llvm-project
363 строки · 11.4 Кб
1#!/usr/bin/env python
2
3"""A shuffle vector fuzz tester.
4
5This is a python program to fuzz test the LLVM shufflevector instruction. It
6generates a function with a random sequnece of shufflevectors, maintaining the
7element mapping accumulated across the function. It then generates a main
8function which calls it with a different value in each element and checks that
9the result matches the expected mapping.
10
11Take the output IR printed to stdout, compile it to an executable using whatever
12set of transforms you want to test, and run the program. If it crashes, it found
13a bug.
14"""
15
16from __future__ import print_function
17
18import argparse
19import itertools
20import random
21import sys
22import uuid
23
24
25def main():
26element_types = ["i8", "i16", "i32", "i64", "f32", "f64"]
27parser = argparse.ArgumentParser(description=__doc__)
28parser.add_argument(
29"-v", "--verbose", action="store_true", help="Show verbose output"
30)
31parser.add_argument(
32"--seed", default=str(uuid.uuid4()), help="A string used to seed the RNG"
33)
34parser.add_argument(
35"--max-shuffle-height",
36type=int,
37default=16,
38help="Specify a fixed height of shuffle tree to test",
39)
40parser.add_argument(
41"--no-blends",
42dest="blends",
43action="store_false",
44help="Include blends of two input vectors",
45)
46parser.add_argument(
47"--fixed-bit-width",
48type=int,
49choices=[128, 256],
50help="Specify a fixed bit width of vector to test",
51)
52parser.add_argument(
53"--fixed-element-type",
54choices=element_types,
55help="Specify a fixed element type to test",
56)
57parser.add_argument("--triple", help="Specify a triple string to include in the IR")
58args = parser.parse_args()
59
60random.seed(args.seed)
61
62if args.fixed_element_type is not None:
63element_types = [args.fixed_element_type]
64
65if args.fixed_bit_width is not None:
66if args.fixed_bit_width == 128:
67width_map = {"i64": 2, "i32": 4, "i16": 8, "i8": 16, "f64": 2, "f32": 4}
68(width, element_type) = random.choice(
69[(width_map[t], t) for t in element_types]
70)
71elif args.fixed_bit_width == 256:
72width_map = {"i64": 4, "i32": 8, "i16": 16, "i8": 32, "f64": 4, "f32": 8}
73(width, element_type) = random.choice(
74[(width_map[t], t) for t in element_types]
75)
76else:
77sys.exit(1) # Checked above by argument parsing.
78else:
79width = random.choice([2, 4, 8, 16, 32, 64])
80element_type = random.choice(element_types)
81
82element_modulus = {
83"i8": 1 << 8,
84"i16": 1 << 16,
85"i32": 1 << 32,
86"i64": 1 << 64,
87"f32": 1 << 32,
88"f64": 1 << 64,
89}[element_type]
90
91shuffle_range = (2 * width) if args.blends else width
92
93# Because undef (-1) saturates and is indistinguishable when testing the
94# correctness of a shuffle, we want to bias our fuzz toward having a decent
95# mixture of non-undef lanes in the end. With a deep shuffle tree, the
96# probabilies aren't good so we need to bias things. The math here is that if
97# we uniformly select between -1 and the other inputs, each element of the
98# result will have the following probability of being undef:
99#
100# 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
101#
102# More generally, for any probability P of selecting a defined element in
103# a single shuffle, the end result is:
104#
105# 1 - P^max_shuffle_height
106#
107# The power of the shuffle height is the real problem, as we want:
108#
109# 1 - shuffle_range/(shuffle_range+1)
110#
111# So we bias the selection of undef at any given node based on the tree
112# height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
113# and 'B' be the bias we use to compensate for
114# C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
115#
116# 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
117#
118# So at each node we use:
119#
120# 1 - (B * A)/(A + 1)
121# = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
122# = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
123#
124# This is the formula we use to select undef lanes in the shuffle.
125A = float(shuffle_range)
126C = float(args.max_shuffle_height)
127undef_prob = 1.0 - (
128((A + 1.0) * pow(A, (C + 1.0) / C)) / (A * pow(A + 1.0, (C + 1.0) / C))
129)
130
131shuffle_tree = [
132[
133[
134-1
135if random.random() <= undef_prob
136else random.choice(range(shuffle_range))
137for _ in itertools.repeat(None, width)
138]
139for _ in itertools.repeat(None, args.max_shuffle_height - i)
140]
141for i in range(args.max_shuffle_height)
142]
143
144if args.verbose:
145# Print out the shuffle sequence in a compact form.
146print(
147(
148'Testing shuffle sequence "%s" (v%d%s):'
149% (args.seed, width, element_type)
150),
151file=sys.stderr,
152)
153for i, shuffles in enumerate(shuffle_tree):
154print(" tree level %d:" % (i,), file=sys.stderr)
155for j, s in enumerate(shuffles):
156print(" shuffle %d: %s" % (j, s), file=sys.stderr)
157print("", file=sys.stderr)
158
159# Symbolically evaluate the shuffle tree.
