llvm-project

Форк
0
/
InlineCost.cpp 
3275 строк · 123.8 Кб
1
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements inline cost analysis.
10
//
11
//===----------------------------------------------------------------------===//
12

13
#include "llvm/Analysis/InlineCost.h"
14
#include "llvm/ADT/STLExtras.h"
15
#include "llvm/ADT/SetVector.h"
16
#include "llvm/ADT/SmallPtrSet.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Statistic.h"
19
#include "llvm/Analysis/AssumptionCache.h"
20
#include "llvm/Analysis/BlockFrequencyInfo.h"
21
#include "llvm/Analysis/CodeMetrics.h"
22
#include "llvm/Analysis/ConstantFolding.h"
23
#include "llvm/Analysis/InstructionSimplify.h"
24
#include "llvm/Analysis/LoopInfo.h"
25
#include "llvm/Analysis/MemoryBuiltins.h"
26
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
27
#include "llvm/Analysis/ProfileSummaryInfo.h"
28
#include "llvm/Analysis/TargetLibraryInfo.h"
29
#include "llvm/Analysis/TargetTransformInfo.h"
30
#include "llvm/Analysis/ValueTracking.h"
31
#include "llvm/Config/llvm-config.h"
32
#include "llvm/IR/AssemblyAnnotationWriter.h"
33
#include "llvm/IR/CallingConv.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/Dominators.h"
36
#include "llvm/IR/GetElementPtrTypeIterator.h"
37
#include "llvm/IR/GlobalAlias.h"
38
#include "llvm/IR/InstVisitor.h"
39
#include "llvm/IR/IntrinsicInst.h"
40
#include "llvm/IR/Operator.h"
41
#include "llvm/IR/PatternMatch.h"
42
#include "llvm/Support/CommandLine.h"
43
#include "llvm/Support/Debug.h"
44
#include "llvm/Support/FormattedStream.h"
45
#include "llvm/Support/raw_ostream.h"
46
#include <climits>
47
#include <limits>
48
#include <optional>
49

50
using namespace llvm;
51

52
#define DEBUG_TYPE "inline-cost"
53

54
STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
55

56
static cl::opt<int>
57
    DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
58
                     cl::desc("Default amount of inlining to perform"));
59

60
// We introduce this option since there is a minor compile-time win by avoiding
61
// addition of TTI attributes (target-features in particular) to inline
62
// candidates when they are guaranteed to be the same as top level methods in
63
// some use cases. If we avoid adding the attribute, we need an option to avoid
64
// checking these attributes.
65
static cl::opt<bool> IgnoreTTIInlineCompatible(
66
    "ignore-tti-inline-compatible", cl::Hidden, cl::init(false),
67
    cl::desc("Ignore TTI attributes compatibility check between callee/caller "
68
             "during inline cost calculation"));
69

70
static cl::opt<bool> PrintInstructionComments(
71
    "print-instruction-comments", cl::Hidden, cl::init(false),
72
    cl::desc("Prints comments for instruction based on inline cost analysis"));
73

74
static cl::opt<int> InlineThreshold(
75
    "inline-threshold", cl::Hidden, cl::init(225),
76
    cl::desc("Control the amount of inlining to perform (default = 225)"));
77

78
static cl::opt<int> HintThreshold(
79
    "inlinehint-threshold", cl::Hidden, cl::init(325),
80
    cl::desc("Threshold for inlining functions with inline hint"));
81

82
static cl::opt<int>
83
    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
84
                          cl::init(45),
85
                          cl::desc("Threshold for inlining cold callsites"));
86

87
static cl::opt<bool> InlineEnableCostBenefitAnalysis(
88
    "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
89
    cl::desc("Enable the cost-benefit analysis for the inliner"));
90

91
// InlineSavingsMultiplier overrides per TTI multipliers iff it is
92
// specified explicitly in command line options. This option is exposed
93
// for tuning and testing.
94
static cl::opt<int> InlineSavingsMultiplier(
95
    "inline-savings-multiplier", cl::Hidden, cl::init(8),
96
    cl::desc("Multiplier to multiply cycle savings by during inlining"));
97

98
// InlineSavingsProfitableMultiplier overrides per TTI multipliers iff it is
99
// specified explicitly in command line options. This option is exposed
100
// for tuning and testing.
101
static cl::opt<int> InlineSavingsProfitableMultiplier(
102
    "inline-savings-profitable-multiplier", cl::Hidden, cl::init(4),
103
    cl::desc("A multiplier on top of cycle savings to decide whether the "
104
             "savings won't justify the cost"));
105

106
static cl::opt<int>
107
    InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
108
                        cl::desc("The maximum size of a callee that get's "
109
                                 "inlined without sufficient cycle savings"));
110

111
// We introduce this threshold to help performance of instrumentation based
112
// PGO before we actually hook up inliner with analysis passes such as BPI and
113
// BFI.
114
static cl::opt<int> ColdThreshold(
115
    "inlinecold-threshold", cl::Hidden, cl::init(45),
116
    cl::desc("Threshold for inlining functions with cold attribute"));
117

118
static cl::opt<int>
119
    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
120
                         cl::desc("Threshold for hot callsites "));
121

122
static cl::opt<int> LocallyHotCallSiteThreshold(
123
    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525),
124
    cl::desc("Threshold for locally hot callsites "));
125

126
static cl::opt<int> ColdCallSiteRelFreq(
127
    "cold-callsite-rel-freq", cl::Hidden, cl::init(2),
128
    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
129
             "entry frequency, for a callsite to be cold in the absence of "
130
             "profile information."));
131

132
static cl::opt<uint64_t> HotCallSiteRelFreq(
133
    "hot-callsite-rel-freq", cl::Hidden, cl::init(60),
134
    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
135
             "entry frequency, for a callsite to be hot in the absence of "
136
             "profile information."));
137

138
static cl::opt<int>
139
    InstrCost("inline-instr-cost", cl::Hidden, cl::init(5),
140
              cl::desc("Cost of a single instruction when inlining"));
141

142
static cl::opt<int>
143
    MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0),
144
                  cl::desc("Cost of load/store instruction when inlining"));
145

146
static cl::opt<int> CallPenalty(
147
    "inline-call-penalty", cl::Hidden, cl::init(25),
148
    cl::desc("Call penalty that is applied per callsite when inlining"));
149

150
static cl::opt<size_t>
151
    StackSizeThreshold("inline-max-stacksize", cl::Hidden,
152
                       cl::init(std::numeric_limits<size_t>::max()),
153
                       cl::desc("Do not inline functions with a stack size "
154
                                "that exceeds the specified limit"));
155

156
static cl::opt<size_t> RecurStackSizeThreshold(
157
    "recursive-inline-max-stacksize", cl::Hidden,
158
    cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller),
159
    cl::desc("Do not inline recursive functions with a stack "
160
             "size that exceeds the specified limit"));
161

162
static cl::opt<bool> OptComputeFullInlineCost(
163
    "inline-cost-full", cl::Hidden,
164
    cl::desc("Compute the full inline cost of a call site even when the cost "
165
             "exceeds the threshold."));
166

167
static cl::opt<bool> InlineCallerSupersetNoBuiltin(
168
    "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
169
    cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
170
             "attributes."));
171

172
static cl::opt<bool> DisableGEPConstOperand(
173
    "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
174
    cl::desc("Disables evaluation of GetElementPtr with constant operands"));
175

176
namespace llvm {
177
std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) {
178
  if (Attr.isValid()) {
179
    int AttrValue = 0;
180
    if (!Attr.getValueAsString().getAsInteger(10, AttrValue))
181
      return AttrValue;
182
  }
183
  return std::nullopt;
184
}
185

186
std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) {
187
  return getStringFnAttrAsInt(CB.getFnAttr(AttrKind));
188
}
189

