llvm-project

Форк
0
/
MemoryDependenceAnalysis.cpp 
1828 строк · 71.6 Кб
1
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements an analysis that determines, for a given memory
10
// operation, what preceding memory operations it depends on.  It builds on
11
// alias analysis information, and tries to provide a lazy, caching interface to
12
// a common kind of alias information query.
13
//
14
//===----------------------------------------------------------------------===//
15

16
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SmallPtrSet.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Statistic.h"
22
#include "llvm/Analysis/AliasAnalysis.h"
23
#include "llvm/Analysis/AssumptionCache.h"
24
#include "llvm/Analysis/MemoryBuiltins.h"
25
#include "llvm/Analysis/MemoryLocation.h"
26
#include "llvm/Analysis/PHITransAddr.h"
27
#include "llvm/Analysis/TargetLibraryInfo.h"
28
#include "llvm/Analysis/ValueTracking.h"
29
#include "llvm/IR/BasicBlock.h"
30
#include "llvm/IR/Dominators.h"
31
#include "llvm/IR/Function.h"
32
#include "llvm/IR/InstrTypes.h"
33
#include "llvm/IR/Instruction.h"
34
#include "llvm/IR/Instructions.h"
35
#include "llvm/IR/IntrinsicInst.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Metadata.h"
38
#include "llvm/IR/Module.h"
39
#include "llvm/IR/PredIteratorCache.h"
40
#include "llvm/IR/Type.h"
41
#include "llvm/IR/Use.h"
42
#include "llvm/IR/Value.h"
43
#include "llvm/InitializePasses.h"
44
#include "llvm/Pass.h"
45
#include "llvm/Support/AtomicOrdering.h"
46
#include "llvm/Support/Casting.h"
47
#include "llvm/Support/CommandLine.h"
48
#include "llvm/Support/Compiler.h"
49
#include "llvm/Support/Debug.h"
50
#include <algorithm>
51
#include <cassert>
52
#include <iterator>
53
#include <utility>
54

55
using namespace llvm;
56

57
#define DEBUG_TYPE "memdep"
58

59
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
60
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
61
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
62

63
STATISTIC(NumCacheNonLocalPtr,
64
          "Number of fully cached non-local ptr responses");
65
STATISTIC(NumCacheDirtyNonLocalPtr,
66
          "Number of cached, but dirty, non-local ptr responses");
67
STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
68
STATISTIC(NumCacheCompleteNonLocalPtr,
69
          "Number of block queries that were completely cached");
70

71
// Limit for the number of instructions to scan in a block.
72

73
static cl::opt<unsigned> BlockScanLimit(
74
    "memdep-block-scan-limit", cl::Hidden, cl::init(100),
75
    cl::desc("The number of instructions to scan in a block in memory "
76
             "dependency analysis (default = 100)"));
77

78
static cl::opt<unsigned>
79
    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(200),
80
                     cl::desc("The number of blocks to scan during memory "
81
                              "dependency analysis (default = 200)"));
82

83
// Limit on the number of memdep results to process.
84
static const unsigned int NumResultsLimit = 100;
85

86
/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
87
///
88
/// If the set becomes empty, remove Inst's entry.
89
template <typename KeyTy>
90
static void
91
RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
92
                     Instruction *Inst, KeyTy Val) {
93
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94
      ReverseMap.find(Inst);
95
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96
  bool Found = InstIt->second.erase(Val);
97
  assert(Found && "Invalid reverse map!");
98
  (void)Found;
99
  if (InstIt->second.empty())
100
    ReverseMap.erase(InstIt);
101
}
102

103
/// If the given instruction references a specific memory location, fill in Loc
104
/// with the details, otherwise set Loc.Ptr to null.
105
///
106
/// Returns a ModRefInfo value describing the general behavior of the
107
/// instruction.
108
static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
109
                              const TargetLibraryInfo &TLI) {
110
  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
111
    if (LI->isUnordered()) {
112
      Loc = MemoryLocation::get(LI);
113
      return ModRefInfo::Ref;
114
    }
115
    if (LI->getOrdering() == AtomicOrdering::Monotonic) {
116
      Loc = MemoryLocation::get(LI);
117
      return ModRefInfo::ModRef;
118
    }
119
    Loc = MemoryLocation();
120
    return ModRefInfo::ModRef;
121
  }
122

123
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
124
    if (SI->isUnordered()) {
125
      Loc = MemoryLocation::get(SI);
126
      return ModRefInfo::Mod;
127
    }
128
    if (SI->getOrdering() == AtomicOrdering::Monotonic) {
129
      Loc = MemoryLocation::get(SI);
130
      return ModRefInfo::ModRef;
131
    }
132
    Loc = MemoryLocation();
133
    return ModRefInfo::ModRef;
134
  }
135

136
  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
137
    Loc = MemoryLocation::get(V);
138
    return ModRefInfo::ModRef;
139
  }
140

141
  if (const CallBase *CB = dyn_cast<CallBase>(Inst)) {
142
    if (Value *FreedOp = getFreedOperand(CB, &TLI)) {
143
      // calls to free() deallocate the entire structure
144
      Loc = MemoryLocation::getAfter(FreedOp);
145
      return ModRefInfo::Mod;
146
    }
147
  }
148

149
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
150
    switch (II->getIntrinsicID()) {
151
    case Intrinsic::lifetime_start:
152
    case Intrinsic::lifetime_end:
153
    case Intrinsic::invariant_start:
154
      Loc = MemoryLocation::getForArgument(II, 1, TLI);
155
      // These intrinsics don't really modify the memory, but returning Mod
156
      // will allow them to be handled conservatively.
157
      return ModRefInfo::Mod;
158
    case Intrinsic::invariant_end:
159
      Loc = MemoryLocation::getForArgument(II, 2, TLI);
160
      // These intrinsics don't really modify the memory, but returning Mod
161
      // will allow them to be handled conservatively.
162
      return ModRefInfo::Mod;
163
    case Intrinsic::masked_load:
164
      Loc = MemoryLocation::getForArgument(II, 0, TLI);
165
      return ModRefInfo::Ref;
166
    case Intrinsic::masked_store:
167
      Loc = MemoryLocation::getForArgument(II, 1, TLI);
168
      return ModRefInfo::Mod;
169
    default:
170
      break;
171
    }
172
  }
173

174
  // Otherwise, just do the coarse-grained thing that always works.
175
  if (Inst->mayWriteToMemory())
176
    return ModRefInfo::ModRef;
177
  if (Inst->mayReadFromMemory())
178
    return ModRefInfo::Ref;
179
  return ModRefInfo::NoModRef;
180
}
181

182
/// Private helper for finding the local dependencies of a call site.
183
MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184
    CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185
    BasicBlock *BB) {
186
  unsigned Limit = getDefaultBlockScanLimit();
187

188
  // Walk backwards through the block, looking for dependencies.
189
  while (ScanIt != BB->begin()) {
190
    Instruction *Inst = &*--ScanIt;
191
    // Debug intrinsics don't cause dependences and should not affect Limit
192
    if (isa<DbgInfoIntrinsic>(Inst))
193
      continue;
194

195
    // Limit the amount of scanning we do so we don't end up with quadratic
196
    // running time on extreme testcases.
197
    --Limit;
198
    if (!Limit)
199
      return MemDepResult::getUnknown();
200

201
    // If this inst is a memory op, get the pointer it accessed
202
    MemoryLocation Loc;
203
    ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204
    if (Loc.Ptr) {
205
      // A simple instruction.
206
      if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207
        return MemDepResult::getClobber(Inst);
208
      continue;
209
    }
210

211
    if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212
      // If these two calls do not interfere, look past it.
213
      if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214
        // If the two calls are the same, return Inst as a Def, so that
215
        // Call can be found redundant and eliminated.
216
        if (isReadOnlyCall && !isModSet(MR) &&
217
            Call->isIdenticalToWhenDefined(CallB))
218
          return MemDepResult::getDef(Inst);
219

220
        // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221
        // keep scanning.
222
        continue;
223
      } else
224
        return MemDepResult::getClobber(Inst);
225
    }
226

227
    // If we could not obtain a pointer for the instruction and the instruction
228
    // touches memory then assume that this is a dependency.
229
    if (isModOrRefSet(MR))
230
      return MemDepResult::getClobber(Inst);
231
  }
232

