llvm-project

Форк
0
/
VectorUtils.cpp 
1516 строк · 55.5 Кб
1
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines vectorizer utilities.
10
//
11
//===----------------------------------------------------------------------===//
12

13
#include "llvm/Analysis/VectorUtils.h"
14
#include "llvm/ADT/EquivalenceClasses.h"
15
#include "llvm/ADT/SmallVector.h"
16
#include "llvm/Analysis/DemandedBits.h"
17
#include "llvm/Analysis/LoopInfo.h"
18
#include "llvm/Analysis/LoopIterator.h"
19
#include "llvm/Analysis/ScalarEvolution.h"
20
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21
#include "llvm/Analysis/TargetTransformInfo.h"
22
#include "llvm/Analysis/ValueTracking.h"
23
#include "llvm/IR/Constants.h"
24
#include "llvm/IR/DerivedTypes.h"
25
#include "llvm/IR/IRBuilder.h"
26
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
27
#include "llvm/IR/PatternMatch.h"
28
#include "llvm/IR/Value.h"
29
#include "llvm/Support/CommandLine.h"
30

31
#define DEBUG_TYPE "vectorutils"
32

33
using namespace llvm;
34
using namespace llvm::PatternMatch;
35

36
/// Maximum factor for an interleaved memory access.
37
static cl::opt<unsigned> MaxInterleaveGroupFactor(
38
    "max-interleave-group-factor", cl::Hidden,
39
    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40
    cl::init(8));
41

42
/// Return true if all of the intrinsic's arguments and return type are scalars
43
/// for the scalar form of the intrinsic, and vectors for the vector form of the
44
/// intrinsic (except operands that are marked as always being scalar by
45
/// isVectorIntrinsicWithScalarOpAtArg).
46
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
47
  switch (ID) {
48
  case Intrinsic::abs:   // Begin integer bit-manipulation.
49
  case Intrinsic::bswap:
50
  case Intrinsic::bitreverse:
51
  case Intrinsic::ctpop:
52
  case Intrinsic::ctlz:
53
  case Intrinsic::cttz:
54
  case Intrinsic::fshl:
55
  case Intrinsic::fshr:
56
  case Intrinsic::smax:
57
  case Intrinsic::smin:
58
  case Intrinsic::umax:
59
  case Intrinsic::umin:
60
  case Intrinsic::sadd_sat:
61
  case Intrinsic::ssub_sat:
62
  case Intrinsic::uadd_sat:
63
  case Intrinsic::usub_sat:
64
  case Intrinsic::smul_fix:
65
  case Intrinsic::smul_fix_sat:
66
  case Intrinsic::umul_fix:
67
  case Intrinsic::umul_fix_sat:
68
  case Intrinsic::sqrt: // Begin floating-point.
69
  case Intrinsic::sin:
70
  case Intrinsic::cos:
71
  case Intrinsic::tan:
72
  case Intrinsic::exp:
73
  case Intrinsic::exp2:
74
  case Intrinsic::log:
75
  case Intrinsic::log10:
76
  case Intrinsic::log2:
77
  case Intrinsic::fabs:
78
  case Intrinsic::minnum:
79
  case Intrinsic::maxnum:
80
  case Intrinsic::minimum:
81
  case Intrinsic::maximum:
82
  case Intrinsic::copysign:
83
  case Intrinsic::floor:
84
  case Intrinsic::ceil:
85
  case Intrinsic::trunc:
86
  case Intrinsic::rint:
87
  case Intrinsic::nearbyint:
88
  case Intrinsic::round:
89
  case Intrinsic::roundeven:
90
  case Intrinsic::pow:
91
  case Intrinsic::fma:
92
  case Intrinsic::fmuladd:
93
  case Intrinsic::is_fpclass:
94
  case Intrinsic::powi:
95
  case Intrinsic::canonicalize:
96
  case Intrinsic::fptosi_sat:
97
  case Intrinsic::fptoui_sat:
98
  case Intrinsic::lrint:
99
  case Intrinsic::llrint:
100
    return true;
101
  default:
102
    return false;
103
  }
104
}
105

106
/// Identifies if the vector form of the intrinsic has a scalar operand.
107
bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
108
                                              unsigned ScalarOpdIdx) {
109
  switch (ID) {
110
  case Intrinsic::abs:
111
  case Intrinsic::ctlz:
112
  case Intrinsic::cttz:
113
  case Intrinsic::is_fpclass:
114
  case Intrinsic::powi:
115
    return (ScalarOpdIdx == 1);
116
  case Intrinsic::smul_fix:
117
  case Intrinsic::smul_fix_sat:
118
  case Intrinsic::umul_fix:
119
  case Intrinsic::umul_fix_sat:
120
    return (ScalarOpdIdx == 2);
121
  default:
122
    return false;
123
  }
124
}
125

126
bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
127
                                                  int OpdIdx) {
128
  assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
129

130
  switch (ID) {
131
  case Intrinsic::fptosi_sat:
132
  case Intrinsic::fptoui_sat:
133
  case Intrinsic::lrint:
134
  case Intrinsic::llrint:
135
    return OpdIdx == -1 || OpdIdx == 0;
136
  case Intrinsic::is_fpclass:
137
    return OpdIdx == 0;
138
  case Intrinsic::powi:
139
    return OpdIdx == -1 || OpdIdx == 1;
140
  default:
141
    return OpdIdx == -1;
142
  }
143
}
144

145
/// Returns intrinsic ID for call.
146
/// For the input call instruction it finds mapping intrinsic and returns
147
/// its ID, in case it does not found it return not_intrinsic.
148
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
149
                                                const TargetLibraryInfo *TLI) {
150
  Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
151
  if (ID == Intrinsic::not_intrinsic)
152
    return Intrinsic::not_intrinsic;
153

154
  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
155
      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
156
      ID == Intrinsic::experimental_noalias_scope_decl ||
157
      ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
158
    return ID;
159
  return Intrinsic::not_intrinsic;
160
}
161

162
/// Given a vector and an element number, see if the scalar value is
163
/// already around as a register, for example if it were inserted then extracted
164
/// from the vector.
165
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
166
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
167
  VectorType *VTy = cast<VectorType>(V->getType());
168
  // For fixed-length vector, return poison for out of range access.
169
  if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
170
    unsigned Width = FVTy->getNumElements();
171
    if (EltNo >= Width)
172
      return PoisonValue::get(FVTy->getElementType());
173
  }
174

175
  if (Constant *C = dyn_cast<Constant>(V))
176
    return C->getAggregateElement(EltNo);
177

178
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
179
    // If this is an insert to a variable element, we don't know what it is.
180
    if (!isa<ConstantInt>(III->getOperand(2)))
181
      return nullptr;
182
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
183