190
std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) {
191
  return getStringFnAttrAsInt(F->getFnAttribute(AttrKind));
192
}
193

194
namespace InlineConstants {
195
int getInstrCost() { return InstrCost; }
196

197
} // namespace InlineConstants
198

199
} // namespace llvm
200

201
namespace {
202
class InlineCostCallAnalyzer;
203

204
// This struct is used to store information about inline cost of a
205
// particular instruction
206
struct InstructionCostDetail {
207
  int CostBefore = 0;
208
  int CostAfter = 0;
209
  int ThresholdBefore = 0;
210
  int ThresholdAfter = 0;
211

212
  int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
213

214
  int getCostDelta() const { return CostAfter - CostBefore; }
215

216
  bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
217
};
218

219
class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
220
private:
221
  InlineCostCallAnalyzer *const ICCA;
222

223
public:
224
  InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
225
  void emitInstructionAnnot(const Instruction *I,
226
                            formatted_raw_ostream &OS) override;
227
};
228

229
/// Carry out call site analysis, in order to evaluate inlinability.
230
/// NOTE: the type is currently used as implementation detail of functions such
231
/// as llvm::getInlineCost. Note the function_ref constructor parameters - the
232
/// expectation is that they come from the outer scope, from the wrapper
233
/// functions. If we want to support constructing CallAnalyzer objects where
234
/// lambdas are provided inline at construction, or where the object needs to
235
/// otherwise survive past the scope of the provided functions, we need to
236
/// revisit the argument types.
237
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
238
  typedef InstVisitor<CallAnalyzer, bool> Base;
239
  friend class InstVisitor<CallAnalyzer, bool>;
240

241
protected:
242
  virtual ~CallAnalyzer() = default;
243
  /// The TargetTransformInfo available for this compilation.
244
  const TargetTransformInfo &TTI;
245

246
  /// Getter for the cache of @llvm.assume intrinsics.
247
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
248

249
  /// Getter for BlockFrequencyInfo
250
  function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
251

252
  /// Profile summary information.
253
  ProfileSummaryInfo *PSI;
254

255
  /// The called function.
256
  Function &F;
257

258
  // Cache the DataLayout since we use it a lot.
259
  const DataLayout &DL;
260

261
  /// The OptimizationRemarkEmitter available for this compilation.
262
  OptimizationRemarkEmitter *ORE;
263

264
  /// The candidate callsite being analyzed. Please do not use this to do
265
  /// analysis in the caller function; we want the inline cost query to be
266
  /// easily cacheable. Instead, use the cover function paramHasAttr.
267
  CallBase &CandidateCall;
268

269
  /// Extension points for handling callsite features.
270
  // Called before a basic block was analyzed.
271
  virtual void onBlockStart(const BasicBlock *BB) {}
272

273
  /// Called after a basic block was analyzed.
274
  virtual void onBlockAnalyzed(const BasicBlock *BB) {}
275

276
  /// Called before an instruction was analyzed
277
  virtual void onInstructionAnalysisStart(const Instruction *I) {}
278

279
  /// Called after an instruction was analyzed
280
  virtual void onInstructionAnalysisFinish(const Instruction *I) {}
281

282
  /// Called at the end of the analysis of the callsite. Return the outcome of
283
  /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
284
  /// the reason it can't.
285
  virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
286
  /// Called when we're about to start processing a basic block, and every time
287
  /// we are done processing an instruction. Return true if there is no point in
288
  /// continuing the analysis (e.g. we've determined already the call site is
289
  /// too expensive to inline)
290
  virtual bool shouldStop() { return false; }
291

292
  /// Called before the analysis of the callee body starts (with callsite
293
  /// contexts propagated).  It checks callsite-specific information. Return a
294
  /// reason analysis can't continue if that's the case, or 'true' if it may
295
  /// continue.
296
  virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
297
  /// Called if the analysis engine decides SROA cannot be done for the given
298
  /// alloca.
299
  virtual void onDisableSROA(AllocaInst *Arg) {}
300

301
  /// Called the analysis engine determines load elimination won't happen.
302
  virtual void onDisableLoadElimination() {}
303

304
  /// Called when we visit a CallBase, before the analysis starts. Return false
305
  /// to stop further processing of the instruction.
306
  virtual bool onCallBaseVisitStart(CallBase &Call) { return true; }
307

308
  /// Called to account for a call.
309
  virtual void onCallPenalty() {}
310

311
  /// Called to account for a load or store.
312
  virtual void onMemAccess(){};
313

314
  /// Called to account for the expectation the inlining would result in a load
315
  /// elimination.
316
  virtual void onLoadEliminationOpportunity() {}
317

318
  /// Called to account for the cost of argument setup for the Call in the
319
  /// callee's body (not the callsite currently under analysis).
320
  virtual void onCallArgumentSetup(const CallBase &Call) {}
321

322
  /// Called to account for a load relative intrinsic.
323
  virtual void onLoadRelativeIntrinsic() {}
324

325
  /// Called to account for a lowered call.
326
  virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
327
  }
328

329
  /// Account for a jump table of given size. Return false to stop further
330
  /// processing the switch instruction
331
  virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
332

333
  /// Account for a case cluster of given size. Return false to stop further
334
  /// processing of the instruction.
335
  virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
336

337
  /// Called at the end of processing a switch instruction, with the given
338
  /// number of case clusters.
339
  virtual void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
340
                                bool DefaultDestUndefined) {}
341

342
  /// Called to account for any other instruction not specifically accounted
343
  /// for.
344
  virtual void onMissedSimplification() {}
345

346
  /// Start accounting potential benefits due to SROA for the given alloca.
347
  virtual void onInitializeSROAArg(AllocaInst *Arg) {}
348

349
  /// Account SROA savings for the AllocaInst value.
350
  virtual void onAggregateSROAUse(AllocaInst *V) {}
351

352
  bool handleSROA(Value *V, bool DoNotDisable) {
353
    // Check for SROA candidates in comparisons.
354
    if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
355
      if (DoNotDisable) {
356
        onAggregateSROAUse(SROAArg);
357
        return true;
358
      }
359
      disableSROAForArg(SROAArg);
360
    }
361
    return false;
362
  }
363

364
  bool IsCallerRecursive = false;
365
  bool IsRecursiveCall = false;
366
  bool ExposesReturnsTwice = false;
367
  bool HasDynamicAlloca = false;
368
  bool ContainsNoDuplicateCall = false;
369
  bool HasReturn = false;
370
  bool HasIndirectBr = false;
371
  bool HasUninlineableIntrinsic = false;
372
  bool InitsVargArgs = false;
373

374
  /// Number of bytes allocated statically by the callee.
375
  uint64_t AllocatedSize = 0;
376
  unsigned NumInstructions = 0;
377
  unsigned NumVectorInstructions = 0;
378

379
  /// While we walk the potentially-inlined instructions, we build up and
380
  /// maintain a mapping of simplified values specific to this callsite. The
381
  /// idea is to propagate any special information we have about arguments to
382
  /// this call through the inlinable section of the function, and account for
383
  /// likely simplifications post-inlining. The most important aspect we track
384
  /// is CFG altering simplifications -- when we prove a basic block dead, that
385
  /// can cause dramatic shifts in the cost of inlining a function.
386
  DenseMap<Value *, Constant *> SimplifiedValues;
387

388
  /// Keep track of the values which map back (through function arguments) to
389
  /// allocas on the caller stack which could be simplified through SROA.
390
  DenseMap<Value *, AllocaInst *> SROAArgValues;
391

392
  /// Keep track of Allocas for which we believe we may get SROA optimization.
393
  DenseSet<AllocaInst *> EnabledSROAAllocas;
394