233
  // No dependence found.  If this is the entry block of the function, it is
234
  // unknown, otherwise it is non-local.
235
  if (BB != &BB->getParent()->getEntryBlock())
236
    return MemDepResult::getNonLocal();
237
  return MemDepResult::getNonFuncLocal();
238
}
239

240
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
241
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
242
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
243
    BatchAAResults &BatchAA) {
244
  MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
245
  if (QueryInst != nullptr) {
246
    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
247
      InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
248

249
      if (InvariantGroupDependency.isDef())
250
        return InvariantGroupDependency;
251
    }
252
  }
253
  MemDepResult SimpleDep = getSimplePointerDependencyFrom(
254
      MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
255
  if (SimpleDep.isDef())
256
    return SimpleDep;
257
  // Non-local invariant group dependency indicates there is non local Def
258
  // (it only returns nonLocal if it finds nonLocal def), which is better than
259
  // local clobber and everything else.
260
  if (InvariantGroupDependency.isNonLocal())
261
    return InvariantGroupDependency;
262

263
  assert(InvariantGroupDependency.isUnknown() &&
264
         "InvariantGroupDependency should be only unknown at this point");
265
  return SimpleDep;
266
}
267

268
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
269
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
270
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
271
  BatchAAResults BatchAA(AA, &EII);
272
  return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
273
                                  BatchAA);
274
}
275

276
MemDepResult
277
MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
278
                                                            BasicBlock *BB) {
279

280
  if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
281
    return MemDepResult::getUnknown();
282

283
  // Take the ptr operand after all casts and geps 0. This way we can search
284
  // cast graph down only.
285
  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
286

287
  // It's is not safe to walk the use list of global value, because function
288
  // passes aren't allowed to look outside their functions.
289
  // FIXME: this could be fixed by filtering instructions from outside
290
  // of current function.
291
  if (isa<GlobalValue>(LoadOperand))
292
    return MemDepResult::getUnknown();
293

294
  // Queue to process all pointers that are equivalent to load operand.
295
  SmallVector<const Value *, 8> LoadOperandsQueue;
296
  LoadOperandsQueue.push_back(LoadOperand);
297

298
  Instruction *ClosestDependency = nullptr;
299
  // Order of instructions in uses list is unpredictible. In order to always
300
  // get the same result, we will look for the closest dominance.
301
  auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
302
    assert(Other && "Must call it with not null instruction");
303
    if (Best == nullptr || DT.dominates(Best, Other))
304
      return Other;
305
    return Best;
306
  };
307

308
  // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
309
  // we will see all the instructions. This should be fixed in MSSA.
310
  while (!LoadOperandsQueue.empty()) {
311
    const Value *Ptr = LoadOperandsQueue.pop_back_val();
312
    assert(Ptr && !isa<GlobalValue>(Ptr) &&
313
           "Null or GlobalValue should not be inserted");
314

315
    for (const Use &Us : Ptr->uses()) {
316
      auto *U = dyn_cast<Instruction>(Us.getUser());
317
      if (!U || U == LI || !DT.dominates(U, LI))
318
        continue;
319

320
      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
321
      // users.      U = bitcast Ptr
322
      if (isa<BitCastInst>(U)) {
323
        LoadOperandsQueue.push_back(U);
324
        continue;
325
      }
326
      // Gep with zeros is equivalent to bitcast.
327
      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
328
      // or gep 0 to bitcast because of SROA, so there are 2 forms. When
329
      // typeless pointers will be ready then both cases will be gone
330
      // (and this BFS also won't be needed).
331
      if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
332
        if (GEP->hasAllZeroIndices()) {
333
          LoadOperandsQueue.push_back(U);
334
          continue;
335
        }
336

337
      // If we hit load/store with the same invariant.group metadata (and the
338
      // same pointer operand) we can assume that value pointed by pointer
339
      // operand didn't change.
340
      if ((isa<LoadInst>(U) ||
341
           (isa<StoreInst>(U) &&
342
            cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
343
          U->hasMetadata(LLVMContext::MD_invariant_group))
344
        ClosestDependency = GetClosestDependency(ClosestDependency, U);
345
    }
346
  }
347

348
  if (!ClosestDependency)
349
    return MemDepResult::getUnknown();
350
  if (ClosestDependency->getParent() == BB)
351
    return MemDepResult::getDef(ClosestDependency);
352
  // Def(U) can't be returned here because it is non-local. If local
353
  // dependency won't be found then return nonLocal counting that the
354
  // user will call getNonLocalPointerDependency, which will return cached
355
  // result.
356
  NonLocalDefsCache.try_emplace(
357
      LI, NonLocalDepResult(ClosestDependency->getParent(),
358
                            MemDepResult::getDef(ClosestDependency), nullptr));
359
  ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
360
  return MemDepResult::getNonLocal();
361
}
362

363
// Check if SI that may alias with MemLoc can be safely skipped. This is
364
// possible in case if SI can only must alias or no alias with MemLoc (no
365
// partial overlapping possible) and it writes the same value that MemLoc
366
// contains now (it was loaded before this store and was not modified in
367
// between).
368
static bool canSkipClobberingStore(const StoreInst *SI,
369
                                   const MemoryLocation &MemLoc,
370
                                   Align MemLocAlign, BatchAAResults &BatchAA,
371
                                   unsigned ScanLimit) {
372
  if (!MemLoc.Size.hasValue())
373
    return false;
374
  if (MemoryLocation::get(SI).Size != MemLoc.Size)
375
    return false;
376
  if (MemLoc.Size.isScalable())
377
    return false;
378
  if (std::min(MemLocAlign, SI->getAlign()).value() <
379
      MemLoc.Size.getValue().getKnownMinValue())
380
    return false;
381

382
  auto *LI = dyn_cast<LoadInst>(SI->getValueOperand());
383
  if (!LI || LI->getParent() != SI->getParent())
384
    return false;
385
  if (BatchAA.alias(MemoryLocation::get(LI), MemLoc) != AliasResult::MustAlias)
386
    return false;
387
  unsigned NumVisitedInsts = 0;
388
  for (const Instruction *I = LI; I != SI; I = I->getNextNonDebugInstruction())
389
    if (++NumVisitedInsts > ScanLimit ||
390
        isModSet(BatchAA.getModRefInfo(I, MemLoc)))
391
      return false;
392

393
  return true;
394
}
395

396
MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
397
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
398
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
399
    BatchAAResults &BatchAA) {
400
  bool isInvariantLoad = false;
401
  Align MemLocAlign =
402
      MemLoc.Ptr->getPointerAlignment(BB->getDataLayout());
403

404
  unsigned DefaultLimit = getDefaultBlockScanLimit();
405
  if (!Limit)
406
    Limit = &DefaultLimit;
407

408
  // We must be careful with atomic accesses, as they may allow another thread
409
  //   to touch this location, clobbering it. We are conservative: if the
410
  //   QueryInst is not a simple (non-atomic) memory access, we automatically
411
  //   return getClobber.
412
  // If it is simple, we know based on the results of
413
  // "Compiler testing via a theory of sound optimisations in the C11/C++11
414
  //   memory model" in PLDI 2013, that a non-atomic location can only be
415
  //   clobbered between a pair of a release and an acquire action, with no
416
  //   access to the location in between.
417
  // Here is an example for giving the general intuition behind this rule.
418
  // In the following code:
419
  //   store x 0;
420
  //   release action; [1]
421
  //   acquire action; [4]
422
  //   %val = load x;
423
  // It is unsafe to replace %val by 0 because another thread may be running:
424
  //   acquire action; [2]
425
  //   store x 42;
426
  //   release action; [3]
427
  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
428
  // being 42. A key property of this program however is that if either
429
  // 1 or 4 were missing, there would be a race between the store of 42
430
  // either the store of 0 or the load (making the whole program racy).
431
  // The paper mentioned above shows that the same property is respected
432
  // by every program that can detect any optimization of that kind: either
433
  // it is racy (undefined) or there is a release followed by an acquire
434
  // between the pair of accesses under consideration.
435

436
  // If the load is invariant, we "know" that it doesn't alias *any* write. We
437
  // do want to respect mustalias results since defs are useful for value
438
  // forwarding, but any mayalias write can be assumed to be noalias.
439
  // Arguably, this logic should be pushed inside AliasAnalysis itself.
440
  if (isLoad && QueryInst)
441
    if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
442
      if (LI->hasMetadata(LLVMContext::MD_invariant_load))
443
        isInvariantLoad = true;
444
      MemLocAlign = LI->getAlign();
445
    }
446