184
    // If this is an insert to the element we are looking for, return the
185
    // inserted value.
186
    if (EltNo == IIElt)
187
      return III->getOperand(1);
188

189
    // Guard against infinite loop on malformed, unreachable IR.
190
    if (III == III->getOperand(0))
191
      return nullptr;
192

193
    // Otherwise, the insertelement doesn't modify the value, recurse on its
194
    // vector input.
195
    return findScalarElement(III->getOperand(0), EltNo);
196
  }
197

198
  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
199
  // Restrict the following transformation to fixed-length vector.
200
  if (SVI && isa<FixedVectorType>(SVI->getType())) {
201
    unsigned LHSWidth =
202
        cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
203
    int InEl = SVI->getMaskValue(EltNo);
204
    if (InEl < 0)
205
      return PoisonValue::get(VTy->getElementType());
206
    if (InEl < (int)LHSWidth)
207
      return findScalarElement(SVI->getOperand(0), InEl);
208
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
209
  }
210

211
  // Extract a value from a vector add operation with a constant zero.
212
  // TODO: Use getBinOpIdentity() to generalize this.
213
  Value *Val; Constant *C;
214
  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
215
    if (Constant *Elt = C->getAggregateElement(EltNo))
216
      if (Elt->isNullValue())
217
        return findScalarElement(Val, EltNo);
218

219
  // If the vector is a splat then we can trivially find the scalar element.
220
  if (isa<ScalableVectorType>(VTy))
221
    if (Value *Splat = getSplatValue(V))
222
      if (EltNo < VTy->getElementCount().getKnownMinValue())
223
        return Splat;
224

225
  // Otherwise, we don't know.
226
  return nullptr;
227
}
228

229
int llvm::getSplatIndex(ArrayRef<int> Mask) {
230
  int SplatIndex = -1;
231
  for (int M : Mask) {
232
    // Ignore invalid (undefined) mask elements.
233
    if (M < 0)
234
      continue;
235

236
    // There can be only 1 non-negative mask element value if this is a splat.
237
    if (SplatIndex != -1 && SplatIndex != M)
238
      return -1;
239

240
    // Initialize the splat index to the 1st non-negative mask element.
241
    SplatIndex = M;
242
  }
243
  assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
244
  return SplatIndex;
245
}
246

247
/// Get splat value if the input is a splat vector or return nullptr.
248
/// This function is not fully general. It checks only 2 cases:
249
/// the input value is (1) a splat constant vector or (2) a sequence
250
/// of instructions that broadcasts a scalar at element 0.
251
Value *llvm::getSplatValue(const Value *V) {
252
  if (isa<VectorType>(V->getType()))
253
    if (auto *C = dyn_cast<Constant>(V))
254
      return C->getSplatValue();
255

256
  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
257
  Value *Splat;
258
  if (match(V,
259
            m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
260
                      m_Value(), m_ZeroMask())))
261
    return Splat;
262

263
  return nullptr;
264
}
265

266
bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
267
  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
268

269
  if (isa<VectorType>(V->getType())) {
270
    if (isa<UndefValue>(V))
271
      return true;
272
    // FIXME: We can allow undefs, but if Index was specified, we may want to
273
    //        check that the constant is defined at that index.
274
    if (auto *C = dyn_cast<Constant>(V))
275
      return C->getSplatValue() != nullptr;
276
  }
277

278
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
279
    // FIXME: We can safely allow undefs here. If Index was specified, we will
280
    //        check that the mask elt is defined at the required index.
281
    if (!all_equal(Shuf->getShuffleMask()))
282
      return false;
283

284
    // Match any index.
285
    if (Index == -1)
286
      return true;
287

288
    // Match a specific element. The mask should be defined at and match the
289
    // specified index.
290
    return Shuf->getMaskValue(Index) == Index;
291
  }
292

293
  // The remaining tests are all recursive, so bail out if we hit the limit.
294
  if (Depth++ == MaxAnalysisRecursionDepth)
295
    return false;
296

297
  // If both operands of a binop are splats, the result is a splat.
298
  Value *X, *Y, *Z;
299
  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
300
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
301

302
  // If all operands of a select are splats, the result is a splat.
303
  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
304
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
305
           isSplatValue(Z, Index, Depth);
306

307
  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
308

309
  return false;
310
}
311

312
bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
313
                                  const APInt &DemandedElts, APInt &DemandedLHS,
314
                                  APInt &DemandedRHS, bool AllowUndefElts) {
315
  DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
316

317
  // Early out if we don't demand any elements.
318
  if (DemandedElts.isZero())
319
    return true;
320

321
  // Simple case of a shuffle with zeroinitializer.
322
  if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
323
    DemandedLHS.setBit(0);
324
    return true;
325
  }
326

327
  for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
328
    int M = Mask[I];
329
    assert((-1 <= M) && (M < (SrcWidth * 2)) &&
330
           "Invalid shuffle mask constant");
331

332
    if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
333
      continue;
334

335
    // For undef elements, we don't know anything about the common state of
336
    // the shuffle result.
337
    if (M < 0)
338
      return false;
339

340
    if (M < SrcWidth)
341
      DemandedLHS.setBit(M);
342
    else
343
      DemandedRHS.setBit(M - SrcWidth);
344
  }
345

346
  return true;
347
}
348

349
void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
350
                                 SmallVectorImpl<int> &ScaledMask) {
351
  assert(Scale > 0 && "Unexpected scaling factor");
352

353
  // Fast-path: if no scaling, then it is just a copy.
354
  if (Scale == 1) {
355
    ScaledMask.assign(Mask.begin(), Mask.end());
356
    return;
357
  }
358

359
  ScaledMask.clear();
360
  for (int MaskElt : Mask) {
361
    if (MaskElt >= 0) {
362
      assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
363
             "Overflowed 32-bits");
364
    }
365
    for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
366
      ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
367
  }
368
}
369

370
bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
371
                                SmallVectorImpl<int> &ScaledMask) {
372
  assert(Scale > 0 && "Unexpected scaling factor");
373

374
  // Fast-path: if no scaling, then it is just a copy.
375
  if (Scale == 1) {
376
    ScaledMask.assign(Mask.begin(), Mask.end());
377
    return true;
378
  }
379

380
  // We must map the original elements down evenly to a type with less elements.
381
  int NumElts = Mask.size();
382
  if (NumElts % Scale != 0)
383
    return false;
384

385
  ScaledMask.clear();
386
  ScaledMask.reserve(NumElts / Scale);
387

388
  // Step through the input mask by splitting into Scale-sized slices.
389
  do {
390
    ArrayRef<int> MaskSlice = Mask.take_front(Scale);
391
    assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
392