395
  /// Keep track of values which map to a pointer base and constant offset.
396
  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
397

398
  /// Keep track of dead blocks due to the constant arguments.
399
  SmallPtrSet<BasicBlock *, 16> DeadBlocks;
400

401
  /// The mapping of the blocks to their known unique successors due to the
402
  /// constant arguments.
403
  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
404

405
  /// Model the elimination of repeated loads that is expected to happen
406
  /// whenever we simplify away the stores that would otherwise cause them to be
407
  /// loads.
408
  bool EnableLoadElimination = true;
409

410
  /// Whether we allow inlining for recursive call.
411
  bool AllowRecursiveCall = false;
412

413
  SmallPtrSet<Value *, 16> LoadAddrSet;
414

415
  AllocaInst *getSROAArgForValueOrNull(Value *V) const {
416
    auto It = SROAArgValues.find(V);
417
    if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
418
      return nullptr;
419
    return It->second;
420
  }
421

422
  // Custom simplification helper routines.
423
  bool isAllocaDerivedArg(Value *V);
424
  void disableSROAForArg(AllocaInst *SROAArg);
425
  void disableSROA(Value *V);
426
  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
427
  void disableLoadElimination();
428
  bool isGEPFree(GetElementPtrInst &GEP);
429
  bool canFoldInboundsGEP(GetElementPtrInst &I);
430
  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
431
  bool simplifyCallSite(Function *F, CallBase &Call);
432
  bool simplifyInstruction(Instruction &I);
433
  bool simplifyIntrinsicCallIsConstant(CallBase &CB);
434
  bool simplifyIntrinsicCallObjectSize(CallBase &CB);
435
  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
436

437
  /// Return true if the given argument to the function being considered for
438
  /// inlining has the given attribute set either at the call site or the
439
  /// function declaration.  Primarily used to inspect call site specific
440
  /// attributes since these can be more precise than the ones on the callee
441
  /// itself.
442
  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
443

444
  /// Return true if the given value is known non null within the callee if
445
  /// inlined through this particular callsite.
446
  bool isKnownNonNullInCallee(Value *V);
447

448
  /// Return true if size growth is allowed when inlining the callee at \p Call.
449
  bool allowSizeGrowth(CallBase &Call);
450

451
  // Custom analysis routines.
452
  InlineResult analyzeBlock(BasicBlock *BB,
453
                            SmallPtrSetImpl<const Value *> &EphValues);
454

455
  // Disable several entry points to the visitor so we don't accidentally use
456
  // them by declaring but not defining them here.
457
  void visit(Module *);
458
  void visit(Module &);
459
  void visit(Function *);
460
  void visit(Function &);
461
  void visit(BasicBlock *);
462
  void visit(BasicBlock &);
463

464
  // Provide base case for our instruction visit.
465
  bool visitInstruction(Instruction &I);
466

467
  // Our visit overrides.
468
  bool visitAlloca(AllocaInst &I);
469
  bool visitPHI(PHINode &I);
470
  bool visitGetElementPtr(GetElementPtrInst &I);
471
  bool visitBitCast(BitCastInst &I);
472
  bool visitPtrToInt(PtrToIntInst &I);
473
  bool visitIntToPtr(IntToPtrInst &I);
474
  bool visitCastInst(CastInst &I);
475
  bool visitCmpInst(CmpInst &I);
476
  bool visitSub(BinaryOperator &I);
477
  bool visitBinaryOperator(BinaryOperator &I);
478
  bool visitFNeg(UnaryOperator &I);
479
  bool visitLoad(LoadInst &I);
480
  bool visitStore(StoreInst &I);
481
  bool visitExtractValue(ExtractValueInst &I);
482
  bool visitInsertValue(InsertValueInst &I);
483
  bool visitCallBase(CallBase &Call);
484
  bool visitReturnInst(ReturnInst &RI);
485
  bool visitBranchInst(BranchInst &BI);
486
  bool visitSelectInst(SelectInst &SI);
487
  bool visitSwitchInst(SwitchInst &SI);
488
  bool visitIndirectBrInst(IndirectBrInst &IBI);
489
  bool visitResumeInst(ResumeInst &RI);
490
  bool visitCleanupReturnInst(CleanupReturnInst &RI);
491
  bool visitCatchReturnInst(CatchReturnInst &RI);
492
  bool visitUnreachableInst(UnreachableInst &I);
493

494
public:
495
  CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
496
               function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
497
               function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
498
               ProfileSummaryInfo *PSI = nullptr,
499
               OptimizationRemarkEmitter *ORE = nullptr)
500
      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
501
        PSI(PSI), F(Callee), DL(F.getDataLayout()), ORE(ORE),
502
        CandidateCall(Call) {}
503

504
  InlineResult analyze();
505

506
  std::optional<Constant *> getSimplifiedValue(Instruction *I) {
507
    if (SimplifiedValues.contains(I))
508
      return SimplifiedValues[I];
509
    return std::nullopt;
510
  }
511

512
  // Keep a bunch of stats about the cost savings found so we can print them
513
  // out when debugging.
514
  unsigned NumConstantArgs = 0;
515
  unsigned NumConstantOffsetPtrArgs = 0;
516
  unsigned NumAllocaArgs = 0;
517
  unsigned NumConstantPtrCmps = 0;
518
  unsigned NumConstantPtrDiffs = 0;
519
  unsigned NumInstructionsSimplified = 0;
520

521
  void dump();
522
};
523

524
// Considering forming a binary search, we should find the number of nodes
525
// which is same as the number of comparisons when lowered. For a given
526
// number of clusters, n, we can define a recursive function, f(n), to find
527
// the number of nodes in the tree. The recursion is :
528
// f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
529
// and f(n) = n, when n <= 3.
530
// This will lead a binary tree where the leaf should be either f(2) or f(3)
531
// when n > 3.  So, the number of comparisons from leaves should be n, while
532
// the number of non-leaf should be :
533
//   2^(log2(n) - 1) - 1
534
//   = 2^log2(n) * 2^-1 - 1
535
//   = n / 2 - 1.
536
// Considering comparisons from leaf and non-leaf nodes, we can estimate the
537
// number of comparisons in a simple closed form :
538
//   n + n / 2 - 1 = n * 3 / 2 - 1
539
int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
540
  return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
541
}
542

543
/// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
544
/// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
545
class InlineCostCallAnalyzer final : public CallAnalyzer {
546
  const bool ComputeFullInlineCost;
547
  int LoadEliminationCost = 0;
548
  /// Bonus to be applied when percentage of vector instructions in callee is
549
  /// high (see more details in updateThreshold).
550
  int VectorBonus = 0;
551
  /// Bonus to be applied when the callee has only one reachable basic block.
552
  int SingleBBBonus = 0;
553

554
  /// Tunable parameters that control the analysis.
555
  const InlineParams &Params;
556

557
  // This DenseMap stores the delta change in cost and threshold after
558
  // accounting for the given instruction. The map is filled only with the
559
  // flag PrintInstructionComments on.
560
  DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
561

562
  /// Upper bound for the inlining cost. Bonuses are being applied to account
563
  /// for speculative "expected profit" of the inlining decision.
564
  int Threshold = 0;
565

566
  /// The amount of StaticBonus applied.
567
  int StaticBonusApplied = 0;
568

569
  /// Attempt to evaluate indirect calls to boost its inline cost.
570
  const bool BoostIndirectCalls;
571

572
  /// Ignore the threshold when finalizing analysis.
573
  const bool IgnoreThreshold;
574

575
  // True if the cost-benefit-analysis-based inliner is enabled.
576
  const bool CostBenefitAnalysisEnabled;
577

578
  /// Inlining cost measured in abstract units, accounts for all the
579
  /// instructions expected to be executed for a given function invocation.
580
  /// Instructions that are statically proven to be dead based on call-site
581
  /// arguments are not counted here.
582
  int Cost = 0;
583