447
  // True for volatile instruction.
448
  // For Load/Store return true if atomic ordering is stronger than AO,
449
  // for other instruction just true if it can read or write to memory.
450
  auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
451
    if (I->isVolatile())
452
      return true;
453
    if (auto *LI = dyn_cast<LoadInst>(I))
454
      return isStrongerThan(LI->getOrdering(), AO);
455
    if (auto *SI = dyn_cast<StoreInst>(I))
456
      return isStrongerThan(SI->getOrdering(), AO);
457
    return I->mayReadOrWriteMemory();
458
  };
459

460
  // Walk backwards through the basic block, looking for dependencies.
461
  while (ScanIt != BB->begin()) {
462
    Instruction *Inst = &*--ScanIt;
463

464
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
465
      // Debug intrinsics don't (and can't) cause dependencies.
466
      if (isa<DbgInfoIntrinsic>(II))
467
        continue;
468

469
    // Limit the amount of scanning we do so we don't end up with quadratic
470
    // running time on extreme testcases.
471
    --*Limit;
472
    if (!*Limit)
473
      return MemDepResult::getUnknown();
474

475
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
476
      // If we reach a lifetime begin or end marker, then the query ends here
477
      // because the value is undefined.
478
      Intrinsic::ID ID = II->getIntrinsicID();
479
      switch (ID) {
480
      case Intrinsic::lifetime_start: {
481
        // FIXME: This only considers queries directly on the invariant-tagged
482
        // pointer, not on query pointers that are indexed off of them.  It'd
483
        // be nice to handle that at some point (the right approach is to use
484
        // GetPointerBaseWithConstantOffset).
485
        MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
486
        if (BatchAA.isMustAlias(ArgLoc, MemLoc))
487
          return MemDepResult::getDef(II);
488
        continue;
489
      }
490
      case Intrinsic::masked_load:
491
      case Intrinsic::masked_store: {
492
        MemoryLocation Loc;
493
        /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
494
        AliasResult R = BatchAA.alias(Loc, MemLoc);
495
        if (R == AliasResult::NoAlias)
496
          continue;
497
        if (R == AliasResult::MustAlias)
498
          return MemDepResult::getDef(II);
499
        if (ID == Intrinsic::masked_load)
500
          continue;
501
        return MemDepResult::getClobber(II);
502
      }
503
      }
504
    }
505

506
    // Values depend on loads if the pointers are must aliased.  This means
507
    // that a load depends on another must aliased load from the same value.
508
    // One exception is atomic loads: a value can depend on an atomic load that
509
    // it does not alias with when this atomic load indicates that another
510
    // thread may be accessing the location.
511
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
512
      // While volatile access cannot be eliminated, they do not have to clobber
513
      // non-aliasing locations, as normal accesses, for example, can be safely
514
      // reordered with volatile accesses.
515
      if (LI->isVolatile()) {
516
        if (!QueryInst)
517
          // Original QueryInst *may* be volatile
518
          return MemDepResult::getClobber(LI);
519
        if (QueryInst->isVolatile())
520
          // Ordering required if QueryInst is itself volatile
521
          return MemDepResult::getClobber(LI);
522
        // Otherwise, volatile doesn't imply any special ordering
523
      }
524

525
      // Atomic loads have complications involved.
526
      // A Monotonic (or higher) load is OK if the query inst is itself not
527
      // atomic.
528
      // FIXME: This is overly conservative.
529
      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
530
        if (!QueryInst ||
531
            isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
532
          return MemDepResult::getClobber(LI);
533
        if (LI->getOrdering() != AtomicOrdering::Monotonic)
534
          return MemDepResult::getClobber(LI);
535
      }
536

537
      MemoryLocation LoadLoc = MemoryLocation::get(LI);
538

539
      // If we found a pointer, check if it could be the same as our pointer.
540
      AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
541

542
      if (R == AliasResult::NoAlias)
543
        continue;
544

545
      if (isLoad) {
546
        // Must aliased loads are defs of each other.
547
        if (R == AliasResult::MustAlias)
548
          return MemDepResult::getDef(Inst);
549

550
        // If we have a partial alias, then return this as a clobber for the
551
        // client to handle.
552
        if (R == AliasResult::PartialAlias && R.hasOffset()) {
553
          ClobberOffsets[LI] = R.getOffset();
554
          return MemDepResult::getClobber(Inst);
555
        }
556

557
        // Random may-alias loads don't depend on each other without a
558
        // dependence.
559
        continue;
560
      }
561

562
      // Stores don't alias loads from read-only memory.
563
      if (!isModSet(BatchAA.getModRefInfoMask(LoadLoc)))
564
        continue;
565

566
      // Stores depend on may/must aliased loads.
567
      return MemDepResult::getDef(Inst);
568
    }
569

570
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
571
      // Atomic stores have complications involved.
572
      // A Monotonic store is OK if the query inst is itself not atomic.
573
      // FIXME: This is overly conservative.
574
      if (!SI->isUnordered() && SI->isAtomic()) {
575
        if (!QueryInst ||
576
            isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
577
          return MemDepResult::getClobber(SI);
578
        // Ok, if we are here the guard above guarantee us that
579
        // QueryInst is a non-atomic or unordered load/store.
580
        // SI is atomic with monotonic or release semantic (seq_cst for store
581
        // is actually a release semantic plus total order over other seq_cst
582
        // instructions, as soon as QueryInst is not seq_cst we can consider it
583
        // as simple release semantic).
584
        // Monotonic and Release semantic allows re-ordering before store
585
        // so we are safe to go further and check the aliasing. It will prohibit
586
        // re-ordering in case locations are may or must alias.
587
      }
588

589
      // While volatile access cannot be eliminated, they do not have to clobber
590
      // non-aliasing locations, as normal accesses can for example be reordered
591
      // with volatile accesses.
592
      if (SI->isVolatile())
593
        if (!QueryInst || QueryInst->isVolatile())
594
          return MemDepResult::getClobber(SI);
595

596
      // If alias analysis can tell that this store is guaranteed to not modify
597
      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
598
      // the query pointer points to constant memory etc.
599
      if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
600
        continue;
601

602
      // Ok, this store might clobber the query pointer.  Check to see if it is
603
      // a must alias: in this case, we want to return this as a def.
604
      // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
605
      MemoryLocation StoreLoc = MemoryLocation::get(SI);
606

607
      // If we found a pointer, check if it could be the same as our pointer.
608
      AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
609

610
      if (R == AliasResult::NoAlias)
611
        continue;
612
      if (R == AliasResult::MustAlias)
613
        return MemDepResult::getDef(Inst);
614
      if (isInvariantLoad)
615
        continue;
616
      if (canSkipClobberingStore(SI, MemLoc, MemLocAlign, BatchAA, *Limit))
617
        continue;
618
      return MemDepResult::getClobber(Inst);
619
    }
620

621
    // If this is an allocation, and if we know that the accessed pointer is to
622
    // the allocation, return Def.  This means that there is no dependence and
623
    // the access can be optimized based on that.  For example, a load could
624
    // turn into undef.  Note that we can bypass the allocation itself when
625
    // looking for a clobber in many cases; that's an alias property and is
626
    // handled by BasicAA.
627
    if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
628
      const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
629
      if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
630
        return MemDepResult::getDef(Inst);
631
    }
632

633
    // If we found a select instruction for MemLoc pointer, return it as Def
634
    // dependency.
635
    if (isa<SelectInst>(Inst) && MemLoc.Ptr == Inst)
636
      return MemDepResult::getDef(Inst);
637

638
    if (isInvariantLoad)
639
      continue;
640

641
    // A release fence requires that all stores complete before it, but does
642
    // not prevent the reordering of following loads or stores 'before' the
643
    // fence.  As a result, we look past it when finding a dependency for
644
    // loads.  DSE uses this to find preceding stores to delete and thus we
645
    // can't bypass the fence if the query instruction is a store.
646
    if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
647
      if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
648
        continue;
649

650
    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
651
    switch (BatchAA.getModRefInfo(Inst, MemLoc)) {
652
    case ModRefInfo::NoModRef:
653
      // If the call has no effect on the queried pointer, just ignore it.
654
      continue;
655
    case ModRefInfo::Mod:
656
      return MemDepResult::getClobber(Inst);
657
    case ModRefInfo::Ref:
658
      // If the call is known to never store to the pointer, and if this is a
659
      // load query, we can safely ignore it (scan past it).
660
      if (isLoad)
661
        continue;
662
      [[fallthrough]];
663
    default:
664
      // Otherwise, there is a potential dependence.  Return a clobber.
665
      return MemDepResult::getClobber(Inst);
666
    }
667
  }
668