160inputs = [
161[int(j % element_modulus) for j in range(i * width + 1, (i + 1) * width + 1)]
162for i in range(args.max_shuffle_height + 1)
163]
164results = inputs
165for shuffles in shuffle_tree:
166results = [
167[
168(
169(results[i] if j < width else results[i + 1])[j % width]
170if j != -1
171else -1
172)
173for j in s
174]
175for i, s in enumerate(shuffles)
176]
177if len(results) != 1:
178print("ERROR: Bad results: %s" % (results,), file=sys.stderr)
179sys.exit(1)
180result = results[0]
181
182if args.verbose:
183print("Which transforms:", file=sys.stderr)
184print(" from: %s" % (inputs,), file=sys.stderr)
185print(" into: %s" % (result,), file=sys.stderr)
186print("", file=sys.stderr)
187
188# The IR uses silly names for floating point types. We also need a same-size
189# integer type.
190integral_element_type = element_type
191if element_type == "f32":
192integral_element_type = "i32"
193element_type = "float"
194elif element_type == "f64":
195integral_element_type = "i64"
196element_type = "double"
197
198# Now we need to generate IR for the shuffle function.
199subst = {"N": width, "T": element_type, "IT": integral_element_type}
200print(
201"""
202define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
203entry:"""
204% dict(
205subst,
206arguments=", ".join(
207[
208"<%(N)d x %(T)s> %%s.0.%(i)d" % dict(subst, i=i)
209for i in range(args.max_shuffle_height + 1)
210]
211),
212)
213)
214
215for i, shuffles in enumerate(shuffle_tree):
216for j, s in enumerate(shuffles):
217print(
218"""
219%%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
220""".strip(
221"\n"
222)
223% dict(
224subst,
225i=i,
226next_i=i + 1,
227j=j,
228next_j=j + 1,
229S=", ".join(
230["i32 " + (str(si) if si != -1 else "undef") for si in s]
231),
232)
233)
234
235print(
236"""
237ret <%(N)d x %(T)s> %%s.%(i)d.0
238}
239"""
240% dict(subst, i=len(shuffle_tree))
241)
242
243# Generate some string constants that we can use to report errors.
244for i, r in enumerate(result):
245if r != -1:
246s = (
247"FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A"
248% {"seed": args.seed, "lane": i, "result": r}
249)
250s += "".join(["\\00" for _ in itertools.repeat(None, 128 - len(s) + 2)])
251print(
252"""
253@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
254""".strip()
255% {"i": i, "s": s}
256)
257
258# Define a wrapper function which is marked 'optnone' to prevent
259# interprocedural optimizations from deleting the test.
260print(
261"""
262define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
263%%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
264ret <%(N)d x %(T)s> %%result
265}
266"""
267% dict(
268subst,
269arguments=", ".join(
270[
271"<%(N)d x %(T)s> %%s.%(i)d" % dict(subst, i=i)
272for i in range(args.max_shuffle_height + 1)
273]
274),
275)
276)
277
278# Finally, generate a main function which will trap if any lanes are mapped
279# incorrectly (in an observable way).
280print(
281"""
282define i32 @main() {
283entry:
284; Create a scratch space to print error messages.
285%%str = alloca [128 x i8]
286%%str.ptr = getelementptr inbounds [128 x i8], [128 x i8]* %%str, i32 0, i32 0
287
288; Build the input vector and call the test function.
289%%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
290; We need to cast this back to an integer type vector to easily check the
291; result.
292%%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
293br label %%test.0
294"""
295% dict(
296subst,
297inputs=", ".join(
298[
299(
300"<%(N)d x %(T)s> bitcast "
301"(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)"
302% dict(
303subst,
304input=", ".join(
305["%(IT)s %(i)d" % dict(subst, i=i) for i in input]
306),
307)
308)
309for input in inputs
310]
311),
312)
313)
314
315# Test that each non-undef result lane contains the expected value.
316for i, r in enumerate(result):
317if r == -1:
318print(
319"""
320test.%(i)d:
321; Skip this lane, its value is undef.
322br label %%test.%(next_i)d
323"""
324% dict(subst, i=i, next_i=i + 1)
325)
326else:
327print(
328"""
329test.%(i)d:
330%%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
331%%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
332br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
333
334die.%(i)d:
335; Capture the actual value and print an error message.
336%%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
337%%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
338call i32 (i8*, i8*, ...) @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8], [128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
339%%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
340call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
341call void @llvm.trap()
342unreachable
343"""
344% dict(subst, i=i, next_i=i + 1, r=r)
345)
346
347print(
348"""
349test.%d:
350ret i32 0
351}
352
353declare i32 @strlen(i8*)
354declare i32 @write(i32, i8*, i32)
355declare i32 @sprintf(i8*, i8*, ...)
356declare void @llvm.trap() noreturn nounwind
357"""
358% (len(result),)
359)
360
361
362if __name__ == "__main__":
363main()
364