git

Форк
0
/
sha1.c 
230 строк · 6.6 Кб
1
/*
2
 * SHA1 routine optimized to do word accesses rather than byte accesses,
3
 * and to avoid unnecessary copies into the context array.
4
 *
5
 * This was initially based on the Mozilla SHA1 implementation, although
6
 * none of the original Mozilla code remains.
7
 */
8

9
/* this is only to get definitions for memcpy(), ntohl() and htonl() */
10
#include "../git-compat-util.h"
11

12
#include "sha1.h"
13

14
#define SHA_ROT(X,l,r)	(((X) << (l)) | ((X) >> (r)))
15
#define SHA_ROL(X,n)	SHA_ROT(X,n,32-(n))
16
#define SHA_ROR(X,n)	SHA_ROT(X,32-(n),n)
17

18
/*
19
 * If you have 32 registers or more, the compiler can (and should)
20
 * try to change the array[] accesses into registers. However, on
21
 * machines with less than ~25 registers, that won't really work,
22
 * and at least gcc will make an unholy mess of it.
23
 *
24
 * So to avoid that mess which just slows things down, we force
25
 * the stores to memory to actually happen (we might be better off
26
 * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
27
 * suggested by Artur Skawina - that will also make gcc unable to
28
 * try to do the silly "optimize away loads" part because it won't
29
 * see what the value will be).
30
 *
31
 * On ARM we get the best code generation by forcing a full memory barrier
32
 * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
33
 * the stack frame size simply explode and performance goes down the drain.
34
 */
35

36
#if defined(__i386__) || defined(__x86_64__)
37
  #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
38
#elif defined(__GNUC__) && defined(__arm__)
39
  #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
40
#else
41
  #define setW(x, val) (W(x) = (val))
42
#endif
43

44
/* This "rolls" over the 512-bit array */
45
#define W(x) (array[(x)&15])
46

47
/*
48
 * Where do we get the source from? The first 16 iterations get it from
49
 * the input data, the next mix it from the 512-bit array.
50
 */
51
#define SHA_SRC(t) get_be32((unsigned char *) block + (t)*4)
52
#define SHA_MIX(t) SHA_ROL(W((t)+13) ^ W((t)+8) ^ W((t)+2) ^ W(t), 1)
53

54
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
55
	unsigned int TEMP = input(t); setW(t, TEMP); \
56
	E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \
57
	B = SHA_ROR(B, 2); } while (0)
58

59
#define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
60
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
61
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
62
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
63
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
64

65
static void blk_SHA1_Block(blk_SHA_CTX *ctx, const void *block)
66
{
67
	unsigned int A,B,C,D,E;
68
	unsigned int array[16];
69

70
	A = ctx->H[0];
71
	B = ctx->H[1];
72
	C = ctx->H[2];
73
	D = ctx->H[3];
74
	E = ctx->H[4];
75

76
	/* Round 1 - iterations 0-16 take their input from 'block' */
77
	T_0_15( 0, A, B, C, D, E);
78
	T_0_15( 1, E, A, B, C, D);
79
	T_0_15( 2, D, E, A, B, C);
80
	T_0_15( 3, C, D, E, A, B);
81
	T_0_15( 4, B, C, D, E, A);
82
	T_0_15( 5, A, B, C, D, E);
83
	T_0_15( 6, E, A, B, C, D);
84
	T_0_15( 7, D, E, A, B, C);
85
	T_0_15( 8, C, D, E, A, B);
86
	T_0_15( 9, B, C, D, E, A);
87
	T_0_15(10, A, B, C, D, E);
88
	T_0_15(11, E, A, B, C, D);
89
	T_0_15(12, D, E, A, B, C);
90
	T_0_15(13, C, D, E, A, B);
91
	T_0_15(14, B, C, D, E, A);
92
	T_0_15(15, A, B, C, D, E);
93

94
	/* Round 1 - tail. Input from 512-bit mixing array */
95
	T_16_19(16, E, A, B, C, D);
96
	T_16_19(17, D, E, A, B, C);
97
	T_16_19(18, C, D, E, A, B);
98
	T_16_19(19, B, C, D, E, A);
99

100
	/* Round 2 */
101
	T_20_39(20, A, B, C, D, E);
102
	T_20_39(21, E, A, B, C, D);
103
	T_20_39(22, D, E, A, B, C);
104
	T_20_39(23, C, D, E, A, B);
105
	T_20_39(24, B, C, D, E, A);
106
	T_20_39(25, A, B, C, D, E);
107
	T_20_39(26, E, A, B, C, D);
108
	T_20_39(27, D, E, A, B, C);
109
	T_20_39(28, C, D, E, A, B);
110
	T_20_39(29, B, C, D, E, A);
111
	T_20_39(30, A, B, C, D, E);
112
	T_20_39(31, E, A, B, C, D);
113
	T_20_39(32, D, E, A, B, C);
114
	T_20_39(33, C, D, E, A, B);
115
	T_20_39(34, B, C, D, E, A);
116
	T_20_39(35, A, B, C, D, E);
117
	T_20_39(36, E, A, B, C, D);
118
	T_20_39(37, D, E, A, B, C);
119
	T_20_39(38, C, D, E, A, B);
120
	T_20_39(39, B, C, D, E, A);
121