669
  // No dependence found.  If this is the entry block of the function, it is
670
  // unknown, otherwise it is non-local.
671
  if (BB != &BB->getParent()->getEntryBlock())
672
    return MemDepResult::getNonLocal();
673
  return MemDepResult::getNonFuncLocal();
674
}
675

676
MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
677
  ClobberOffsets.clear();
678
  Instruction *ScanPos = QueryInst;
679

680
  // Check for a cached result
681
  MemDepResult &LocalCache = LocalDeps[QueryInst];
682

683
  // If the cached entry is non-dirty, just return it.  Note that this depends
684
  // on MemDepResult's default constructing to 'dirty'.
685
  if (!LocalCache.isDirty())
686
    return LocalCache;
687

688
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
689
  // instruction, which may save us some work.
690
  if (Instruction *Inst = LocalCache.getInst()) {
691
    ScanPos = Inst;
692

693
    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
694
  }
695

696
  BasicBlock *QueryParent = QueryInst->getParent();
697

698
  // Do the scan.
699
  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
700
    // No dependence found. If this is the entry block of the function, it is
701
    // unknown, otherwise it is non-local.
702
    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
703
      LocalCache = MemDepResult::getNonLocal();
704
    else
705
      LocalCache = MemDepResult::getNonFuncLocal();
706
  } else {
707
    MemoryLocation MemLoc;
708
    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
709
    if (MemLoc.Ptr) {
710
      // If we can do a pointer scan, make it happen.
711
      bool isLoad = !isModSet(MR);
712
      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
713
        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
714

715
      LocalCache =
716
          getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
717
                                   QueryParent, QueryInst, nullptr);
718
    } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
719
      bool isReadOnly = AA.onlyReadsMemory(QueryCall);
720
      LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
721
                                         ScanPos->getIterator(), QueryParent);
722
    } else
723
      // Non-memory instruction.
724
      LocalCache = MemDepResult::getUnknown();
725
  }
726

727
  // Remember the result!
728
  if (Instruction *I = LocalCache.getInst())
729
    ReverseLocalDeps[I].insert(QueryInst);
730

731
  return LocalCache;
732
}
733

734
#ifndef NDEBUG
735
/// This method is used when -debug is specified to verify that cache arrays
736
/// are properly kept sorted.
737
static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
738
                         int Count = -1) {
739
  if (Count == -1)
740
    Count = Cache.size();
741
  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
742
         "Cache isn't sorted!");
743
}
744
#endif
745

746
const MemoryDependenceResults::NonLocalDepInfo &
747
MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
748
  assert(getDependency(QueryCall).isNonLocal() &&
749
         "getNonLocalCallDependency should only be used on calls with "
750
         "non-local deps!");
751
  PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
752
  NonLocalDepInfo &Cache = CacheP.first;
753

754
  // This is the set of blocks that need to be recomputed.  In the cached case,
755
  // this can happen due to instructions being deleted etc. In the uncached
756
  // case, this starts out as the set of predecessors we care about.
757
  SmallVector<BasicBlock *, 32> DirtyBlocks;
758

759
  if (!Cache.empty()) {
760
    // Okay, we have a cache entry.  If we know it is not dirty, just return it
761
    // with no computation.
762
    if (!CacheP.second) {
763
      ++NumCacheNonLocal;
764
      return Cache;
765
    }
766

767
    // If we already have a partially computed set of results, scan them to
768
    // determine what is dirty, seeding our initial DirtyBlocks worklist.
769
    for (auto &Entry : Cache)
770
      if (Entry.getResult().isDirty())
771
        DirtyBlocks.push_back(Entry.getBB());
772

773
    // Sort the cache so that we can do fast binary search lookups below.
774
    llvm::sort(Cache);
775

776
    ++NumCacheDirtyNonLocal;
777
  } else {
778
    // Seed DirtyBlocks with each of the preds of QueryInst's block.
779
    BasicBlock *QueryBB = QueryCall->getParent();
780
    append_range(DirtyBlocks, PredCache.get(QueryBB));
781
    ++NumUncacheNonLocal;
782
  }
783

784
  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
785
  bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
786

787
  SmallPtrSet<BasicBlock *, 32> Visited;
788

789
  unsigned NumSortedEntries = Cache.size();
790
  LLVM_DEBUG(AssertSorted(Cache));
791

792
  // Iterate while we still have blocks to update.
793
  while (!DirtyBlocks.empty()) {
794
    BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
795

796
    // Already processed this block?
797
    if (!Visited.insert(DirtyBB).second)
798
      continue;
799

800
    // Do a binary search to see if we already have an entry for this block in
801
    // the cache set.  If so, find it.
802
    LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
803
    NonLocalDepInfo::iterator Entry =
804
        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
805
                         NonLocalDepEntry(DirtyBB));
806
    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
807
      --Entry;
808

809
    NonLocalDepEntry *ExistingResult = nullptr;
810
    if (Entry != Cache.begin() + NumSortedEntries &&
811
        Entry->getBB() == DirtyBB) {
812
      // If we already have an entry, and if it isn't already dirty, the block
813
      // is done.
814
      if (!Entry->getResult().isDirty())
815
        continue;
816

817
      // Otherwise, remember this slot so we can update the value.
818
      ExistingResult = &*Entry;
819
    }
820

821
    // If the dirty entry has a pointer, start scanning from it so we don't have
822
    // to rescan the entire block.
823
    BasicBlock::iterator ScanPos = DirtyBB->end();
824
    if (ExistingResult) {
825
      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
826
        ScanPos = Inst->getIterator();
827
        // We're removing QueryInst's use of Inst.
828
        RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
829
                                            QueryCall);
830
      }
831
    }
832

833
    // Find out if this block has a local dependency for QueryInst.
834
    MemDepResult Dep;
835

836
    if (ScanPos != DirtyBB->begin()) {
837
      Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
838
    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
839
      // No dependence found.  If this is the entry block of the function, it is
840
      // a clobber, otherwise it is unknown.
841
      Dep = MemDepResult::getNonLocal();
842
    } else {
843
      Dep = MemDepResult::getNonFuncLocal();
844
    }
845

846
    // If we had a dirty entry for the block, update it.  Otherwise, just add
847
    // a new entry.
848
    if (ExistingResult)
849
      ExistingResult->setResult(Dep);
850
    else
851
      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
852

853
    // If the block has a dependency (i.e. it isn't completely transparent to
854
    // the value), remember the association!
855
    if (!Dep.isNonLocal()) {
856
      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
857
      // update this when we remove instructions.
858
      if (Instruction *Inst = Dep.getInst())
859
        ReverseNonLocalDeps[Inst].insert(QueryCall);
860
    } else {
861

862
      // If the block *is* completely transparent to the load, we need to check
863
      // the predecessors of this block.  Add them to our worklist.
864
      append_range(DirtyBlocks, PredCache.get(DirtyBB));
865
    }
866
  }
867

868
  return Cache;
869
}
870

871
void MemoryDependenceResults::getNonLocalPointerDependency(
872
    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
873
  const MemoryLocation Loc = MemoryLocation::get(QueryInst);
874
  bool isLoad = isa<LoadInst>(QueryInst);
875
  BasicBlock *FromBB = QueryInst->getParent();
876
  assert(FromBB);
877

878
  assert(Loc.Ptr->getType()->isPointerTy() &&
879
         "Can't get pointer deps of a non-pointer!");
880
  Result.clear();
881
  {
882
    // Check if there is cached Def with invariant.group.
883
    auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
884
    if (NonLocalDefIt != NonLocalDefsCache.end()) {
885
      Result.push_back(NonLocalDefIt->second);
886
      ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
887
          .erase(QueryInst);
888
      NonLocalDefsCache.erase(NonLocalDefIt);
889
      return;
890
    }
891
  }
892
  // This routine does not expect to deal with volatile instructions.
893
  // Doing so would require piping through the QueryInst all the way through.
894
  // TODO: volatiles can't be elided, but they can be reordered with other
895
  // non-volatile accesses.
896