584
  // The cumulative cost at the beginning of the basic block being analyzed.  At
585
  // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
586
  // the size of that basic block.
587
  int CostAtBBStart = 0;
588

589
  // The static size of live but cold basic blocks.  This is "static" in the
590
  // sense that it's not weighted by profile counts at all.
591
  int ColdSize = 0;
592

593
  // Whether inlining is decided by cost-threshold analysis.
594
  bool DecidedByCostThreshold = false;
595

596
  // Whether inlining is decided by cost-benefit analysis.
597
  bool DecidedByCostBenefit = false;
598

599
  // The cost-benefit pair computed by cost-benefit analysis.
600
  std::optional<CostBenefitPair> CostBenefit;
601

602
  bool SingleBB = true;
603

604
  unsigned SROACostSavings = 0;
605
  unsigned SROACostSavingsLost = 0;
606

607
  /// The mapping of caller Alloca values to their accumulated cost savings. If
608
  /// we have to disable SROA for one of the allocas, this tells us how much
609
  /// cost must be added.
610
  DenseMap<AllocaInst *, int> SROAArgCosts;
611

612
  /// Return true if \p Call is a cold callsite.
613
  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
614

615
  /// Update Threshold based on callsite properties such as callee
616
  /// attributes and callee hotness for PGO builds. The Callee is explicitly
617
  /// passed to support analyzing indirect calls whose target is inferred by
618
  /// analysis.
619
  void updateThreshold(CallBase &Call, Function &Callee);
620
  /// Return a higher threshold if \p Call is a hot callsite.
621
  std::optional<int> getHotCallSiteThreshold(CallBase &Call,
622
                                             BlockFrequencyInfo *CallerBFI);
623

624
  /// Handle a capped 'int' increment for Cost.
625
  void addCost(int64_t Inc) {
626
    Inc = std::clamp<int64_t>(Inc, INT_MIN, INT_MAX);
627
    Cost = std::clamp<int64_t>(Inc + Cost, INT_MIN, INT_MAX);
628
  }
629

630
  void onDisableSROA(AllocaInst *Arg) override {
631
    auto CostIt = SROAArgCosts.find(Arg);
632
    if (CostIt == SROAArgCosts.end())
633
      return;
634
    addCost(CostIt->second);
635
    SROACostSavings -= CostIt->second;
636
    SROACostSavingsLost += CostIt->second;
637
    SROAArgCosts.erase(CostIt);
638
  }
639

640
  void onDisableLoadElimination() override {
641
    addCost(LoadEliminationCost);
642
    LoadEliminationCost = 0;
643
  }
644

645
  bool onCallBaseVisitStart(CallBase &Call) override {
646
    if (std::optional<int> AttrCallThresholdBonus =
647
            getStringFnAttrAsInt(Call, "call-threshold-bonus"))
648
      Threshold += *AttrCallThresholdBonus;
649

650
    if (std::optional<int> AttrCallCost =
651
            getStringFnAttrAsInt(Call, "call-inline-cost")) {
652
      addCost(*AttrCallCost);
653
      // Prevent further processing of the call since we want to override its
654
      // inline cost, not just add to it.
655
      return false;
656
    }
657
    return true;
658
  }
659

660
  void onCallPenalty() override { addCost(CallPenalty); }
661

662
  void onMemAccess() override { addCost(MemAccessCost); }
663

664
  void onCallArgumentSetup(const CallBase &Call) override {
665
    // Pay the price of the argument setup. We account for the average 1
666
    // instruction per call argument setup here.
667
    addCost(Call.arg_size() * InstrCost);
668
  }
669
  void onLoadRelativeIntrinsic() override {
670
    // This is normally lowered to 4 LLVM instructions.
671
    addCost(3 * InstrCost);
672
  }
673
  void onLoweredCall(Function *F, CallBase &Call,
674
                     bool IsIndirectCall) override {
675
    // We account for the average 1 instruction per call argument setup here.
676
    addCost(Call.arg_size() * InstrCost);
677

678
    // If we have a constant that we are calling as a function, we can peer
679
    // through it and see the function target. This happens not infrequently
680
    // during devirtualization and so we want to give it a hefty bonus for
681
    // inlining, but cap that bonus in the event that inlining wouldn't pan out.
682
    // Pretend to inline the function, with a custom threshold.
683
    if (IsIndirectCall && BoostIndirectCalls) {
684
      auto IndirectCallParams = Params;
685
      IndirectCallParams.DefaultThreshold =
686
          InlineConstants::IndirectCallThreshold;
687
      /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
688
      /// to instantiate the derived class.
689
      InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
690
                                GetAssumptionCache, GetBFI, PSI, ORE, false);
691
      if (CA.analyze().isSuccess()) {
692
        // We were able to inline the indirect call! Subtract the cost from the
693
        // threshold to get the bonus we want to apply, but don't go below zero.
694
        Cost -= std::max(0, CA.getThreshold() - CA.getCost());
695
      }
696
    } else
697
      // Otherwise simply add the cost for merely making the call.
698
      addCost(TTI.getInlineCallPenalty(CandidateCall.getCaller(), Call,
699
                                       CallPenalty));
700
  }
701

702
  void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
703
                        bool DefaultDestUndefined) override {
704
    // If suitable for a jump table, consider the cost for the table size and
705
    // branch to destination.
706
    // Maximum valid cost increased in this function.
707
    if (JumpTableSize) {
708
      // Suppose a default branch includes one compare and one conditional
709
      // branch if it's reachable.
710
      if (!DefaultDestUndefined)
711
        addCost(2 * InstrCost);
712
      // Suppose a jump table requires one load and one jump instruction.
713
      int64_t JTCost =
714
          static_cast<int64_t>(JumpTableSize) * InstrCost + 2 * InstrCost;
715
      addCost(JTCost);
716
      return;
717
    }
718

719
    if (NumCaseCluster <= 3) {
720
      // Suppose a comparison includes one compare and one conditional branch.
721
      // We can reduce a set of instructions if the default branch is
722
      // undefined.
723
      addCost((NumCaseCluster - DefaultDestUndefined) * 2 * InstrCost);
724
      return;
725
    }
726

727
    int64_t ExpectedNumberOfCompare =
728
        getExpectedNumberOfCompare(NumCaseCluster);
729
    int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost;
730

731
    addCost(SwitchCost);
732
  }
733
  void onMissedSimplification() override { addCost(InstrCost); }
734

735
  void onInitializeSROAArg(AllocaInst *Arg) override {
736
    assert(Arg != nullptr &&
737
           "Should not initialize SROA costs for null value.");
738
    auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
739
    SROACostSavings += SROAArgCost;
740
    SROAArgCosts[Arg] = SROAArgCost;
741
  }
742

743
  void onAggregateSROAUse(AllocaInst *SROAArg) override {
744
    auto CostIt = SROAArgCosts.find(SROAArg);
745
    assert(CostIt != SROAArgCosts.end() &&
746
           "expected this argument to have a cost");
747
    CostIt->second += InstrCost;
748
    SROACostSavings += InstrCost;
749
  }
750

751
  void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
752

753
  void onBlockAnalyzed(const BasicBlock *BB) override {
754
    if (CostBenefitAnalysisEnabled) {
755
      // Keep track of the static size of live but cold basic blocks.  For now,
756
      // we define a cold basic block to be one that's never executed.
757
      assert(GetBFI && "GetBFI must be available");
758
      BlockFrequencyInfo *BFI = &(GetBFI(F));
759
      assert(BFI && "BFI must be available");
760
      auto ProfileCount = BFI->getBlockProfileCount(BB);
761
      if (*ProfileCount == 0)
762
        ColdSize += Cost - CostAtBBStart;
763
    }
764