122
	/* Round 3 */
123
	T_40_59(40, A, B, C, D, E);
124
	T_40_59(41, E, A, B, C, D);
125
	T_40_59(42, D, E, A, B, C);
126
	T_40_59(43, C, D, E, A, B);
127
	T_40_59(44, B, C, D, E, A);
128
	T_40_59(45, A, B, C, D, E);
129
	T_40_59(46, E, A, B, C, D);
130
	T_40_59(47, D, E, A, B, C);
131
	T_40_59(48, C, D, E, A, B);
132
	T_40_59(49, B, C, D, E, A);
133
	T_40_59(50, A, B, C, D, E);
134
	T_40_59(51, E, A, B, C, D);
135
	T_40_59(52, D, E, A, B, C);
136
	T_40_59(53, C, D, E, A, B);
137
	T_40_59(54, B, C, D, E, A);
138
	T_40_59(55, A, B, C, D, E);
139
	T_40_59(56, E, A, B, C, D);
140
	T_40_59(57, D, E, A, B, C);
141
	T_40_59(58, C, D, E, A, B);
142
	T_40_59(59, B, C, D, E, A);
143

144
	/* Round 4 */
145
	T_60_79(60, A, B, C, D, E);
146
	T_60_79(61, E, A, B, C, D);
147
	T_60_79(62, D, E, A, B, C);
148
	T_60_79(63, C, D, E, A, B);
149
	T_60_79(64, B, C, D, E, A);
150
	T_60_79(65, A, B, C, D, E);
151
	T_60_79(66, E, A, B, C, D);
152
	T_60_79(67, D, E, A, B, C);
153
	T_60_79(68, C, D, E, A, B);
154
	T_60_79(69, B, C, D, E, A);
155
	T_60_79(70, A, B, C, D, E);
156
	T_60_79(71, E, A, B, C, D);
157
	T_60_79(72, D, E, A, B, C);
158
	T_60_79(73, C, D, E, A, B);
159
	T_60_79(74, B, C, D, E, A);
160
	T_60_79(75, A, B, C, D, E);
161
	T_60_79(76, E, A, B, C, D);
162
	T_60_79(77, D, E, A, B, C);
163
	T_60_79(78, C, D, E, A, B);
164
	T_60_79(79, B, C, D, E, A);
165

166
	ctx->H[0] += A;
167
	ctx->H[1] += B;
168
	ctx->H[2] += C;
169
	ctx->H[3] += D;
170
	ctx->H[4] += E;
171
}
172

173
void blk_SHA1_Init(blk_SHA_CTX *ctx)
174
{
175
	ctx->size = 0;
176

177
	/* Initialize H with the magic constants (see FIPS180 for constants) */
178
	ctx->H[0] = 0x67452301;
179
	ctx->H[1] = 0xefcdab89;
180
	ctx->H[2] = 0x98badcfe;
181
	ctx->H[3] = 0x10325476;
182
	ctx->H[4] = 0xc3d2e1f0;
183
}
184

185
void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, size_t len)
186
{
187
	unsigned int lenW = ctx->size & 63;
188

189
	ctx->size += len;
190

191
	/* Read the data into W and process blocks as they get full */
192
	if (lenW) {
193
		unsigned int left = 64 - lenW;
194
		if (len < left)
195
			left = len;
196
		memcpy(lenW + (char *)ctx->W, data, left);
197
		lenW = (lenW + left) & 63;
198
		len -= left;
199
		data = ((const char *)data + left);
200
		if (lenW)
201
			return;
202
		blk_SHA1_Block(ctx, ctx->W);
203
	}
204
	while (len >= 64) {
205
		blk_SHA1_Block(ctx, data);
206
		data = ((const char *)data + 64);
207
		len -= 64;
208
	}
209
	if (len)
210
		memcpy(ctx->W, data, len);
211
}
212

213
void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
214
{
215
	static const unsigned char pad[64] = { 0x80 };
216
	unsigned int padlen[2];
217
	int i;
218

219
	/* Pad with a binary 1 (ie 0x80), then zeroes, then length */
220
	padlen[0] = htonl((uint32_t)(ctx->size >> 29));
221
	padlen[1] = htonl((uint32_t)(ctx->size << 3));
222

223
	i = ctx->size & 63;
224
	blk_SHA1_Update(ctx, pad, 1 + (63 & (55 - i)));
225
	blk_SHA1_Update(ctx, padlen, 8);
226

227
	/* Output hash */
228
	for (i = 0; i < 5; i++)
229
		put_be32(hashout + i * 4, ctx->H[i]);
230
}
231

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.