897
  // We currently give up on any instruction which is ordered, but we do handle
898
  // atomic instructions which are unordered.
899
  // TODO: Handle ordered instructions
900
  auto isOrdered = [](Instruction *Inst) {
901
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
902
      return !LI->isUnordered();
903
    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
904
      return !SI->isUnordered();
905
    }
906
    return false;
907
  };
908
  if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
909
    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
910
                                       const_cast<Value *>(Loc.Ptr)));
911
    return;
912
  }
913
  const DataLayout &DL = FromBB->getDataLayout();
914
  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
915

916
  // This is the set of blocks we've inspected, and the pointer we consider in
917
  // each block.  Because of critical edges, we currently bail out if querying
918
  // a block with multiple different pointers.  This can happen during PHI
919
  // translation.
920
  DenseMap<BasicBlock *, Value *> Visited;
921
  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
922
                                   Result, Visited, true))
923
    return;
924
  Result.clear();
925
  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
926
                                     const_cast<Value *>(Loc.Ptr)));
927
}
928

929
/// Compute the memdep value for BB with Pointer/PointeeSize using either
930
/// cached information in Cache or by doing a lookup (which may use dirty cache
931
/// info if available).
932
///
933
/// If we do a lookup, add the result to the cache.
934
MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
935
    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
936
    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
937
    BatchAAResults &BatchAA) {
938

939
  bool isInvariantLoad = false;
940

941
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
942
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
943

944
  // Do a binary search to see if we already have an entry for this block in
945
  // the cache set.  If so, find it.
946
  NonLocalDepInfo::iterator Entry = std::upper_bound(
947
      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
948
  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
949
    --Entry;
950

951
  NonLocalDepEntry *ExistingResult = nullptr;
952
  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
953
    ExistingResult = &*Entry;
954

955
  // Use cached result for invariant load only if there is no dependency for non
956
  // invariant load. In this case invariant load can not have any dependency as
957
  // well.
958
  if (ExistingResult && isInvariantLoad &&
959
      !ExistingResult->getResult().isNonFuncLocal())
960
    ExistingResult = nullptr;
961

962
  // If we have a cached entry, and it is non-dirty, use it as the value for
963
  // this dependency.
964
  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
965
    ++NumCacheNonLocalPtr;
966
    return ExistingResult->getResult();
967
  }
968

969
  // Otherwise, we have to scan for the value.  If we have a dirty cache
970
  // entry, start scanning from its position, otherwise we scan from the end
971
  // of the block.
972
  BasicBlock::iterator ScanPos = BB->end();
973
  if (ExistingResult && ExistingResult->getResult().getInst()) {
974
    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
975
           "Instruction invalidated?");
976
    ++NumCacheDirtyNonLocalPtr;
977
    ScanPos = ExistingResult->getResult().getInst()->getIterator();
978

979
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
980
    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
981
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
982
  } else {
983
    ++NumUncacheNonLocalPtr;
984
  }
985

986
  // Scan the block for the dependency.
987
  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
988
                                              QueryInst, nullptr, BatchAA);
989

990
  // Don't cache results for invariant load.
991
  if (isInvariantLoad)
992
    return Dep;
993

994
  // If we had a dirty entry for the block, update it.  Otherwise, just add
995
  // a new entry.
996
  if (ExistingResult)
997
    ExistingResult->setResult(Dep);
998
  else
999
    Cache->push_back(NonLocalDepEntry(BB, Dep));
1000

1001
  // If the block has a dependency (i.e. it isn't completely transparent to
1002
  // the value), remember the reverse association because we just added it
1003
  // to Cache!
1004
  if (!Dep.isLocal())
1005
    return Dep;
1006

1007
  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1008
  // update MemDep when we remove instructions.
1009
  Instruction *Inst = Dep.getInst();
1010
  assert(Inst && "Didn't depend on anything?");
1011
  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1012
  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1013
  return Dep;
1014
}
1015

1016
/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1017
/// array that are already properly ordered.
1018
///
1019
/// This is optimized for the case when only a few entries are added.
1020
static void
1021
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1022
                         unsigned NumSortedEntries) {
1023
  switch (Cache.size() - NumSortedEntries) {
1024
  case 0:
1025
    // done, no new entries.
1026
    break;
1027
  case 2: {
1028
    // Two new entries, insert the last one into place.
1029
    NonLocalDepEntry Val = Cache.back();
1030
    Cache.pop_back();
1031
    MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1032
        std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1033
    Cache.insert(Entry, Val);
1034
    [[fallthrough]];
1035
  }
1036
  case 1:
1037
    // One new entry, Just insert the new value at the appropriate position.
1038
    if (Cache.size() != 1) {
1039
      NonLocalDepEntry Val = Cache.back();
1040
      Cache.pop_back();
1041
      MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1042
          llvm::upper_bound(Cache, Val);
1043
      Cache.insert(Entry, Val);
1044
    }
1045
    break;
1046
  default:
1047
    // Added many values, do a full scale sort.
1048
    llvm::sort(Cache);
1049
    break;
1050
  }
1051
}
1052

1053
/// Perform a dependency query based on pointer/pointeesize starting at the end
1054
/// of StartBB.
1055
///
1056
/// Add any clobber/def results to the results vector and keep track of which
1057
/// blocks are visited in 'Visited'.
1058
///
1059
/// This has special behavior for the first block queries (when SkipFirstBlock
1060
/// is true).  In this special case, it ignores the contents of the specified
1061
/// block and starts returning dependence info for its predecessors.
1062
///
1063
/// This function returns true on success, or false to indicate that it could
1064
/// not compute dependence information for some reason.  This should be treated
1065
/// as a clobber dependence on the first instruction in the predecessor block.
1066
bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1067
    Instruction *QueryInst, const PHITransAddr &Pointer,
1068
    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1069
    SmallVectorImpl<NonLocalDepResult> &Result,
1070
    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1071
    bool IsIncomplete) {
1072
  // Look up the cached info for Pointer.
1073
  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1074

1075
  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1076
  // CacheKey, this value will be inserted as the associated value. Otherwise,
1077
  // it'll be ignored, and we'll have to check to see if the cached size and
1078
  // aa tags are consistent with the current query.
1079
  NonLocalPointerInfo InitialNLPI;
1080
  InitialNLPI.Size = Loc.Size;
1081
  InitialNLPI.AATags = Loc.AATags;
1082

1083
  bool isInvariantLoad = false;
1084
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1085
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1086

1087
  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1088
  // already have one.
1089
  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1090
      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1091
  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1092

1093
  // If we already have a cache entry for this CacheKey, we may need to do some
1094
  // work to reconcile the cache entry and the current query.
1095
  // Invariant loads don't participate in caching. Thus no need to reconcile.
1096
  if (!isInvariantLoad && !Pair.second) {
1097
    if (CacheInfo->Size != Loc.Size) {
1098
      bool ThrowOutEverything;
1099
      if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1100
        // FIXME: We may be able to do better in the face of results with mixed
1101
        // precision. We don't appear to get them in practice, though, so just
1102
        // be conservative.
1103
        ThrowOutEverything =
1104
            CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1105
            !TypeSize::isKnownGE(CacheInfo->Size.getValue(),
1106
                                 Loc.Size.getValue());
1107
      } else {
1108
        // For our purposes, unknown size > all others.
1109
        ThrowOutEverything = !Loc.Size.hasValue();
1110
      }
1111

1112
      if (ThrowOutEverything) {
1113
        // The query's Size is greater than the cached one. Throw out the
1114
        // cached data and proceed with the query at the greater size.
1115
        CacheInfo->Pair = BBSkipFirstBlockPair();
1116
        CacheInfo->Size = Loc.Size;
1117
        for (auto &Entry : CacheInfo->NonLocalDeps)
1118
          if (Instruction *Inst = Entry.getResult().getInst())
1119
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1120
        CacheInfo->NonLocalDeps.clear();
1121
        // The cache is cleared (in the above line) so we will have lost
1122
        // information about blocks we have already visited. We therefore must
1123
        // assume that the cache information is incomplete.
1124
        IsIncomplete = true;
1125
      } else {
1126
        // This query's Size is less than the cached one. Conservatively restart
1127
        // the query using the greater size.
1128
        return getNonLocalPointerDepFromBB(
1129
            QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1130
            StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1131
      }
1132
    }
1133