765
    auto *TI = BB->getTerminator();
766
    // If we had any successors at this point, than post-inlining is likely to
767
    // have them as well. Note that we assume any basic blocks which existed
768
    // due to branches or switches which folded above will also fold after
769
    // inlining.
770
    if (SingleBB && TI->getNumSuccessors() > 1) {
771
      // Take off the bonus we applied to the threshold.
772
      Threshold -= SingleBBBonus;
773
      SingleBB = false;
774
    }
775
  }
776

777
  void onInstructionAnalysisStart(const Instruction *I) override {
778
    // This function is called to store the initial cost of inlining before
779
    // the given instruction was assessed.
780
    if (!PrintInstructionComments)
781
      return;
782
    InstructionCostDetailMap[I].CostBefore = Cost;
783
    InstructionCostDetailMap[I].ThresholdBefore = Threshold;
784
  }
785

786
  void onInstructionAnalysisFinish(const Instruction *I) override {
787
    // This function is called to find new values of cost and threshold after
788
    // the instruction has been assessed.
789
    if (!PrintInstructionComments)
790
      return;
791
    InstructionCostDetailMap[I].CostAfter = Cost;
792
    InstructionCostDetailMap[I].ThresholdAfter = Threshold;
793
  }
794

795
  bool isCostBenefitAnalysisEnabled() {
796
    if (!PSI || !PSI->hasProfileSummary())
797
      return false;
798

799
    if (!GetBFI)
800
      return false;
801

802
    if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
803
      // Honor the explicit request from the user.
804
      if (!InlineEnableCostBenefitAnalysis)
805
        return false;
806
    } else {
807
      // Otherwise, require instrumentation profile.
808
      if (!PSI->hasInstrumentationProfile())
809
        return false;
810
    }
811

812
    auto *Caller = CandidateCall.getParent()->getParent();
813
    if (!Caller->getEntryCount())
814
      return false;
815

816
    BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
817
    if (!CallerBFI)
818
      return false;
819

820
    // For now, limit to hot call site.
821
    if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
822
      return false;
823

824
    // Make sure we have a nonzero entry count.
825
    auto EntryCount = F.getEntryCount();
826
    if (!EntryCount || !EntryCount->getCount())
827
      return false;
828

829
    BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
830
    if (!CalleeBFI)
831
      return false;
832

833
    return true;
834
  }
835

836
  // A helper function to choose between command line override and default.
837
  unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const {
838
    if (InlineSavingsMultiplier.getNumOccurrences())
839
      return InlineSavingsMultiplier;
840
    return TTI.getInliningCostBenefitAnalysisSavingsMultiplier();
841
  }
842

843
  // A helper function to choose between command line override and default.
844
  unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const {
845
    if (InlineSavingsProfitableMultiplier.getNumOccurrences())
846
      return InlineSavingsProfitableMultiplier;
847
    return TTI.getInliningCostBenefitAnalysisProfitableMultiplier();
848
  }
849

850
  void OverrideCycleSavingsAndSizeForTesting(APInt &CycleSavings, int &Size) {
851
    if (std::optional<int> AttrCycleSavings = getStringFnAttrAsInt(
852
            CandidateCall, "inline-cycle-savings-for-test")) {
853
      CycleSavings = *AttrCycleSavings;
854
    }
855

856
    if (std::optional<int> AttrRuntimeCost = getStringFnAttrAsInt(
857
            CandidateCall, "inline-runtime-cost-for-test")) {
858
      Size = *AttrRuntimeCost;
859
    }
860
  }
861

862
  // Determine whether we should inline the given call site, taking into account
863
  // both the size cost and the cycle savings.  Return std::nullopt if we don't
864
  // have sufficient profiling information to determine.
865
  std::optional<bool> costBenefitAnalysis() {
866
    if (!CostBenefitAnalysisEnabled)
867
      return std::nullopt;
868

869
    // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
870
    // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
871
    // falling back to the cost-based metric.
872
    // TODO: Improve this hacky condition.
873
    if (Threshold == 0)
874
      return std::nullopt;
875

876
    assert(GetBFI);
877
    BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
878
    assert(CalleeBFI);
879

880
    // The cycle savings expressed as the sum of InstrCost
881
    // multiplied by the estimated dynamic count of each instruction we can
882
    // avoid.  Savings come from the call site cost, such as argument setup and
883
    // the call instruction, as well as the instructions that are folded.
884
    //
885
    // We use 128-bit APInt here to avoid potential overflow.  This variable
886
    // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
887
    // assumes that we can avoid or fold a billion instructions, each with a
888
    // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
889
    // period on a 4GHz machine.
890
    APInt CycleSavings(128, 0);
891

892
    for (auto &BB : F) {
893
      APInt CurrentSavings(128, 0);
894
      for (auto &I : BB) {
895
        if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
896
          // Count a conditional branch as savings if it becomes unconditional.
897
          if (BI->isConditional() &&
898
              isa_and_nonnull<ConstantInt>(
899
                  SimplifiedValues.lookup(BI->getCondition()))) {
900
            CurrentSavings += InstrCost;
901
          }
902
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
903
          if (isa_and_present<ConstantInt>(SimplifiedValues.lookup(SI->getCondition())))
904
            CurrentSavings += InstrCost;
905
        } else if (Value *V = dyn_cast<Value>(&I)) {
906
          // Count an instruction as savings if we can fold it.
907
          if (SimplifiedValues.count(V)) {
908
            CurrentSavings += InstrCost;
909
          }
910
        }
911
      }
912

913
      auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
914
      CurrentSavings *= *ProfileCount;
915
      CycleSavings += CurrentSavings;
916
    }
917

918
    // Compute the cycle savings per call.
919
    auto EntryProfileCount = F.getEntryCount();
920
    assert(EntryProfileCount && EntryProfileCount->getCount());
921
    auto EntryCount = EntryProfileCount->getCount();
922
    CycleSavings += EntryCount / 2;
923
    CycleSavings = CycleSavings.udiv(EntryCount);
924

925
    // Compute the total savings for the call site.
926
    auto *CallerBB = CandidateCall.getParent();
927
    BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
928
    CycleSavings += getCallsiteCost(TTI, this->CandidateCall, DL);
929
    CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB);
930

931
    // Remove the cost of the cold basic blocks to model the runtime cost more
932
    // accurately. Both machine block placement and function splitting could
933
    // place cold blocks further from hot blocks.
934
    int Size = Cost - ColdSize;
935

936
    // Allow tiny callees to be inlined regardless of whether they meet the
937
    // savings threshold.
938
    Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
939

940
    OverrideCycleSavingsAndSizeForTesting(CycleSavings, Size);
941
    CostBenefit.emplace(APInt(128, Size), CycleSavings);
942

943
    // Let R be the ratio of CycleSavings to Size.  We accept the inlining
944
    // opportunity if R is really high and reject if R is really low.  If R is
945
    // somewhere in the middle, we fall back to the cost-based analysis.
946
    //
947
    // Specifically, let R = CycleSavings / Size, we accept the inlining
948
    // opportunity if:
949
    //
950
    //             PSI->getOrCompHotCountThreshold()
951
    // R > -------------------------------------------------
952
    //     getInliningCostBenefitAnalysisSavingsMultiplier()
953
    //
954
    // and reject the inlining opportunity if:
955
    //
956
    //                PSI->getOrCompHotCountThreshold()
957
    // R <= ----------------------------------------------------
958
    //      getInliningCostBenefitAnalysisProfitableMultiplier()
959
    //
960
    // Otherwise, we fall back to the cost-based analysis.
961
    //
962
    // Implementation-wise, use multiplication (CycleSavings * Multiplier,
963
    // HotCountThreshold * Size) rather than division to avoid precision loss.
964
    APInt Threshold(128, PSI->getOrCompHotCountThreshold());
965
    Threshold *= Size;
966