393
    // The first element of the slice determines how we evaluate this slice.
394
    int SliceFront = MaskSlice.front();
395
    if (SliceFront < 0) {
396
      // Negative values (undef or other "sentinel" values) must be equal across
397
      // the entire slice.
398
      if (!all_equal(MaskSlice))
399
        return false;
400
      ScaledMask.push_back(SliceFront);
401
    } else {
402
      // A positive mask element must be cleanly divisible.
403
      if (SliceFront % Scale != 0)
404
        return false;
405
      // Elements of the slice must be consecutive.
406
      for (int i = 1; i < Scale; ++i)
407
        if (MaskSlice[i] != SliceFront + i)
408
          return false;
409
      ScaledMask.push_back(SliceFront / Scale);
410
    }
411
    Mask = Mask.drop_front(Scale);
412
  } while (!Mask.empty());
413

414
  assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
415

416
  // All elements of the original mask can be scaled down to map to the elements
417
  // of a mask with wider elements.
418
  return true;
419
}
420

421
bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
422
                                SmallVectorImpl<int> &ScaledMask) {
423
  unsigned NumSrcElts = Mask.size();
424
  assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor");
425

426
  // Fast-path: if no scaling, then it is just a copy.
427
  if (NumSrcElts == NumDstElts) {
428
    ScaledMask.assign(Mask.begin(), Mask.end());
429
    return true;
430
  }
431

432
  // Ensure we can find a whole scale factor.
433
  assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
434
         "Unexpected scaling factor");
435

436
  if (NumSrcElts > NumDstElts) {
437
    int Scale = NumSrcElts / NumDstElts;
438
    return widenShuffleMaskElts(Scale, Mask, ScaledMask);
439
  }
440

441
  int Scale = NumDstElts / NumSrcElts;
442
  narrowShuffleMaskElts(Scale, Mask, ScaledMask);
443
  return true;
444
}
445

446
void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
447
                                        SmallVectorImpl<int> &ScaledMask) {
448
  std::array<SmallVector<int, 16>, 2> TmpMasks;
449
  SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
450
  ArrayRef<int> InputMask = Mask;
451
  for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
452
    while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
453
      InputMask = *Output;
454
      std::swap(Output, Tmp);
455
    }
456
  }
457
  ScaledMask.assign(InputMask.begin(), InputMask.end());
458
}
459

460
void llvm::processShuffleMasks(
461
    ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
462
    unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
463
    function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
464
    function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
465
  SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
466
  // Try to perform better estimation of the permutation.
467
  // 1. Split the source/destination vectors into real registers.
468
  // 2. Do the mask analysis to identify which real registers are
469
  // permuted.
470
  int Sz = Mask.size();
471
  unsigned SzDest = Sz / NumOfDestRegs;
472
  unsigned SzSrc = Sz / NumOfSrcRegs;
473
  for (unsigned I = 0; I < NumOfDestRegs; ++I) {
474
    auto &RegMasks = Res[I];
475
    RegMasks.assign(NumOfSrcRegs, {});
476
    // Check that the values in dest registers are in the one src
477
    // register.
478
    for (unsigned K = 0; K < SzDest; ++K) {
479
      int Idx = I * SzDest + K;
480
      if (Idx == Sz)
481
        break;
482
      if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem)
483
        continue;
484
      int SrcRegIdx = Mask[Idx] / SzSrc;
485
      // Add a cost of PermuteTwoSrc for each new source register permute,
486
      // if we have more than one source registers.
487
      if (RegMasks[SrcRegIdx].empty())
488
        RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
489
      RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
490
    }
491
  }
492
  // Process split mask.
493
  for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
494
    auto &Dest = Res[I];
495
    int NumSrcRegs =
496
        count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
497
    switch (NumSrcRegs) {
498
    case 0:
499
      // No input vectors were used!
500
      NoInputAction();
501
      break;
502
    case 1: {
503
      // Find the only mask with at least single undef mask elem.
504
      auto *It =
505
          find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
506
      unsigned SrcReg = std::distance(Dest.begin(), It);
507
      SingleInputAction(*It, SrcReg, I);
508
      break;
509
    }
510
    default: {
511
      // The first mask is a permutation of a single register. Since we have >2
512
      // input registers to shuffle, we merge the masks for 2 first registers
513
      // and generate a shuffle of 2 registers rather than the reordering of the
514
      // first register and then shuffle with the second register. Next,
515
      // generate the shuffles of the resulting register + the remaining
516
      // registers from the list.
517
      auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
518
                               ArrayRef<int> SecondMask) {
519
        for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
520
          if (SecondMask[Idx] != PoisonMaskElem) {
521
            assert(FirstMask[Idx] == PoisonMaskElem &&
522
                   "Expected undefined mask element.");
523
            FirstMask[Idx] = SecondMask[Idx] + VF;
524
          }
525
        }
526
      };
527
      auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
528
        for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
529
          if (Mask[Idx] != PoisonMaskElem)
530
            Mask[Idx] = Idx;
531
        }
532
      };
533
      int SecondIdx;
534
      do {
535
        int FirstIdx = -1;
536
        SecondIdx = -1;
537
        MutableArrayRef<int> FirstMask, SecondMask;
538
        for (unsigned I = 0; I < NumOfDestRegs; ++I) {
539
          SmallVectorImpl<int> &RegMask = Dest[I];
540
          if (RegMask.empty())
541
            continue;
542

543
          if (FirstIdx == SecondIdx) {
544
            FirstIdx = I;
545
            FirstMask = RegMask;
546
            continue;
547
          }
548
          SecondIdx = I;
549
          SecondMask = RegMask;
550
          CombineMasks(FirstMask, SecondMask);
551
          ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
552
          NormalizeMask(FirstMask);
553
          RegMask.clear();
554
          SecondMask = FirstMask;
555
          SecondIdx = FirstIdx;
556
        }
557
        if (FirstIdx != SecondIdx && SecondIdx >= 0) {
558
          CombineMasks(SecondMask, FirstMask);
559
          ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
560
          Dest[FirstIdx].clear();
561
          NormalizeMask(SecondMask);
562
        }
563
      } while (SecondIdx >= 0);
564
      break;
565
    }
566
    }
567
  }
568
}
569

570
MapVector<Instruction *, uint64_t>
571
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
572
                               const TargetTransformInfo *TTI) {
573

574
  // DemandedBits will give us every value's live-out bits. But we want
575
  // to ensure no extra casts would need to be inserted, so every DAG
576
  // of connected values must have the same minimum bitwidth.
577
  EquivalenceClasses<Value *> ECs;
578
  SmallVector<Value *, 16> Worklist;
579
  SmallPtrSet<Value *, 4> Roots;
580
  SmallPtrSet<Value *, 16> Visited;
581
  DenseMap<Value *, uint64_t> DBits;
582
  SmallPtrSet<Instruction *, 4> InstructionSet;
583
  MapVector<Instruction *, uint64_t> MinBWs;
584