1134
    // If the query's AATags are inconsistent with the cached one,
1135
    // conservatively throw out the cached data and restart the query with
1136
    // no tag if needed.
1137
    if (CacheInfo->AATags != Loc.AATags) {
1138
      if (CacheInfo->AATags) {
1139
        CacheInfo->Pair = BBSkipFirstBlockPair();
1140
        CacheInfo->AATags = AAMDNodes();
1141
        for (auto &Entry : CacheInfo->NonLocalDeps)
1142
          if (Instruction *Inst = Entry.getResult().getInst())
1143
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1144
        CacheInfo->NonLocalDeps.clear();
1145
        // The cache is cleared (in the above line) so we will have lost
1146
        // information about blocks we have already visited. We therefore must
1147
        // assume that the cache information is incomplete.
1148
        IsIncomplete = true;
1149
      }
1150
      if (Loc.AATags)
1151
        return getNonLocalPointerDepFromBB(
1152
            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1153
            Visited, SkipFirstBlock, IsIncomplete);
1154
    }
1155
  }
1156

1157
  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1158

1159
  // If we have valid cached information for exactly the block we are
1160
  // investigating, just return it with no recomputation.
1161
  // Don't use cached information for invariant loads since it is valid for
1162
  // non-invariant loads only.
1163
  if (!IsIncomplete && !isInvariantLoad &&
1164
      CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1165
    // We have a fully cached result for this query then we can just return the
1166
    // cached results and populate the visited set.  However, we have to verify
1167
    // that we don't already have conflicting results for these blocks.  Check
1168
    // to ensure that if a block in the results set is in the visited set that
1169
    // it was for the same pointer query.
1170
    if (!Visited.empty()) {
1171
      for (auto &Entry : *Cache) {
1172
        DenseMap<BasicBlock *, Value *>::iterator VI =
1173
            Visited.find(Entry.getBB());
1174
        if (VI == Visited.end() || VI->second == Pointer.getAddr())
1175
          continue;
1176

1177
        // We have a pointer mismatch in a block.  Just return false, saying
1178
        // that something was clobbered in this result.  We could also do a
1179
        // non-fully cached query, but there is little point in doing this.
1180
        return false;
1181
      }
1182
    }
1183

1184
    Value *Addr = Pointer.getAddr();
1185
    for (auto &Entry : *Cache) {
1186
      Visited.insert(std::make_pair(Entry.getBB(), Addr));
1187
      if (Entry.getResult().isNonLocal()) {
1188
        continue;
1189
      }
1190

1191
      if (DT.isReachableFromEntry(Entry.getBB())) {
1192
        Result.push_back(
1193
            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1194
      }
1195
    }
1196
    ++NumCacheCompleteNonLocalPtr;
1197
    return true;
1198
  }
1199

1200
  // Otherwise, either this is a new block, a block with an invalid cache
1201
  // pointer or one that we're about to invalidate by putting more info into
1202
  // it than its valid cache info.  If empty and not explicitly indicated as
1203
  // incomplete, the result will be valid cache info, otherwise it isn't.
1204
  //
1205
  // Invariant loads don't affect cache in any way thus no need to update
1206
  // CacheInfo as well.
1207
  if (!isInvariantLoad) {
1208
    if (!IsIncomplete && Cache->empty())
1209
      CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1210
    else
1211
      CacheInfo->Pair = BBSkipFirstBlockPair();
1212
  }
1213

1214
  SmallVector<BasicBlock *, 32> Worklist;
1215
  Worklist.push_back(StartBB);
1216

1217
  // PredList used inside loop.
1218
  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1219

1220
  // Keep track of the entries that we know are sorted.  Previously cached
1221
  // entries will all be sorted.  The entries we add we only sort on demand (we
1222
  // don't insert every element into its sorted position).  We know that we
1223
  // won't get any reuse from currently inserted values, because we don't
1224
  // revisit blocks after we insert info for them.
1225
  unsigned NumSortedEntries = Cache->size();
1226
  unsigned WorklistEntries = BlockNumberLimit;
1227
  bool GotWorklistLimit = false;
1228
  LLVM_DEBUG(AssertSorted(*Cache));
1229

1230
  BatchAAResults BatchAA(AA, &EII);
1231
  while (!Worklist.empty()) {
1232
    BasicBlock *BB = Worklist.pop_back_val();
1233

1234
    // If we do process a large number of blocks it becomes very expensive and
1235
    // likely it isn't worth worrying about
1236
    if (Result.size() > NumResultsLimit) {
1237
      // Sort it now (if needed) so that recursive invocations of
1238
      // getNonLocalPointerDepFromBB and other routines that could reuse the
1239
      // cache value will only see properly sorted cache arrays.
1240
      if (Cache && NumSortedEntries != Cache->size()) {
1241
        SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1242
      }
1243
      // Since we bail out, the "Cache" set won't contain all of the
1244
      // results for the query.  This is ok (we can still use it to accelerate
1245
      // specific block queries) but we can't do the fastpath "return all
1246
      // results from the set".  Clear out the indicator for this.
1247
      CacheInfo->Pair = BBSkipFirstBlockPair();
1248
      return false;
1249
    }
1250

1251
    // Skip the first block if we have it.
1252
    if (!SkipFirstBlock) {
1253
      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1254
      // been here.
1255
      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1256

1257
      // Get the dependency info for Pointer in BB.  If we have cached
1258
      // information, we will use it, otherwise we compute it.
1259
      LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1260
      MemDepResult Dep = getNonLocalInfoForBlock(
1261
          QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1262

1263
      // If we got a Def or Clobber, add this to the list of results.
1264
      if (!Dep.isNonLocal()) {
1265
        if (DT.isReachableFromEntry(BB)) {
1266
          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1267
          continue;
1268
        }
1269
      }
1270
    }
1271

1272
    // If 'Pointer' is an instruction defined in this block, then we need to do
1273
    // phi translation to change it into a value live in the predecessor block.
1274
    // If not, we just add the predecessors to the worklist and scan them with
1275
    // the same Pointer.
1276
    if (!Pointer.needsPHITranslationFromBlock(BB)) {
1277
      SkipFirstBlock = false;
1278
      SmallVector<BasicBlock *, 16> NewBlocks;
1279
      for (BasicBlock *Pred : PredCache.get(BB)) {
1280
        // Verify that we haven't looked at this block yet.
1281
        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1282
            Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1283
        if (InsertRes.second) {
1284
          // First time we've looked at *PI.
1285
          NewBlocks.push_back(Pred);
1286
          continue;
1287
        }
1288

1289
        // If we have seen this block before, but it was with a different
1290
        // pointer then we have a phi translation failure and we have to treat
1291
        // this as a clobber.
1292
        if (InsertRes.first->second != Pointer.getAddr()) {
1293
          // Make sure to clean up the Visited map before continuing on to
1294
          // PredTranslationFailure.
1295
          for (auto *NewBlock : NewBlocks)
1296
            Visited.erase(NewBlock);
1297
          goto PredTranslationFailure;
1298
        }
1299
      }
1300
      if (NewBlocks.size() > WorklistEntries) {
1301
        // Make sure to clean up the Visited map before continuing on to
1302
        // PredTranslationFailure.
1303
        for (auto *NewBlock : NewBlocks)
1304
          Visited.erase(NewBlock);
1305
        GotWorklistLimit = true;
1306
        goto PredTranslationFailure;
1307
      }
1308
      WorklistEntries -= NewBlocks.size();
1309
      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1310
      continue;
1311
    }
1312

1313
    // We do need to do phi translation, if we know ahead of time we can't phi
1314
    // translate this value, don't even try.
1315
    if (!Pointer.isPotentiallyPHITranslatable())
1316
      goto PredTranslationFailure;
1317

1318
    // We may have added values to the cache list before this PHI translation.
1319
    // If so, we haven't done anything to ensure that the cache remains sorted.
1320
    // Sort it now (if needed) so that recursive invocations of
1321
    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1322
    // value will only see properly sorted cache arrays.
1323
    if (Cache && NumSortedEntries != Cache->size()) {
1324
      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1325
      NumSortedEntries = Cache->size();
1326
    }
1327
    Cache = nullptr;
1328

1329
    PredList.clear();
1330
    for (BasicBlock *Pred : PredCache.get(BB)) {
1331
      PredList.push_back(std::make_pair(Pred, Pointer));
1332

1333
      // Get the PHI translated pointer in this predecessor.  This can fail if
1334
      // not translatable, in which case the getAddr() returns null.
1335
      PHITransAddr &PredPointer = PredList.back().second;
1336
      Value *PredPtrVal =
1337
          PredPointer.translateValue(BB, Pred, &DT, /*MustDominate=*/false);
1338

