrp png_ptr, int option, int onoff)
4285
{
4286
   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
4287
      (option & 1) == 0)
4288
   {
4289
      png_uint_32 mask = 3U << option;
4290
      png_uint_32 setting = (2U + (onoff != 0)) << option;
4291
      png_uint_32 current = png_ptr->options;
4292

4293
      png_ptr->options = (png_uint_32)((current & ~mask) | setting);
4294

4295
      return (int)(current & mask) >> option;
4296
   }
4297

4298
   return PNG_OPTION_INVALID;
4299
}
4300
#endif
4301

4302
/* sRGB support */
4303
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4304
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4305
/* sRGB conversion tables; these are machine generated with the code in
4306
 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
4307
 * specification (see the article at https://en.wikipedia.org/wiki/SRGB)
4308
 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
4309
 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
4310
 * The inverse (linear to sRGB) table has accuracies as follows:
4311
 *
4312
 * For all possible (255*65535+1) input values:
4313
 *
4314
 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
4315
 *
4316
 * For the input values corresponding to the 65536 16-bit values:
4317
 *
4318
 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
4319
 *
4320
 * In all cases the inexact readings are only off by one.
4321
 */
4322

4323
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4324
/* The convert-to-sRGB table is only currently required for read. */
4325
const png_uint_16 png_sRGB_table[256] =
4326
{
4327
   0,20,40,60,80,99,119,139,
4328
   159,179,199,219,241,264,288,313,
4329
   340,367,396,427,458,491,526,562,
4330
   599,637,677,718,761,805,851,898,
4331
   947,997,1048,1101,1156,1212,1270,1330,
4332
   1391,1453,1517,1583,1651,1720,1790,1863,
4333
   1937,2013,2090,2170,2250,2333,2418,2504,
4334
   2592,2681,2773,2866,2961,3058,3157,3258,
4335
   3360,3464,3570,3678,3788,3900,4014,4129,
4336
   4247,4366,4488,4611,4736,4864,4993,5124,
4337
   5257,5392,5530,5669,5810,5953,6099,6246,
4338
   6395,6547,6700,6856,7014,7174,7335,7500,
4339
   7666,7834,8004,8177,8352,8528,8708,8889,
4340
   9072,9258,9445,9635,9828,10022,10219,10417,
4341
   10619,10822,11028,11235,11446,11658,11873,12090,
4342
   12309,12530,12754,12980,13209,13440,13673,13909,
4343
   14146,14387,14629,14874,15122,15371,15623,15878,
4344
   16135,16394,16656,16920,17187,17456,17727,18001,
4345
   18277,18556,18837,19121,19407,19696,19987,20281,
4346
   20577,20876,21177,21481,21787,22096,22407,22721,
4347
   23038,23357,23678,24002,24329,24658,24990,25325,
4348
   25662,26001,26344,26688,27036,27386,27739,28094,
4349
   28452,28813,29176,29542,29911,30282,30656,31033,
4350
   31412,31794,32179,32567,32957,33350,33745,34143,
4351
   34544,34948,35355,35764,36176,36591,37008,37429,
4352
   37852,38278,38706,39138,39572,40009,40449,40891,
4353
   41337,41785,42236,42690,43147,43606,44069,44534,
4354
   45002,45473,45947,46423,46903,47385,47871,48359,
4355
   48850,49344,49841,50341,50844,51349,51858,52369,
4356
   52884,53401,53921,54445,54971,55500,56032,56567,
4357
   57105,57646,58190,58737,59287,59840,60396,60955,
4358
   61517,62082,62650,63221,63795,64372,64952,65535
4359
};
4360
#endif /* SIMPLIFIED_READ */
4361