585
  // Determine the roots. We work bottom-up, from truncs or icmps.
586
  bool SeenExtFromIllegalType = false;
587
  for (auto *BB : Blocks)
588
    for (auto &I : *BB) {
589
      InstructionSet.insert(&I);
590

591
      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
592
          !TTI->isTypeLegal(I.getOperand(0)->getType()))
593
        SeenExtFromIllegalType = true;
594

595
      // Only deal with non-vector integers up to 64-bits wide.
596
      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
597
          !I.getType()->isVectorTy() &&
598
          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
599
        // Don't make work for ourselves. If we know the loaded type is legal,
600
        // don't add it to the worklist.
601
        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
602
          continue;
603

604
        Worklist.push_back(&I);
605
        Roots.insert(&I);
606
      }
607
    }
608
  // Early exit.
609
  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
610
    return MinBWs;
611

612
  // Now proceed breadth-first, unioning values together.
613
  while (!Worklist.empty()) {
614
    Value *Val = Worklist.pop_back_val();
615
    Value *Leader = ECs.getOrInsertLeaderValue(Val);
616

617
    if (!Visited.insert(Val).second)
618
      continue;
619

620
    // Non-instructions terminate a chain successfully.
621
    if (!isa<Instruction>(Val))
622
      continue;
623
    Instruction *I = cast<Instruction>(Val);
624

625
    // If we encounter a type that is larger than 64 bits, we can't represent
626
    // it so bail out.
627
    if (DB.getDemandedBits(I).getBitWidth() > 64)
628
      return MapVector<Instruction *, uint64_t>();
629

630
    uint64_t V = DB.getDemandedBits(I).getZExtValue();
631
    DBits[Leader] |= V;
632
    DBits[I] = V;
633

634
    // Casts, loads and instructions outside of our range terminate a chain
635
    // successfully.
636
    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
637
        !InstructionSet.count(I))
638
      continue;
639

640
    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
641
    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
642
    // transform anything that relies on them.
643
    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
644
        !I->getType()->isIntegerTy()) {
645
      DBits[Leader] |= ~0ULL;
646
      continue;
647
    }
648

649
    // We don't modify the types of PHIs. Reductions will already have been
650
    // truncated if possible, and inductions' sizes will have been chosen by
651
    // indvars.
652
    if (isa<PHINode>(I))
653
      continue;
654

655
    if (DBits[Leader] == ~0ULL)
656
      // All bits demanded, no point continuing.
657
      continue;
658

659
    for (Value *O : cast<User>(I)->operands()) {
660
      ECs.unionSets(Leader, O);
661
      Worklist.push_back(O);
662
    }
663
  }
664

665
  // Now we've discovered all values, walk them to see if there are
666
  // any users we didn't see. If there are, we can't optimize that
667
  // chain.
668
  for (auto &I : DBits)
669
    for (auto *U : I.first->users())
670
      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
671
        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
672

673
  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
674
    uint64_t LeaderDemandedBits = 0;
675
    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
676
      LeaderDemandedBits |= DBits[M];
677

678
    uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
679
    // Round up to a power of 2
680
    MinBW = llvm::bit_ceil(MinBW);
681

682
    // We don't modify the types of PHIs. Reductions will already have been
683
    // truncated if possible, and inductions' sizes will have been chosen by
684
    // indvars.
685
    // If we are required to shrink a PHI, abandon this entire equivalence class.
686
    bool Abort = false;
687
    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
688
      if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
689
        Abort = true;
690
        break;
691
      }
692
    if (Abort)
693
      continue;
694

695
    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
696
      auto *MI = dyn_cast<Instruction>(M);
697
      if (!MI)
698
        continue;
699
      Type *Ty = M->getType();
700
      if (Roots.count(M))
701
        Ty = MI->getOperand(0)->getType();
702

703
      if (MinBW >= Ty->getScalarSizeInBits())
704
        continue;
705

706
      // If any of M's operands demand more bits than MinBW then M cannot be
707
      // performed safely in MinBW.
708
      if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
709
            auto *CI = dyn_cast<ConstantInt>(U);
710
            // For constants shift amounts, check if the shift would result in
711
            // poison.
712
            if (CI &&
713
                isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
714
                U.getOperandNo() == 1)
715
              return CI->uge(MinBW);
716
            uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
717
            return bit_ceil(BW) > MinBW;
718
          }))
719
        continue;
720

721
      MinBWs[MI] = MinBW;
722
    }
723
  }
724

725
  return MinBWs;
726
}
727

728
/// Add all access groups in @p AccGroups to @p List.
729
template <typename ListT>
730
static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
731
  // Interpret an access group as a list containing itself.
732
  if (AccGroups->getNumOperands() == 0) {
733
    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
734
    List.insert(AccGroups);
735
    return;
736
  }
737

738
  for (const auto &AccGroupListOp : AccGroups->operands()) {
739
    auto *Item = cast<MDNode>(AccGroupListOp.get());
740
    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
741
    List.insert(Item);
742
  }
743
}
744

745
MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
746
  if (!AccGroups1)
747
    return AccGroups2;
748
  if (!AccGroups2)
749
    return AccGroups1;
750
  if (AccGroups1 == AccGroups2)
751
    return AccGroups1;
752

753
  SmallSetVector<Metadata *, 4> Union;
754
  addToAccessGroupList(Union, AccGroups1);
755
  addToAccessGroupList(Union, AccGroups2);
756

757
  if (Union.size() == 0)
758
    return nullptr;
759
  if (Union.size() == 1)
760
    return cast<MDNode>(Union.front());
761

762
  LLVMContext &Ctx = AccGroups1->getContext();
763
  return MDNode::get(Ctx, Union.getArrayRef());
764
}
765

766
MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
767
                                    const Instruction *Inst2) {
768
  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
769
  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
770

771
  if (!MayAccessMem1 && !MayAccessMem2)
772
    return nullptr;
773
  if (!MayAccessMem1)
774
    return Inst2->getMetadata(LLVMContext::MD_access_group);
775
  if (!MayAccessMem2)
776
    return Inst1->getMetadata(LLVMContext::MD_access_group);
777

778
  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
779
  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
780
  if (!MD1 || !MD2)
781
    return nullptr;
782
  if (MD1 == MD2)
783
    return MD1;
784

785
  // Use set for scalable 'contains' check.
786
  SmallPtrSet<Metadata *, 4> AccGroupSet2;
787
  addToAccessGroupList(AccGroupSet2, MD2);
788