967
    APInt UpperBoundCycleSavings = CycleSavings;
968
    UpperBoundCycleSavings *= getInliningCostBenefitAnalysisSavingsMultiplier();
969
    if (UpperBoundCycleSavings.uge(Threshold))
970
      return true;
971

972
    APInt LowerBoundCycleSavings = CycleSavings;
973
    LowerBoundCycleSavings *=
974
        getInliningCostBenefitAnalysisProfitableMultiplier();
975
    if (LowerBoundCycleSavings.ult(Threshold))
976
      return false;
977

978
    // Otherwise, fall back to the cost-based analysis.
979
    return std::nullopt;
980
  }
981

982
  InlineResult finalizeAnalysis() override {
983
    // Loops generally act a lot like calls in that they act like barriers to
984
    // movement, require a certain amount of setup, etc. So when optimising for
985
    // size, we penalise any call sites that perform loops. We do this after all
986
    // other costs here, so will likely only be dealing with relatively small
987
    // functions (and hence DT and LI will hopefully be cheap).
988
    auto *Caller = CandidateCall.getFunction();
989
    if (Caller->hasMinSize()) {
990
      DominatorTree DT(F);
991
      LoopInfo LI(DT);
992
      int NumLoops = 0;
993
      for (Loop *L : LI) {
994
        // Ignore loops that will not be executed
995
        if (DeadBlocks.count(L->getHeader()))
996
          continue;
997
        NumLoops++;
998
      }
999
      addCost(NumLoops * InlineConstants::LoopPenalty);
1000
    }
1001

1002
    // We applied the maximum possible vector bonus at the beginning. Now,
1003
    // subtract the excess bonus, if any, from the Threshold before
1004
    // comparing against Cost.
1005
    if (NumVectorInstructions <= NumInstructions / 10)
1006
      Threshold -= VectorBonus;
1007
    else if (NumVectorInstructions <= NumInstructions / 2)
1008
      Threshold -= VectorBonus / 2;
1009

1010
    if (std::optional<int> AttrCost =
1011
            getStringFnAttrAsInt(CandidateCall, "function-inline-cost"))
1012
      Cost = *AttrCost;
1013

1014
    if (std::optional<int> AttrCostMult = getStringFnAttrAsInt(
1015
            CandidateCall,
1016
            InlineConstants::FunctionInlineCostMultiplierAttributeName))
1017
      Cost *= *AttrCostMult;
1018

1019
    if (std::optional<int> AttrThreshold =
1020
            getStringFnAttrAsInt(CandidateCall, "function-inline-threshold"))
1021
      Threshold = *AttrThreshold;
1022

1023
    if (auto Result = costBenefitAnalysis()) {
1024
      DecidedByCostBenefit = true;
1025
      if (*Result)
1026
        return InlineResult::success();
1027
      else
1028
        return InlineResult::failure("Cost over threshold.");
1029
    }
1030

1031
    if (IgnoreThreshold)
1032
      return InlineResult::success();
1033

1034
    DecidedByCostThreshold = true;
1035
    return Cost < std::max(1, Threshold)
1036
               ? InlineResult::success()
1037
               : InlineResult::failure("Cost over threshold.");
1038
  }
1039

1040
  bool shouldStop() override {
1041
    if (IgnoreThreshold || ComputeFullInlineCost)
1042
      return false;
1043
    // Bail out the moment we cross the threshold. This means we'll under-count
1044
    // the cost, but only when undercounting doesn't matter.
1045
    if (Cost < Threshold)
1046
      return false;
1047
    DecidedByCostThreshold = true;
1048
    return true;
1049
  }
1050

1051
  void onLoadEliminationOpportunity() override {
1052
    LoadEliminationCost += InstrCost;
1053
  }
1054

1055
  InlineResult onAnalysisStart() override {
1056
    // Perform some tweaks to the cost and threshold based on the direct
1057
    // callsite information.
1058

1059
    // We want to more aggressively inline vector-dense kernels, so up the
1060
    // threshold, and we'll lower it if the % of vector instructions gets too
1061
    // low. Note that these bonuses are some what arbitrary and evolved over
1062
    // time by accident as much as because they are principled bonuses.
1063
    //
1064
    // FIXME: It would be nice to remove all such bonuses. At least it would be
1065
    // nice to base the bonus values on something more scientific.
1066
    assert(NumInstructions == 0);
1067
    assert(NumVectorInstructions == 0);
1068

1069
    // Update the threshold based on callsite properties
1070
    updateThreshold(CandidateCall, F);
1071

1072
    // While Threshold depends on commandline options that can take negative
1073
    // values, we want to enforce the invariant that the computed threshold and
1074
    // bonuses are non-negative.
1075
    assert(Threshold >= 0);
1076
    assert(SingleBBBonus >= 0);
1077
    assert(VectorBonus >= 0);
1078

1079
    // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1080
    // this Threshold any time, and cost cannot decrease, we can stop processing
1081
    // the rest of the function body.
1082
    Threshold += (SingleBBBonus + VectorBonus);
1083

1084
    // Give out bonuses for the callsite, as the instructions setting them up
1085
    // will be gone after inlining.
1086
    addCost(-getCallsiteCost(TTI, this->CandidateCall, DL));
1087

1088
    // If this function uses the coldcc calling convention, prefer not to inline
1089
    // it.
1090
    if (F.getCallingConv() == CallingConv::Cold)
1091
      Cost += InlineConstants::ColdccPenalty;
1092

1093
    LLVM_DEBUG(dbgs() << "      Initial cost: " << Cost << "\n");
1094

1095
    // Check if we're done. This can happen due to bonuses and penalties.
1096
    if (Cost >= Threshold && !ComputeFullInlineCost)
1097
      return InlineResult::failure("high cost");
1098

1099
    return InlineResult::success();
1100
  }
1101

1102
public:
1103
  InlineCostCallAnalyzer(
1104
      Function &Callee, CallBase &Call, const InlineParams &Params,
1105
      const TargetTransformInfo &TTI,
1106
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
1107
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
1108
      ProfileSummaryInfo *PSI = nullptr,
1109
      OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
1110
      bool IgnoreThreshold = false)
1111
      : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
1112
        ComputeFullInlineCost(OptComputeFullInlineCost ||
1113
                              Params.ComputeFullInlineCost || ORE ||
1114
                              isCostBenefitAnalysisEnabled()),
1115
        Params(Params), Threshold(Params.DefaultThreshold),
1116
        BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
1117
        CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
1118
        Writer(this) {
1119
    AllowRecursiveCall = *Params.AllowRecursiveCall;
1120
  }
1121

1122
  /// Annotation Writer for instruction details
1123
  InlineCostAnnotationWriter Writer;
1124

1125
  void dump();
1126

1127
  // Prints the same analysis as dump(), but its definition is not dependent
1128
  // on the build.
1129
  void print(raw_ostream &OS);
1130

1131
  std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
1132
    if (InstructionCostDetailMap.contains(I))
1133
      return InstructionCostDetailMap[I];
1134
    return std::nullopt;
1135
  }
1136

1137
  virtual ~InlineCostCallAnalyzer() = default;
1138
  int getThreshold() const { return Threshold; }
1139
  int getCost() const { return Cost; }
1140
  int getStaticBonusApplied() const { return StaticBonusApplied; }
1141
  std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
1142
  bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
1143
  bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; }
1144
};
1145

1146
// Return true if CB is the sole call to local function Callee.
1147
static bool isSoleCallToLocalFunction(const CallBase &CB,
1148
                                      const Function &Callee) {
1149
  return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() &&
1150
         &Callee == CB.getCalledFunction();
1151
}
1152