4362
/* The base/delta tables are required for both read and write (but currently
4363
 * only the simplified versions.)
4364
 */
4365
const png_uint_16 png_sRGB_base[512] =
4366
{
4367
   128,1782,3383,4644,5675,6564,7357,8074,
4368
   8732,9346,9921,10463,10977,11466,11935,12384,
4369
   12816,13233,13634,14024,14402,14769,15125,15473,
4370
   15812,16142,16466,16781,17090,17393,17690,17981,
4371
   18266,18546,18822,19093,19359,19621,19879,20133,
4372
   20383,20630,20873,21113,21349,21583,21813,22041,
4373
   22265,22487,22707,22923,23138,23350,23559,23767,
4374
   23972,24175,24376,24575,24772,24967,25160,25352,
4375
   25542,25730,25916,26101,26284,26465,26645,26823,
4376
   27000,27176,27350,27523,27695,27865,28034,28201,
4377
   28368,28533,28697,28860,29021,29182,29341,29500,
4378
   29657,29813,29969,30123,30276,30429,30580,30730,
4379
   30880,31028,31176,31323,31469,31614,31758,31902,
4380
   32045,32186,32327,32468,32607,32746,32884,33021,
4381
   33158,33294,33429,33564,33697,33831,33963,34095,
4382
   34226,34357,34486,34616,34744,34873,35000,35127,
4383
   35253,35379,35504,35629,35753,35876,35999,36122,
4384
   36244,36365,36486,36606,36726,36845,36964,37083,
4385
   37201,37318,37435,37551,37668,37783,37898,38013,
4386
   38127,38241,38354,38467,38580,38692,38803,38915,
4387
   39026,39136,39246,39356,39465,39574,39682,39790,
4388
   39898,40005,40112,40219,40325,40431,40537,40642,
4389
   40747,40851,40955,41059,41163,41266,41369,41471,
4390
   41573,41675,41777,41878,41979,42079,42179,42279,
4391
   42379,42478,42577,42676,42775,42873,42971,43068,
4392
   43165,43262,43359,43456,43552,43648,43743,43839,
4393
   43934,44028,44123,44217,44311,44405,44499,44592,
4394
   44685,44778,44870,44962,45054,45146,45238,45329,
4395
   45420,45511,45601,45692,45782,45872,45961,46051,
4396
   46140,46229,46318,46406,46494,46583,46670,46758,
4397
   46846,46933,47020,47107,47193,47280,47366,47452,
4398
   47538,47623,47709,47794,47879,47964,48048,48133,
4399
   48217,48301,48385,48468,48552,48635,48718,48801,
4400
   48884,48966,49048,49131,49213,49294,49376,49458,
4401
   49539,49620,49701,49782,49862,49943,50023,50103,
4402
   50183,50263,50342,50422,50501,50580,50659,50738,
4403
   50816,50895,50973,51051,51129,51207,51285,51362,
4404
   51439,51517,51594,51671,51747,51824,51900,51977,
4405
   52053,52129,52205,52280,52356,52432,52507,52582,
4406
   52657,52732,52807,52881,52956,53030,53104,53178,
4407
   53252,53326,53400,53473,53546,53620,53693,53766,
4408
   53839,53911,53984,54056,54129,54201,54273,54345,
4409
   54417,54489,54560,54632,54703,54774,54845,54916,
4410
   54987,55058,55129,55199,55269,55340,55410,55480,
4411
   55550,55620,55689,55759,55828,55898,55967,56036,
4412
   56105,56174,56243,56311,56380,56448,56517,56585,
4413
   56653,56721,56789,56857,56924,56992,57059,57127,
4414
   57194,57261,57328,57395,57462,57529,57595,57662,
4415
   57728,57795,57861,57927,57993,58059,58125,58191,
4416
   58256,58322,58387,58453,58518,58583,58648,58713,
4417
   58778,58843,58908,58972,59037,59101,59165,59230,
4418
   59294,59358,59422,59486,59549,59613,59677,59740,
4419
   59804,59867,59930,59993,60056,60119,60182,60245,
4420
   60308,60370,60433,60495,60558,60620,60682,60744,
4421
   60806,60868,60930,60992,61054,61115,61177,61238,
4422
   61300,61361,61422,61483,61544,61605,61666,61727,
4423
   61788,61848,61909,61969,62030,62090,62150,62211,
4424
   62271,62331,62391,62450,62510,62570,62630,62689,
4425
   62749,62808,62867,62927,62986,63045,63104,63163,
4426
   63222,63281,63340,63398,63457,63515,63574,63632,
4427
   63691,63749,63807,63865,63923,63981,64039,64097,
4428
   64155,64212,64270,64328,64385,64443,64500,64557,
4429
   64614,64672,64729,64786,64843,64900,64956,65013,
4430
   65070,65126,65183,65239,65296,65352,65409,65465
4431
};
4432