789
  SmallVector<Metadata *, 4> Intersection;
790
  if (MD1->getNumOperands() == 0) {
791
    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
792
    if (AccGroupSet2.count(MD1))
793
      Intersection.push_back(MD1);
794
  } else {
795
    for (const MDOperand &Node : MD1->operands()) {
796
      auto *Item = cast<MDNode>(Node.get());
797
      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
798
      if (AccGroupSet2.count(Item))
799
        Intersection.push_back(Item);
800
    }
801
  }
802

803
  if (Intersection.size() == 0)
804
    return nullptr;
805
  if (Intersection.size() == 1)
806
    return cast<MDNode>(Intersection.front());
807

808
  LLVMContext &Ctx = Inst1->getContext();
809
  return MDNode::get(Ctx, Intersection);
810
}
811

812
/// \returns \p I after propagating metadata from \p VL.
813
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
814
  if (VL.empty())
815
    return Inst;
816
  Instruction *I0 = cast<Instruction>(VL[0]);
817
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
818
  I0->getAllMetadataOtherThanDebugLoc(Metadata);
819

820
  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
821
                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
822
                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
823
                    LLVMContext::MD_access_group, LLVMContext::MD_mmra}) {
824
    MDNode *MD = I0->getMetadata(Kind);
825
    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
826
      const Instruction *IJ = cast<Instruction>(VL[J]);
827
      MDNode *IMD = IJ->getMetadata(Kind);
828

829
      switch (Kind) {
830
      case LLVMContext::MD_mmra: {
831
        MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD);
832
        break;
833
      }
834
      case LLVMContext::MD_tbaa:
835
        MD = MDNode::getMostGenericTBAA(MD, IMD);
836
        break;
837
      case LLVMContext::MD_alias_scope:
838
        MD = MDNode::getMostGenericAliasScope(MD, IMD);
839
        break;
840
      case LLVMContext::MD_fpmath:
841
        MD = MDNode::getMostGenericFPMath(MD, IMD);
842
        break;
843
      case LLVMContext::MD_noalias:
844
      case LLVMContext::MD_nontemporal:
845
      case LLVMContext::MD_invariant_load:
846
        MD = MDNode::intersect(MD, IMD);
847
        break;
848
      case LLVMContext::MD_access_group:
849
        MD = intersectAccessGroups(Inst, IJ);
850
        break;
851
      default:
852
        llvm_unreachable("unhandled metadata");
853
      }
854
    }
855

856
    Inst->setMetadata(Kind, MD);
857
  }
858

859
  return Inst;
860
}
861

862
Constant *
863
llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
864
                           const InterleaveGroup<Instruction> &Group) {
865
  // All 1's means mask is not needed.
866
  if (Group.getNumMembers() == Group.getFactor())
867
    return nullptr;
868

869
  // TODO: support reversed access.
870
  assert(!Group.isReverse() && "Reversed group not supported.");
871

872
  SmallVector<Constant *, 16> Mask;
873
  for (unsigned i = 0; i < VF; i++)
874
    for (unsigned j = 0; j < Group.getFactor(); ++j) {
875
      unsigned HasMember = Group.getMember(j) ? 1 : 0;
876
      Mask.push_back(Builder.getInt1(HasMember));
877
    }
878

879
  return ConstantVector::get(Mask);
880
}
881

882
llvm::SmallVector<int, 16>
883
llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
884
  SmallVector<int, 16> MaskVec;
885
  for (unsigned i = 0; i < VF; i++)
886
    for (unsigned j = 0; j < ReplicationFactor; j++)
887
      MaskVec.push_back(i);
888

889
  return MaskVec;
890
}
891

892
llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
893
                                                      unsigned NumVecs) {
894
  SmallVector<int, 16> Mask;
895
  for (unsigned i = 0; i < VF; i++)
896
    for (unsigned j = 0; j < NumVecs; j++)
897
      Mask.push_back(j * VF + i);
898

899
  return Mask;
900
}
901

902
llvm::SmallVector<int, 16>
903
llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
904
  SmallVector<int, 16> Mask;
905
  for (unsigned i = 0; i < VF; i++)
906
    Mask.push_back(Start + i * Stride);
907

908
  return Mask;
909
}
910

911
llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
912
                                                      unsigned NumInts,
913
                                                      unsigned NumUndefs) {
914
  SmallVector<int, 16> Mask;
915
  for (unsigned i = 0; i < NumInts; i++)
916
    Mask.push_back(Start + i);
917

918
  for (unsigned i = 0; i < NumUndefs; i++)
919
    Mask.push_back(-1);
920

921
  return Mask;
922
}
923

924
llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
925
                                                 unsigned NumElts) {
926
  // Avoid casts in the loop and make sure we have a reasonable number.
927
  int NumEltsSigned = NumElts;
928
  assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
929

930
  // If the mask chooses an element from operand 1, reduce it to choose from the
931
  // corresponding element of operand 0. Undef mask elements are unchanged.
932
  SmallVector<int, 16> UnaryMask;
933
  for (int MaskElt : Mask) {
934
    assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
935
    int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
936
    UnaryMask.push_back(UnaryElt);
937
  }
938
  return UnaryMask;
939
}
940

941
/// A helper function for concatenating vectors. This function concatenates two
942
/// vectors having the same element type. If the second vector has fewer
943
/// elements than the first, it is padded with undefs.
944
static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
945
                                    Value *V2) {
946
  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
947
  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
948
  assert(VecTy1 && VecTy2 &&
949
         VecTy1->getScalarType() == VecTy2->getScalarType() &&
950
         "Expect two vectors with the same element type");
951

952
  unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
953
  unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
954
  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
955

956
  if (NumElts1 > NumElts2) {
957
    // Extend with UNDEFs.
958
    V2 = Builder.CreateShuffleVector(
959
        V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
960
  }
961

962
  return Builder.CreateShuffleVector(
963
      V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
964
}
965

966
Value *llvm::concatenateVectors(IRBuilderBase &Builder,
967
                                ArrayRef<Value *> Vecs) {
968
  unsigned NumVecs = Vecs.size();
969
  assert(NumVecs > 1 && "Should be at least two vectors");
970

971
  SmallVector<Value *, 8> ResList;
972
  ResList.append(Vecs.begin(), Vecs.end());
973
  do {
974
    SmallVector<Value *, 8> TmpList;
975
    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
976
      Value *V0 = ResList[i], *V1 = ResList[i + 1];
977
      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
978
             "Only the last vector may have a different type");
979

980
      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
981
    }
982

983
    // Push the last vector if the total number of vectors is odd.
984
    if (NumVecs % 2 != 0)
985
      TmpList.push_back(ResList[NumVecs - 1]);
986

987
    ResList = TmpList;
988
    NumVecs = ResList.size();
989
  } while (NumVecs > 1);
990

991
  return ResList[0];
992
}
993

994
bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
995
  assert(isa<VectorType>(Mask->getType()) &&
996
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
997
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
998
             1 &&
999
         "Mask must be a vector of i1");
1000