1153
class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
1154
private:
1155
  InlineCostFeatures Cost = {};
1156

1157
  // FIXME: These constants are taken from the heuristic-based cost visitor.
1158
  // These should be removed entirely in a later revision to avoid reliance on
1159
  // heuristics in the ML inliner.
1160
  static constexpr int JTCostMultiplier = 2;
1161
  static constexpr int CaseClusterCostMultiplier = 2;
1162
  static constexpr int SwitchDefaultDestCostMultiplier = 2;
1163
  static constexpr int SwitchCostMultiplier = 2;
1164

1165
  // FIXME: These are taken from the heuristic-based cost visitor: we should
1166
  // eventually abstract these to the CallAnalyzer to avoid duplication.
1167
  unsigned SROACostSavingOpportunities = 0;
1168
  int VectorBonus = 0;
1169
  int SingleBBBonus = 0;
1170
  int Threshold = 5;
1171

1172
  DenseMap<AllocaInst *, unsigned> SROACosts;
1173

1174
  void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
1175
    Cost[static_cast<size_t>(Feature)] += Delta;
1176
  }
1177

1178
  void set(InlineCostFeatureIndex Feature, int64_t Value) {
1179
    Cost[static_cast<size_t>(Feature)] = Value;
1180
  }
1181

1182
  void onDisableSROA(AllocaInst *Arg) override {
1183
    auto CostIt = SROACosts.find(Arg);
1184
    if (CostIt == SROACosts.end())
1185
      return;
1186

1187
    increment(InlineCostFeatureIndex::sroa_losses, CostIt->second);
1188
    SROACostSavingOpportunities -= CostIt->second;
1189
    SROACosts.erase(CostIt);
1190
  }
1191

1192
  void onDisableLoadElimination() override {
1193
    set(InlineCostFeatureIndex::load_elimination, 1);
1194
  }
1195

1196
  void onCallPenalty() override {
1197
    increment(InlineCostFeatureIndex::call_penalty, CallPenalty);
1198
  }
1199

1200
  void onCallArgumentSetup(const CallBase &Call) override {
1201
    increment(InlineCostFeatureIndex::call_argument_setup,
1202
              Call.arg_size() * InstrCost);
1203
  }
1204

1205
  void onLoadRelativeIntrinsic() override {
1206
    increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost);
1207
  }
1208

1209
  void onLoweredCall(Function *F, CallBase &Call,
1210
                     bool IsIndirectCall) override {
1211
    increment(InlineCostFeatureIndex::lowered_call_arg_setup,
1212
              Call.arg_size() * InstrCost);
1213

1214
    if (IsIndirectCall) {
1215
      InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
1216
                                         /*HintThreshold*/ {},
1217
                                         /*ColdThreshold*/ {},
1218
                                         /*OptSizeThreshold*/ {},
1219
                                         /*OptMinSizeThreshold*/ {},
1220
                                         /*HotCallSiteThreshold*/ {},
1221
                                         /*LocallyHotCallSiteThreshold*/ {},
1222
                                         /*ColdCallSiteThreshold*/ {},
1223
                                         /*ComputeFullInlineCost*/ true,
1224
                                         /*EnableDeferral*/ true};
1225
      IndirectCallParams.DefaultThreshold =
1226
          InlineConstants::IndirectCallThreshold;
1227

1228
      InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
1229
                                GetAssumptionCache, GetBFI, PSI, ORE, false,
1230
                                true);
1231
      if (CA.analyze().isSuccess()) {
1232
        increment(InlineCostFeatureIndex::nested_inline_cost_estimate,
1233
                  CA.getCost());
1234
        increment(InlineCostFeatureIndex::nested_inlines, 1);
1235
      }
1236
    } else {
1237
      onCallPenalty();
1238
    }
1239
  }
1240

1241
  void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster,
1242
                        bool DefaultDestUndefined) override {
1243
    if (JumpTableSize) {
1244
      if (!DefaultDestUndefined)
1245
        increment(InlineCostFeatureIndex::switch_default_dest_penalty,
1246
                  SwitchDefaultDestCostMultiplier * InstrCost);
1247
      int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost +
1248
                       JTCostMultiplier * InstrCost;
1249
      increment(InlineCostFeatureIndex::jump_table_penalty, JTCost);
1250
      return;
1251
    }
1252

1253
    if (NumCaseCluster <= 3) {
1254
      increment(InlineCostFeatureIndex::case_cluster_penalty,
1255
                (NumCaseCluster - DefaultDestUndefined) *
1256
                    CaseClusterCostMultiplier * InstrCost);
1257
      return;
1258
    }
1259

1260
    int64_t ExpectedNumberOfCompare =
1261
        getExpectedNumberOfCompare(NumCaseCluster);
1262

1263
    int64_t SwitchCost =
1264
        ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost;
1265
    increment(InlineCostFeatureIndex::switch_penalty, SwitchCost);
1266
  }
1267

1268
  void onMissedSimplification() override {
1269
    increment(InlineCostFeatureIndex::unsimplified_common_instructions,
1270
              InstrCost);
1271
  }
1272

1273
  void onInitializeSROAArg(AllocaInst *Arg) override {
1274
    auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg);
1275
    SROACosts[Arg] = SROAArgCost;
1276
    SROACostSavingOpportunities += SROAArgCost;
1277
  }
1278

1279
  void onAggregateSROAUse(AllocaInst *Arg) override {
1280
    SROACosts.find(Arg)->second += InstrCost;
1281
    SROACostSavingOpportunities += InstrCost;
1282
  }
1283

1284
  void onBlockAnalyzed(const BasicBlock *BB) override {
1285
    if (BB->getTerminator()->getNumSuccessors() > 1)
1286
      set(InlineCostFeatureIndex::is_multiple_blocks, 1);
1287
    Threshold -= SingleBBBonus;
1288
  }
1289

1290
  InlineResult finalizeAnalysis() override {
1291
    auto *Caller = CandidateCall.getFunction();
1292
    if (Caller->hasMinSize()) {
1293
      DominatorTree DT(F);
1294
      LoopInfo LI(DT);
1295
      for (Loop *L : LI) {
1296
        // Ignore loops that will not be executed
1297
        if (DeadBlocks.count(L->getHeader()))
1298
          continue;
1299
        increment(InlineCostFeatureIndex::num_loops,
1300
                  InlineConstants::LoopPenalty);
1301
      }
1302
    }
1303
    set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size());
1304
    set(InlineCostFeatureIndex::simplified_instructions,
1305
        NumInstructionsSimplified);
1306
    set(InlineCostFeatureIndex::constant_args, NumConstantArgs);
1307
    set(InlineCostFeatureIndex::constant_offset_ptr_args,
1308
        NumConstantOffsetPtrArgs);
1309
    set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities);
1310

1311
    if (NumVectorInstructions <= NumInstructions / 10)
1312
      Threshold -= VectorBonus;
1313
    else if (NumVectorInstructions <= NumInstructions / 2)
1314
      Threshold -= VectorBonus / 2;
1315

1316
    set(InlineCostFeatureIndex::threshold, Threshold);
1317

1318
    return InlineResult::success();
1319
  }
1320

1321
  bool shouldStop() override { return false; }
1322

1323
  void onLoadEliminationOpportunity() override {
1324
    increment(InlineCostFeatureIndex::load_elimination, 1);
1325
  }
1326

1327
  InlineResult onAnalysisStart() override {
1328
    increment(InlineCostFeatureIndex::callsite_cost,
1329
              -1 * getCallsiteCost(TTI, this->CandidateCall, DL));
1330

1331
    set(InlineCostFeatureIndex::cold_cc_penalty,
1332
        (F.getCallingConv() == CallingConv::Cold));
1333