4433
const png_byte png_sRGB_delta[512] =
4434
{
4435
   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
4436
   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
4437
   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
4438
   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
4439
   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
4440
   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
4441
   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
4442
   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
4443
   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
4444
   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
4445
   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
4446
   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
4447
   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
4448
   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
4449
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4450
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4451
   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4452
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4453
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4454
   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4455
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4456
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4457
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4458
   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4459
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4460
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4461
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4462
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4463
   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
4464
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4465
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4466
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
4467
};
4468
#endif /* SIMPLIFIED READ/WRITE sRGB support */
4469

4470
/* SIMPLIFIED READ/WRITE SUPPORT */
4471
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4472
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4473
static int
4474
png_image_free_function(png_voidp argument)
4475
{
4476
   png_imagep image = png_voidcast(png_imagep, argument);
4477
   png_controlp cp = image->opaque;
4478
   png_control c;
4479

4480
   /* Double check that we have a png_ptr - it should be impossible to get here
4481
    * without one.
4482
    */
4483
   if (cp->png_ptr == NULL)
4484
      return 0;
4485

4486
   /* First free any data held in the control structure. */
4487
#  ifdef PNG_STDIO_SUPPORTED
4488
      if (cp->owned_file != 0)
4489
      {
4490
         FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr);
4491
         cp->owned_file = 0;
4492

4493
         /* Ignore errors here. */
4494
         if (fp != NULL)
4495
         {
4496
            cp->png_ptr->io_ptr = NULL;
4497
            (void)fclose(fp);
4498
         }
4499
      }
4500
#  endif
4501

4502
   /* Copy the control structure so that the original, allocated, version can be
4503
    * safely freed.  Notice that a png_error here stops the remainder of the
4504
    * cleanup, but this is probably fine because that would indicate bad memory
4505
    * problems anyway.
4506
    */
4507
   c = *cp;
4508
   image->opaque = &c;
4509
   png_free(c.png_ptr, cp);
4510

4511
   /* Then the structures, calling the correct API. */
4512
   if (c.for_write != 0)
4513
   {
4514
#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4515
         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4516
#     else
4517
         png_error(c.png_ptr, "simplified write not supported");
4518
#     endif
4519
   }
4520
   else
4521
   {
4522
#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4523
         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4524
#     else
4525
         png_error(c.png_ptr, "simplified read not supported");
4526
#     endif
4527
   }
4528

4529
   /* Success. */
4530
   return 1;
4531
}
4532

4533
void PNGAPI
4534
png_image_free(png_imagep image)
4535
{
4536
   /* Safely call the real function, but only if doing so is safe at this point
4537
    * (if not inside an error handling context).  Otherwise assume
4538
    * png_safe_execute will call this API after the return.
4539
    */
4540
   if (image != NULL && image->opaque != NULL &&
4541
      image->opaque->error_buf == NULL)
4542
   {
4543
      png_image_free_function(image);
4544
      image->opaque = NULL;
4545
   }
4546
}
4547

4548
int /* PRIVATE */
4549
png_image_error(png_imagep image, png_const_charp error_message)
4550
{
4551
   /* Utility to log an error. */
4552
   png_safecat(image->message, (sizeof image->message), 0, error_message);
4553
   image->warning_or_error |= PNG_IMAGE_ERROR;
4554
   png_image_free(image);
4555
   return 0;
4556
}
4557

4558
#endif /* SIMPLIFIED READ/WRITE */
4559
#endif /* READ || WRITE */
4560

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.