1001
  auto *ConstMask = dyn_cast<Constant>(Mask);
1002
  if (!ConstMask)
1003
    return false;
1004
  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1005
    return true;
1006
  if (isa<ScalableVectorType>(ConstMask->getType()))
1007
    return false;
1008
  for (unsigned
1009
           I = 0,
1010
           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1011
       I != E; ++I) {
1012
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1013
      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1014
        continue;
1015
    return false;
1016
  }
1017
  return true;
1018
}
1019

1020
bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1021
  assert(isa<VectorType>(Mask->getType()) &&
1022
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1023
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1024
             1 &&
1025
         "Mask must be a vector of i1");
1026

1027
  auto *ConstMask = dyn_cast<Constant>(Mask);
1028
  if (!ConstMask)
1029
    return false;
1030
  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1031
    return true;
1032
  if (isa<ScalableVectorType>(ConstMask->getType()))
1033
    return false;
1034
  for (unsigned
1035
           I = 0,
1036
           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1037
       I != E; ++I) {
1038
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1039
      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1040
        continue;
1041
    return false;
1042
  }
1043
  return true;
1044
}
1045

1046
bool llvm::maskContainsAllOneOrUndef(Value *Mask) {
1047
  assert(isa<VectorType>(Mask->getType()) &&
1048
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1049
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1050
             1 &&
1051
         "Mask must be a vector of i1");
1052

1053
  auto *ConstMask = dyn_cast<Constant>(Mask);
1054
  if (!ConstMask)
1055
    return false;
1056
  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1057
    return true;
1058
  if (isa<ScalableVectorType>(ConstMask->getType()))
1059
    return false;
1060
  for (unsigned
1061
           I = 0,
1062
           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1063
       I != E; ++I) {
1064
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
1065
      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1066
        return true;
1067
  }
1068
  return false;
1069
}
1070

1071
/// TODO: This is a lot like known bits, but for
1072
/// vectors.  Is there something we can common this with?
1073
APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1074
  assert(isa<FixedVectorType>(Mask->getType()) &&
1075
         isa<IntegerType>(Mask->getType()->getScalarType()) &&
1076
         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1077
             1 &&
1078
         "Mask must be a fixed width vector of i1");
1079

1080
  const unsigned VWidth =
1081
      cast<FixedVectorType>(Mask->getType())->getNumElements();
1082
  APInt DemandedElts = APInt::getAllOnes(VWidth);
1083
  if (auto *CV = dyn_cast<ConstantVector>(Mask))
1084
    for (unsigned i = 0; i < VWidth; i++)
1085
      if (CV->getAggregateElement(i)->isNullValue())
1086
        DemandedElts.clearBit(i);
1087
  return DemandedElts;
1088
}
1089

1090
bool InterleavedAccessInfo::isStrided(int Stride) {
1091
  unsigned Factor = std::abs(Stride);
1092
  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1093
}
1094

1095
void InterleavedAccessInfo::collectConstStrideAccesses(
1096
    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1097
    const DenseMap<Value*, const SCEV*> &Strides) {
1098
  auto &DL = TheLoop->getHeader()->getDataLayout();
1099

1100
  // Since it's desired that the load/store instructions be maintained in
1101
  // "program order" for the interleaved access analysis, we have to visit the
1102
  // blocks in the loop in reverse postorder (i.e., in a topological order).
1103
  // Such an ordering will ensure that any load/store that may be executed
1104
  // before a second load/store will precede the second load/store in
1105
  // AccessStrideInfo.
1106
  LoopBlocksDFS DFS(TheLoop);
1107
  DFS.perform(LI);
1108
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1109
    for (auto &I : *BB) {
1110
      Value *Ptr = getLoadStorePointerOperand(&I);
1111
      if (!Ptr)
1112
        continue;
1113
      Type *ElementTy = getLoadStoreType(&I);
1114

1115
      // Currently, codegen doesn't support cases where the type size doesn't
1116
      // match the alloc size. Skip them for now.
1117
      uint64_t Size = DL.getTypeAllocSize(ElementTy);
1118
      if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1119
        continue;
1120

1121
      // We don't check wrapping here because we don't know yet if Ptr will be
1122
      // part of a full group or a group with gaps. Checking wrapping for all
1123
      // pointers (even those that end up in groups with no gaps) will be overly
1124
      // conservative. For full groups, wrapping should be ok since if we would
1125
      // wrap around the address space we would do a memory access at nullptr
1126
      // even without the transformation. The wrapping checks are therefore
1127
      // deferred until after we've formed the interleaved groups.
1128
      int64_t Stride =
1129
        getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1130
                     /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1131

1132
      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1133
      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1134
                                              getLoadStoreAlignment(&I));
1135
    }
1136
}
1137

1138
// Analyze interleaved accesses and collect them into interleaved load and
1139
// store groups.
1140
//
1141
// When generating code for an interleaved load group, we effectively hoist all
1142
// loads in the group to the location of the first load in program order. When
1143
// generating code for an interleaved store group, we sink all stores to the
1144
// location of the last store. This code motion can change the order of load
1145
// and store instructions and may break dependences.
1146
//
1147
// The code generation strategy mentioned above ensures that we won't violate
1148
// any write-after-read (WAR) dependences.
1149
//
1150
// E.g., for the WAR dependence:  a = A[i];      // (1)
1151
//                                A[i] = b;      // (2)
1152
//
1153
// The store group of (2) is always inserted at or below (2), and the load
1154
// group of (1) is always inserted at or above (1). Thus, the instructions will
1155
// never be reordered. All other dependences are checked to ensure the
1156
// correctness of the instruction reordering.
1157
//
1158
// The algorithm visits all memory accesses in the loop in bottom-up program
1159
// order. Program order is established by traversing the blocks in the loop in
1160
// reverse postorder when collecting the accesses.
1161
//
1162
// We visit the memory accesses in bottom-up order because it can simplify the
1163
// construction of store groups in the presence of write-after-write (WAW)
1164
// dependences.
1165
//
1166
// E.g., for the WAW dependence:  A[i] = a;      // (1)
1167
//                                A[i] = b;      // (2)
1168
//                                A[i + 1] = c;  // (3)
1169
//
1170
// We will first create a store group with (3) and (2). (1) can't be added to
1171
// this group because it and (2) are dependent. However, (1) can be grouped
1172
// with other accesses that may precede it in program order. Note that a
1173
// bottom-up order does not imply that WAW dependences should not be checked.
1174
void InterleavedAccessInfo::analyzeInterleaving(
1175
                                 bool EnablePredicatedInterleavedMemAccesses) {
1176
  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1177
  const auto &Strides = LAI->getSymbolicStrides();
1178