1339
      // Check to see if we have already visited this pred block with another
1340
      // pointer.  If so, we can't do this lookup.  This failure can occur
1341
      // with PHI translation when a critical edge exists and the PHI node in
1342
      // the successor translates to a pointer value different than the
1343
      // pointer the block was first analyzed with.
1344
      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1345
          Visited.insert(std::make_pair(Pred, PredPtrVal));
1346

1347
      if (!InsertRes.second) {
1348
        // We found the pred; take it off the list of preds to visit.
1349
        PredList.pop_back();
1350

1351
        // If the predecessor was visited with PredPtr, then we already did
1352
        // the analysis and can ignore it.
1353
        if (InsertRes.first->second == PredPtrVal)
1354
          continue;
1355

1356
        // Otherwise, the block was previously analyzed with a different
1357
        // pointer.  We can't represent the result of this case, so we just
1358
        // treat this as a phi translation failure.
1359

1360
        // Make sure to clean up the Visited map before continuing on to
1361
        // PredTranslationFailure.
1362
        for (const auto &Pred : PredList)
1363
          Visited.erase(Pred.first);
1364

1365
        goto PredTranslationFailure;
1366
      }
1367
    }
1368

1369
    // Actually process results here; this need to be a separate loop to avoid
1370
    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1371
    // any results for.  (getNonLocalPointerDepFromBB will modify our
1372
    // datastructures in ways the code after the PredTranslationFailure label
1373
    // doesn't expect.)
1374
    for (auto &I : PredList) {
1375
      BasicBlock *Pred = I.first;
1376
      PHITransAddr &PredPointer = I.second;
1377
      Value *PredPtrVal = PredPointer.getAddr();
1378

1379
      bool CanTranslate = true;
1380
      // If PHI translation was unable to find an available pointer in this
1381
      // predecessor, then we have to assume that the pointer is clobbered in
1382
      // that predecessor.  We can still do PRE of the load, which would insert
1383
      // a computation of the pointer in this predecessor.
1384
      if (!PredPtrVal)
1385
        CanTranslate = false;
1386

1387
      // FIXME: it is entirely possible that PHI translating will end up with
1388
      // the same value.  Consider PHI translating something like:
1389
      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1390
      // to recurse here, pedantically speaking.
1391

1392
      // If getNonLocalPointerDepFromBB fails here, that means the cached
1393
      // result conflicted with the Visited list; we have to conservatively
1394
      // assume it is unknown, but this also does not block PRE of the load.
1395
      if (!CanTranslate ||
1396
          !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1397
                                      Loc.getWithNewPtr(PredPtrVal), isLoad,
1398
                                      Pred, Result, Visited)) {
1399
        // Add the entry to the Result list.
1400
        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1401
        Result.push_back(Entry);
1402

1403
        // Since we had a phi translation failure, the cache for CacheKey won't
1404
        // include all of the entries that we need to immediately satisfy future
1405
        // queries.  Mark this in NonLocalPointerDeps by setting the
1406
        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1407
        // cached value to do more work but not miss the phi trans failure.
1408
        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1409
        NLPI.Pair = BBSkipFirstBlockPair();
1410
        continue;
1411
      }
1412
    }
1413

1414
    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1415
    CacheInfo = &NonLocalPointerDeps[CacheKey];
1416
    Cache = &CacheInfo->NonLocalDeps;
1417
    NumSortedEntries = Cache->size();
1418

1419
    // Since we did phi translation, the "Cache" set won't contain all of the
1420
    // results for the query.  This is ok (we can still use it to accelerate
1421
    // specific block queries) but we can't do the fastpath "return all
1422
    // results from the set"  Clear out the indicator for this.
1423
    CacheInfo->Pair = BBSkipFirstBlockPair();
1424
    SkipFirstBlock = false;
1425
    continue;
1426

1427
  PredTranslationFailure:
1428
    // The following code is "failure"; we can't produce a sane translation
1429
    // for the given block.  It assumes that we haven't modified any of
1430
    // our datastructures while processing the current block.
1431

1432
    if (!Cache) {
1433
      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1434
      CacheInfo = &NonLocalPointerDeps[CacheKey];
1435
      Cache = &CacheInfo->NonLocalDeps;
1436
      NumSortedEntries = Cache->size();
1437
    }
1438

1439
    // Since we failed phi translation, the "Cache" set won't contain all of the
1440
    // results for the query.  This is ok (we can still use it to accelerate
1441
    // specific block queries) but we can't do the fastpath "return all
1442
    // results from the set".  Clear out the indicator for this.
1443
    CacheInfo->Pair = BBSkipFirstBlockPair();
1444

1445
    // If *nothing* works, mark the pointer as unknown.
1446
    //
1447
    // If this is the magic first block, return this as a clobber of the whole
1448
    // incoming value.  Since we can't phi translate to one of the predecessors,
1449
    // we have to bail out.
1450
    if (SkipFirstBlock)
1451
      return false;
1452

1453
    // Results of invariant loads are not cached thus no need to update cached
1454
    // information.
1455
    if (!isInvariantLoad) {
1456
      for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1457
        if (I.getBB() != BB)
1458
          continue;
1459

1460
        assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1461
                !DT.isReachableFromEntry(BB)) &&
1462
               "Should only be here with transparent block");
1463

1464
        I.setResult(MemDepResult::getUnknown());
1465

1466

1467
        break;
1468
      }
1469
    }
1470
    (void)GotWorklistLimit;
1471
    // Go ahead and report unknown dependence.
1472
    Result.push_back(
1473
        NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1474
  }
1475

1476
  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1477
  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1478
  LLVM_DEBUG(AssertSorted(*Cache));
1479
  return true;
1480
}
1481

1482
/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1483
void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1484
    ValueIsLoadPair P) {
1485

1486
  // Most of the time this cache is empty.
1487
  if (!NonLocalDefsCache.empty()) {
1488
    auto it = NonLocalDefsCache.find(P.getPointer());
1489
    if (it != NonLocalDefsCache.end()) {
1490
      RemoveFromReverseMap(ReverseNonLocalDefsCache,
1491
                           it->second.getResult().getInst(), P.getPointer());
1492
      NonLocalDefsCache.erase(it);
1493
    }
1494

1495
    if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1496
      auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1497
      if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1498
        for (const auto *entry : toRemoveIt->second)
1499
          NonLocalDefsCache.erase(entry);
1500
        ReverseNonLocalDefsCache.erase(toRemoveIt);
1501
      }
1502
    }
1503
  }
1504

1505
  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1506
  if (It == NonLocalPointerDeps.end())
1507
    return;
1508

1509
  // Remove all of the entries in the BB->val map.  This involves removing
1510
  // instructions from the reverse map.
1511
  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1512

1513
  for (const NonLocalDepEntry &DE : PInfo) {
1514
    Instruction *Target = DE.getResult().getInst();
1515
    if (!Target)
1516
      continue; // Ignore non-local dep results.
1517
    assert(Target->getParent() == DE.getBB());
1518

1519
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1520
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1521
  }
1522

1523
  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1524
  NonLocalPointerDeps.erase(It);
1525
}
1526

1527
void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1528
  // If Ptr isn't really a pointer, just ignore it.
1529
  if (!Ptr->getType()->isPointerTy())
1530
    return;
1531
  // Flush store info for the pointer.
1532
  removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1533
  // Flush load info for the pointer.
1534
  removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1535
}
1536

1537
void MemoryDependenceResults::invalidateCachedPredecessors() {
1538
  PredCache.clear();
1539
}
1540

1541
void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1542
  EII.removeInstruction(RemInst);
1543

1544
  // Walk through the Non-local dependencies, removing this one as the value
1545
  // for any cached queries.
1546
  NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1547
  if (NLDI != NonLocalDepsMap.end()) {
1548
    NonLocalDepInfo &BlockMap = NLDI->second.first;
1549
    for (auto &Entry : BlockMap)
1550
      if (Instruction *Inst = Entry.getResult().getInst())
1551
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1552
    NonLocalDepsMap.erase(NLDI);
1553
  }
1554

1555
  // If we have a cached local dependence query for this instruction, remove it.
1556
  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1557
  if (LocalDepEntry != LocalDeps.end()) {
1558
    // Remove us from DepInst's reverse set now that the local dep info is gone.
1559
    if (Instruction *Inst = LocalDepEntry->second.getInst())
1560
      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1561

1562
    // Remove this local dependency info.
1563
    LocalDeps.erase(LocalDepEntry);
1564
  }
1565