1179
  // Holds all accesses with a constant stride.
1180
  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1181
  collectConstStrideAccesses(AccessStrideInfo, Strides);
1182

1183
  if (AccessStrideInfo.empty())
1184
    return;
1185

1186
  // Collect the dependences in the loop.
1187
  collectDependences();
1188

1189
  // Holds all interleaved store groups temporarily.
1190
  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1191
  // Holds all interleaved load groups temporarily.
1192
  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1193
  // Groups added to this set cannot have new members added.
1194
  SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1195

1196
  // Search in bottom-up program order for pairs of accesses (A and B) that can
1197
  // form interleaved load or store groups. In the algorithm below, access A
1198
  // precedes access B in program order. We initialize a group for B in the
1199
  // outer loop of the algorithm, and then in the inner loop, we attempt to
1200
  // insert each A into B's group if:
1201
  //
1202
  //  1. A and B have the same stride,
1203
  //  2. A and B have the same memory object size, and
1204
  //  3. A belongs in B's group according to its distance from B.
1205
  //
1206
  // Special care is taken to ensure group formation will not break any
1207
  // dependences.
1208
  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1209
       BI != E; ++BI) {
1210
    Instruction *B = BI->first;
1211
    StrideDescriptor DesB = BI->second;
1212

1213
    // Initialize a group for B if it has an allowable stride. Even if we don't
1214
    // create a group for B, we continue with the bottom-up algorithm to ensure
1215
    // we don't break any of B's dependences.
1216
    InterleaveGroup<Instruction> *GroupB = nullptr;
1217
    if (isStrided(DesB.Stride) &&
1218
        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1219
      GroupB = getInterleaveGroup(B);
1220
      if (!GroupB) {
1221
        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1222
                          << '\n');
1223
        GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1224
        if (B->mayWriteToMemory())
1225
          StoreGroups.insert(GroupB);
1226
        else
1227
          LoadGroups.insert(GroupB);
1228
      }
1229
    }
1230

1231
    for (auto AI = std::next(BI); AI != E; ++AI) {
1232
      Instruction *A = AI->first;
1233
      StrideDescriptor DesA = AI->second;
1234

1235
      // Our code motion strategy implies that we can't have dependences
1236
      // between accesses in an interleaved group and other accesses located
1237
      // between the first and last member of the group. Note that this also
1238
      // means that a group can't have more than one member at a given offset.
1239
      // The accesses in a group can have dependences with other accesses, but
1240
      // we must ensure we don't extend the boundaries of the group such that
1241
      // we encompass those dependent accesses.
1242
      //
1243
      // For example, assume we have the sequence of accesses shown below in a
1244
      // stride-2 loop:
1245
      //
1246
      //  (1, 2) is a group | A[i]   = a;  // (1)
1247
      //                    | A[i-1] = b;  // (2) |
1248
      //                      A[i-3] = c;  // (3)
1249
      //                      A[i]   = d;  // (4) | (2, 4) is not a group
1250
      //
1251
      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1252
      // but not with (4). If we did, the dependent access (3) would be within
1253
      // the boundaries of the (2, 4) group.
1254
      auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1255
                                 StrideEntry *A) -> Instruction * {
1256
        for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1257
          Instruction *MemberOfGroupB = Group->getMember(Index);
1258
          if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1259
                                    A, &*AccessStrideInfo.find(MemberOfGroupB)))
1260
            return MemberOfGroupB;
1261
        }
1262
        return nullptr;
1263
      };
1264

1265
      auto GroupA = getInterleaveGroup(A);
1266
      // If A is a load, dependencies are tolerable, there's nothing to do here.
1267
      // If both A and B belong to the same (store) group, they are independent,
1268
      // even if dependencies have not been recorded.
1269
      // If both GroupA and GroupB are null, there's nothing to do here.
1270
      if (A->mayWriteToMemory() && GroupA != GroupB) {
1271
        Instruction *DependentInst = nullptr;
1272
        // If GroupB is a load group, we have to compare AI against all
1273
        // members of GroupB because if any load within GroupB has a dependency
1274
        // on AI, we need to mark GroupB as complete and also release the
1275
        // store GroupA (if A belongs to one). The former prevents incorrect
1276
        // hoisting of load B above store A while the latter prevents incorrect
1277
        // sinking of store A below load B.
1278
        if (GroupB && LoadGroups.contains(GroupB))
1279
          DependentInst = DependentMember(GroupB, &*AI);
1280
        else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1281
          DependentInst = B;
1282

1283
        if (DependentInst) {
1284
          // A has a store dependence on B (or on some load within GroupB) and
1285
          // is part of a store group. Release A's group to prevent illegal
1286
          // sinking of A below B. A will then be free to form another group
1287
          // with instructions that precede it.
1288
          if (GroupA && StoreGroups.contains(GroupA)) {
1289
            LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1290
                                 "dependence between "
1291
                              << *A << " and " << *DependentInst << '\n');
1292
            StoreGroups.remove(GroupA);
1293
            releaseGroup(GroupA);
1294
          }
1295
          // If B is a load and part of an interleave group, no earlier loads
1296
          // can be added to B's interleave group, because this would mean the
1297
          // DependentInst would move across store A. Mark the interleave group
1298
          // as complete.
1299
          if (GroupB && LoadGroups.contains(GroupB)) {
1300
            LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1301
                              << " as complete.\n");
1302
            CompletedLoadGroups.insert(GroupB);
1303
          }
1304
        }
1305
      }
1306
      if (CompletedLoadGroups.contains(GroupB)) {
1307
        // Skip trying to add A to B, continue to look for other conflicting A's
1308
        // in groups to be released.
1309
        continue;
1310
      }
1311

1312
      // At this point, we've checked for illegal code motion. If either A or B
1313
      // isn't strided, there's nothing left to do.
1314
      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1315
        continue;
1316

1317
      // Ignore A if it's already in a group or isn't the same kind of memory
1318
      // operation as B.
1319
      // Note that mayReadFromMemory() isn't mutually exclusive to
1320
      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1321
      // here, canVectorizeMemory() should have returned false - except for the
1322
      // case we asked for optimization remarks.
1323
      if (isInterleaved(A) ||
1324
          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1325
          (A->mayWriteToMemory() != B->mayWriteToMemory()))
1326
        continue;
1327

1328
      // Check rules 1 and 2. Ignore A if its stride or size is different from
1329
      // that of B.
1330
      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1331
        continue;
1332

1333
      // Ignore A if the memory object of A and B don't belong to the same
1334
      // address space
1335
      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1336
        continue;
1337

1338
      // Calculate the distance from A to B.
1339
      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1340
          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1341
      if (!DistToB)
1342
        continue;
1343
      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1344

1345
      // Check rule 3. Ignore A if its distance to B is not a multiple of the
1346
      // size.
1347
      if (DistanceToB % static_cast<int64_t>(DesB.Size))
1348
        continue;
1349

1350
      // All members of a predicated interleave-group must have the same predicate,
1351
      // and currently must reside in the same BB.
1352
      BasicBlock *BlockA = A->getParent();
1353
      BasicBlock *BlockB = B->getParent();
1354
      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1355
          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1356
        continue;
1357

1358
      // The index of A is the index of B plus A's distance to B in multiples
1359
      // of the size.
1360
      int IndexA =
1361
          GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1362

1363
      // Try to insert A into B's group.
1364
      if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1365
        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1366
                          << "    into the interleave group with" << *B
1367
                          << '\n');
1368
        InterleaveGroupMap[A] = GroupB;
1369

1370
        // Set the first load in program order as the insert position.
1371
        if (A->mayReadFromMemory())
1372
          GroupB->setInsertPos(A);
1373
      }
1374
    } // Iteration over A accesses.
1375
  }   // Iteration over B accesses.
1376

1377
  auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1378
                                            int Index,
1379
                                            std::string FirstOrLast) -> bool {
1380
    Instruction *Member = Group->getMember(Index);
1381
    assert(Member && "Group member does not exist");
1382
    Value *MemberPtr = getLoadStorePointerOperand(Member);
1383
    Type *AccessTy = getLoadStoreType(Member);
1384
    if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1385
                     /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1386
      return false;
1387
    LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1388
                      << FirstOrLast
1389
                      << " group member potentially pointer-wrapping.\n");
1390
    releaseGroup(Group);
1391
    return true;
1392
  };
1393

1394
  // Remove interleaved groups with gaps whose memory
1395
  // accesses may wrap around. We have to revisit the getPtrStride analysis,
1396
  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1397
  // not check wrapping (see documentation there).
1398
  // FORNOW we use Assume=false;
1399
  // TODO: Change to Assume=true but making sure we don't exceed the threshold
1400
  // of runtime SCEV assumptions checks (thereby potentially failing to
1401
  // vectorize altogether).
1402
  // Additional optional optimizations:
1403
  // TODO: If we are peeling the loop and we know that the first pointer doesn't
1404
  // wrap then we can deduce that all pointers in the group don't wrap.
1405
  // This means that we can forcefully peel the loop in order to only have to
1406
  // check the first pointer for no-wrap. When we'll change to use Assume=true
1407
  // we'll only need at most one runtime check per interleaved group.
1408
  for (auto *Group : LoadGroups) {
1409
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1410
    // load would wrap around the address space we would do a memory access at
1411
    // nullptr even without the transformation.
1412
    if (Group->getNumMembers() == Group->getFactor())
1413
      continue;
1414

1415
    // Case 2: If first and last members of the group don't wrap this implies
1416
    // that all the pointers in the group don't wrap.
1417
    // So we check only group member 0 (which is always guaranteed to exist),
1418
    // and group member Factor - 1; If the latter doesn't exist we rely on
1419
    // peeling (if it is a non-reversed accsess -- see Case 3).
1420
    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1421
      continue;
1422
    if (Group->getMember(Group->getFactor() - 1))
1423
      InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1424
                                     std::string("last"));
1425
    else {
1426
      // Case 3: A non-reversed interleaved load group with gaps: We need
1427
      // to execute at least one scalar epilogue iteration. This will ensure
1428
      // we don't speculatively access memory out-of-bounds. We only need
1429
      // to look for a member at index factor - 1, since every group must have
1430
      // a member at index zero.
1431
      if (Group->isReverse()) {
1432
        LLVM_DEBUG(
1433
            dbgs() << "LV: Invalidate candidate interleaved group due to "
1434
                      "a reverse access with gaps.\n");
1435
        releaseGroup(Group);
1436
        continue;
1437
      }
1438
      LLVM_DEBUG(
1439
          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1440
      RequiresScalarEpilogue = true;
1441
    }
1442
  }
1443

1444
  for (auto *Group : StoreGroups) {
1445
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1446
    // store would wrap around the address space we would do a memory access at
1447
    // nullptr even without the transformation.
1448
    if (Group->getNumMembers() == Group->getFactor())
1449
      continue;
1450

1451
    // Interleave-store-group with gaps is implemented using masked wide store.
1452
    // Remove interleaved store groups with gaps if
1453
    // masked-interleaved-accesses are not enabled by the target.
1454
    if (!EnablePredicatedInterleavedMemAccesses) {
1455
      LLVM_DEBUG(
1456
          dbgs() << "LV: Invalidate candidate interleaved store group due "
1457
                    "to gaps.\n");
1458
      releaseGroup(Group);
1459
      continue;
1460
    }
1461

1462
    // Case 2: If first and last members of the group don't wrap this implies
1463
    // that all the pointers in the group don't wrap.
1464
    // So we check only group member 0 (which is always guaranteed to exist),
1465
    // and the last group member. Case 3 (scalar epilog) is not relevant for
1466
    // stores with gaps, which are implemented with masked-store (rather than
1467
    // speculative access, as in loads).
1468
    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1469
      continue;
1470
    for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1471
      if (Group->getMember(Index)) {
1472
        InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1473
        break;
1474
      }
1475
  }
1476
}
1477

1478
void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1479
  // If no group had triggered the requirement to create an epilogue loop,
1480
  // there is nothing to do.
1481
  if (!requiresScalarEpilogue())
1482
    return;
1483

1484
  // Release groups requiring scalar epilogues. Note that this also removes them
1485
  // from InterleaveGroups.
1486
  bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) {
1487
    if (!Group->requiresScalarEpilogue())
1488
      return false;
1489
    LLVM_DEBUG(
1490
        dbgs()
1491
        << "LV: Invalidate candidate interleaved group due to gaps that "
1492
           "require a scalar epilogue (not allowed under optsize) and cannot "
1493
           "be masked (not enabled). \n");
1494
    releaseGroupWithoutRemovingFromSet(Group);
1495
    return true;
1496
  });
1497
  assert(ReleasedGroup && "At least one group must be invalidated, as a "
1498
                          "scalar epilogue was required");
1499
  (void)ReleasedGroup;
1500
  RequiresScalarEpilogue = false;
1501
}
1502

1503
template <typename InstT>
1504
void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1505
  llvm_unreachable("addMetadata can only be used for Instruction");
1506
}
1507

1508
namespace llvm {
1509
template <>
1510
void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1511
  SmallVector<Value *, 4> VL;
1512
  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1513
                 [](std::pair<int, Instruction *> p) { return p.second; });
1514
  propagateMetadata(NewInst, VL);
1515
}
1516
} // namespace llvm
1517

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.