1566
  // If we have any cached dependencies on this instruction, remove
1567
  // them.
1568

1569
  // If the instruction is a pointer, remove it from both the load info and the
1570
  // store info.
1571
  if (RemInst->getType()->isPointerTy()) {
1572
    removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1573
    removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1574
  } else {
1575
    // Otherwise, if the instructions is in the map directly, it must be a load.
1576
    // Remove it.
1577
    auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1578
    if (toRemoveIt != NonLocalDefsCache.end()) {
1579
      assert(isa<LoadInst>(RemInst) &&
1580
             "only load instructions should be added directly");
1581
      const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1582
      ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1583
      NonLocalDefsCache.erase(toRemoveIt);
1584
    }
1585
  }
1586

1587
  // Loop over all of the things that depend on the instruction we're removing.
1588
  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1589

1590
  // If we find RemInst as a clobber or Def in any of the maps for other values,
1591
  // we need to replace its entry with a dirty version of the instruction after
1592
  // it.  If RemInst is a terminator, we use a null dirty value.
1593
  //
1594
  // Using a dirty version of the instruction after RemInst saves having to scan
1595
  // the entire block to get to this point.
1596
  MemDepResult NewDirtyVal;
1597
  if (!RemInst->isTerminator())
1598
    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1599

1600
  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1601
  if (ReverseDepIt != ReverseLocalDeps.end()) {
1602
    // RemInst can't be the terminator if it has local stuff depending on it.
1603
    assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1604
           "Nothing can locally depend on a terminator");
1605

1606
    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1607
      assert(InstDependingOnRemInst != RemInst &&
1608
             "Already removed our local dep info");
1609

1610
      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1611

1612
      // Make sure to remember that new things depend on NewDepInst.
1613
      assert(NewDirtyVal.getInst() &&
1614
             "There is no way something else can have "
1615
             "a local dep on this if it is a terminator!");
1616
      ReverseDepsToAdd.push_back(
1617
          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1618
    }
1619

1620
    ReverseLocalDeps.erase(ReverseDepIt);
1621

1622
    // Add new reverse deps after scanning the set, to avoid invalidating the
1623
    // 'ReverseDeps' reference.
1624
    while (!ReverseDepsToAdd.empty()) {
1625
      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1626
          ReverseDepsToAdd.back().second);
1627
      ReverseDepsToAdd.pop_back();
1628
    }
1629
  }
1630

1631
  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1632
  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1633
    for (Instruction *I : ReverseDepIt->second) {
1634
      assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1635

1636
      PerInstNLInfo &INLD = NonLocalDepsMap[I];
1637
      // The information is now dirty!
1638
      INLD.second = true;
1639

1640
      for (auto &Entry : INLD.first) {
1641
        if (Entry.getResult().getInst() != RemInst)
1642
          continue;
1643

1644
        // Convert to a dirty entry for the subsequent instruction.
1645
        Entry.setResult(NewDirtyVal);
1646

1647
        if (Instruction *NextI = NewDirtyVal.getInst())
1648
          ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1649
      }
1650
    }
1651

1652
    ReverseNonLocalDeps.erase(ReverseDepIt);
1653

1654
    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1655
    while (!ReverseDepsToAdd.empty()) {
1656
      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1657
          ReverseDepsToAdd.back().second);
1658
      ReverseDepsToAdd.pop_back();
1659
    }
1660
  }
1661

1662
  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1663
  // value in the NonLocalPointerDeps info.
1664
  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1665
      ReverseNonLocalPtrDeps.find(RemInst);
1666
  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1667
    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1668
        ReversePtrDepsToAdd;
1669

1670
    for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1671
      assert(P.getPointer() != RemInst &&
1672
             "Already removed NonLocalPointerDeps info for RemInst");
1673

1674
      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1675

1676
      // The cache is not valid for any specific block anymore.
1677
      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1678

1679
      // Update any entries for RemInst to use the instruction after it.
1680
      for (auto &Entry : NLPDI) {
1681
        if (Entry.getResult().getInst() != RemInst)
1682
          continue;
1683

1684
        // Convert to a dirty entry for the subsequent instruction.
1685
        Entry.setResult(NewDirtyVal);
1686

1687
        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1688
          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1689
      }
1690

1691
      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1692
      // subsequent value may invalidate the sortedness.
1693
      llvm::sort(NLPDI);
1694
    }
1695

1696
    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1697

1698
    while (!ReversePtrDepsToAdd.empty()) {
1699
      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1700
          ReversePtrDepsToAdd.back().second);
1701
      ReversePtrDepsToAdd.pop_back();
1702
    }
1703
  }
1704

1705
  assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1706
  LLVM_DEBUG(verifyRemoved(RemInst));
1707
}
1708

1709
/// Verify that the specified instruction does not occur in our internal data
1710
/// structures.
1711
///
1712
/// This function verifies by asserting in debug builds.
1713
void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1714
#ifndef NDEBUG
1715
  for (const auto &DepKV : LocalDeps) {
1716
    assert(DepKV.first != D && "Inst occurs in data structures");
1717
    assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1718
  }
1719

1720
  for (const auto &DepKV : NonLocalPointerDeps) {
1721
    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1722
    for (const auto &Entry : DepKV.second.NonLocalDeps)
1723
      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1724
  }
1725

1726
  for (const auto &DepKV : NonLocalDepsMap) {
1727
    assert(DepKV.first != D && "Inst occurs in data structures");
1728
    const PerInstNLInfo &INLD = DepKV.second;
1729
    for (const auto &Entry : INLD.first)
1730
      assert(Entry.getResult().getInst() != D &&
1731
             "Inst occurs in data structures");
1732
  }
1733

1734
  for (const auto &DepKV : ReverseLocalDeps) {
1735
    assert(DepKV.first != D && "Inst occurs in data structures");
1736
    for (Instruction *Inst : DepKV.second)
1737
      assert(Inst != D && "Inst occurs in data structures");
1738
  }
1739

1740
  for (const auto &DepKV : ReverseNonLocalDeps) {
1741
    assert(DepKV.first != D && "Inst occurs in data structures");
1742
    for (Instruction *Inst : DepKV.second)
1743
      assert(Inst != D && "Inst occurs in data structures");
1744
  }
1745

1746
  for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1747
    assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1748

1749
    for (ValueIsLoadPair P : DepKV.second)
1750
      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1751
             "Inst occurs in ReverseNonLocalPtrDeps map");
1752
  }
1753
#endif
1754
}
1755

1756
AnalysisKey MemoryDependenceAnalysis::Key;
1757

1758
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1759
    : DefaultBlockScanLimit(BlockScanLimit) {}
1760

1761
MemoryDependenceResults
1762
MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1763
  auto &AA = AM.getResult<AAManager>(F);
1764
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1765
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1766
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1767
  return MemoryDependenceResults(AA, AC, TLI, DT, DefaultBlockScanLimit);
1768
}
1769

1770
char MemoryDependenceWrapperPass::ID = 0;
1771

1772
INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1773
                      "Memory Dependence Analysis", false, true)
1774
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1775
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1776
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1777
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1778
INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1779
                    "Memory Dependence Analysis", false, true)
1780

1781
MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1782
  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1783
}
1784

1785
MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1786

1787
void MemoryDependenceWrapperPass::releaseMemory() {
1788
  MemDep.reset();
1789
}
1790

1791
void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1792
  AU.setPreservesAll();
1793
  AU.addRequired<AssumptionCacheTracker>();
1794
  AU.addRequired<DominatorTreeWrapperPass>();
1795
  AU.addRequiredTransitive<AAResultsWrapperPass>();
1796
  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1797
}
1798

1799
bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1800
                               FunctionAnalysisManager::Invalidator &Inv) {
1801
  // Check whether our analysis is preserved.
1802
  auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1803
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1804
    // If not, give up now.
1805
    return true;
1806

1807
  // Check whether the analyses we depend on became invalid for any reason.
1808
  if (Inv.invalidate<AAManager>(F, PA) ||
1809
      Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1810
      Inv.invalidate<DominatorTreeAnalysis>(F, PA))
1811
    return true;
1812

1813
  // Otherwise this analysis result remains valid.
1814
  return false;
1815
}
1816

1817
unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1818
  return DefaultBlockScanLimit;
1819
}
1820

1821
bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1822
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1823
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1824
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1825
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1826
  MemDep.emplace(AA, AC, TLI, DT, BlockScanLimit);
1827
  return false;
1828
}
1829

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.