1334
    set(InlineCostFeatureIndex::last_call_to_static_bonus,
1335
        isSoleCallToLocalFunction(CandidateCall, F));
1336

1337
    // FIXME: we shouldn't repeat this logic in both the Features and Cost
1338
    // analyzer - instead, we should abstract it to a common method in the
1339
    // CallAnalyzer
1340
    int SingleBBBonusPercent = 50;
1341
    int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1342
    Threshold += TTI.adjustInliningThreshold(&CandidateCall);
1343
    Threshold *= TTI.getInliningThresholdMultiplier();
1344
    SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1345
    VectorBonus = Threshold * VectorBonusPercent / 100;
1346
    Threshold += (SingleBBBonus + VectorBonus);
1347

1348
    return InlineResult::success();
1349
  }
1350

1351
public:
1352
  InlineCostFeaturesAnalyzer(
1353
      const TargetTransformInfo &TTI,
1354
      function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
1355
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1356
      ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
1357
      CallBase &Call)
1358
      : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
1359

1360
  const InlineCostFeatures &features() const { return Cost; }
1361
};
1362

1363
} // namespace
1364

1365
/// Test whether the given value is an Alloca-derived function argument.
1366
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
1367
  return SROAArgValues.count(V);
1368
}
1369

1370
void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
1371
  onDisableSROA(SROAArg);
1372
  EnabledSROAAllocas.erase(SROAArg);
1373
  disableLoadElimination();
1374
}
1375

1376
void InlineCostAnnotationWriter::emitInstructionAnnot(
1377
    const Instruction *I, formatted_raw_ostream &OS) {
1378
  // The cost of inlining of the given instruction is printed always.
1379
  // The threshold delta is printed only when it is non-zero. It happens
1380
  // when we decided to give a bonus at a particular instruction.
1381
  std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
1382
  if (!Record)
1383
    OS << "; No analysis for the instruction";
1384
  else {
1385
    OS << "; cost before = " << Record->CostBefore
1386
       << ", cost after = " << Record->CostAfter
1387
       << ", threshold before = " << Record->ThresholdBefore
1388
       << ", threshold after = " << Record->ThresholdAfter << ", ";
1389
    OS << "cost delta = " << Record->getCostDelta();
1390
    if (Record->hasThresholdChanged())
1391
      OS << ", threshold delta = " << Record->getThresholdDelta();
1392
  }
1393
  auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
1394
  if (C) {
1395
    OS << ", simplified to ";
1396
    (*C)->print(OS, true);
1397
  }
1398
  OS << "\n";
1399
}
1400

1401
/// If 'V' maps to a SROA candidate, disable SROA for it.
1402
void CallAnalyzer::disableSROA(Value *V) {
1403
  if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
1404
    disableSROAForArg(SROAArg);
1405
  }
1406
}
1407

1408
void CallAnalyzer::disableLoadElimination() {
1409
  if (EnableLoadElimination) {
1410
    onDisableLoadElimination();
1411
    EnableLoadElimination = false;
1412
  }
1413
}
1414

1415
/// Accumulate a constant GEP offset into an APInt if possible.
1416
///
1417
/// Returns false if unable to compute the offset for any reason. Respects any
1418
/// simplified values known during the analysis of this callsite.
1419
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
1420
  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
1421
  assert(IntPtrWidth == Offset.getBitWidth());
1422

1423
  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1424
       GTI != GTE; ++GTI) {
1425
    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1426
    if (!OpC)
1427
      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1428
        OpC = dyn_cast<ConstantInt>(SimpleOp);
1429
    if (!OpC)
1430
      return false;
1431
    if (OpC->isZero())
1432
      continue;
1433

1434
    // Handle a struct index, which adds its field offset to the pointer.
1435
    if (StructType *STy = GTI.getStructTypeOrNull()) {
1436
      unsigned ElementIdx = OpC->getZExtValue();
1437
      const StructLayout *SL = DL.getStructLayout(STy);
1438
      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1439
      continue;
1440
    }
1441

1442
    APInt TypeSize(IntPtrWidth, GTI.getSequentialElementStride(DL));
1443
    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1444
  }
1445
  return true;
1446
}
1447

1448
/// Use TTI to check whether a GEP is free.
1449
///
1450
/// Respects any simplified values known during the analysis of this callsite.
1451
bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1452
  SmallVector<Value *, 4> Operands;
1453
  Operands.push_back(GEP.getOperand(0));
1454
  for (const Use &Op : GEP.indices())
1455
    if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1456
      Operands.push_back(SimpleOp);
1457
    else
1458
      Operands.push_back(Op);
1459
  return TTI.getInstructionCost(&GEP, Operands,
1460
                                TargetTransformInfo::TCK_SizeAndLatency) ==
1461
         TargetTransformInfo::TCC_Free;
1462
}
1463

1464
bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1465
  disableSROA(I.getOperand(0));
1466

1467
  // Check whether inlining will turn a dynamic alloca into a static
1468
  // alloca and handle that case.
1469
  if (I.isArrayAllocation()) {
1470
    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1471
    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1472
      // Sometimes a dynamic alloca could be converted into a static alloca
1473
      // after this constant prop, and become a huge static alloca on an
1474
      // unconditional CFG path. Avoid inlining if this is going to happen above
1475
      // a threshold.
1476
      // FIXME: If the threshold is removed or lowered too much, we could end up
1477
      // being too pessimistic and prevent inlining non-problematic code. This
1478
      // could result in unintended perf regressions. A better overall strategy
1479
      // is needed to track stack usage during inlining.
1480
      Type *Ty = I.getAllocatedType();
1481
      AllocatedSize = SaturatingMultiplyAdd(
1482
          AllocSize->getLimitedValue(),
1483
          DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize);
1484
      if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
1485
        HasDynamicAlloca = true;
1486
      return false;
1487
    }
1488
  }
1489

1490
  // Accumulate the allocated size.
1491
  if (I.isStaticAlloca()) {
1492
    Type *Ty = I.getAllocatedType();
1493
    AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(),
1494
                                  AllocatedSize);
1495
  }
1496

1497
  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1498
  // a variety of reasons, and so we would like to not inline them into
1499
  // functions which don't currently have a dynamic alloca. This simply
1500
  // disables inlining altogether in the presence of a dynamic alloca.
1501
  if (!I.isStaticAlloca())
1502
    HasDynamicAlloca = true;
1503

1504
  return false;
1505
}
1506

1507
bool CallAnalyzer::visitPHI(PHINode &I) {
1508
  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1509
  // though we don't want to propagate it's bonuses. The idea is to disable
1510
  // SROA if it *might* be used in an inappropriate manner.
1511

1512
  // Phi nodes are always zero-cost.
1513
  // FIXME: Pointer sizes may differ between different address spaces, so do we
1514
  // need to use correct address space in the call to getPointerSizeInBits here?
1515
  // Or could we skip the getPointerSizeInBits call completely? As far as I can
1516
  // see the ZeroOffset is used as a dummy value, so we can probably use any
1517
  // bit width for the ZeroOffset?
1518
  APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0));
1519
  bool CheckSROA = I.getType()->isPointerTy();
1520

1521
  // Track the constant or pointer with constant offset we've seen so far.
1522
  Constant *FirstC = nullptr;
1523
  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1524
  Value *FirstV = nullptr;
1525

1526
  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1527
    BasicBlock *Pred = I.getIncomingBlock(i);
1528
    // If the incoming block is dead, skip the incoming block.
1529
    if (DeadBlocks.count(Pred))
1530
      continue;
1531
    // If the parent block of phi is not the known successor of the incoming
1532
    // block, skip the incoming block.
1533
    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1534
    if (KnownSuccessor && KnownSuccessor != I.getParent())
1535
      continue;
1536

1537
    Value *V = I.getIncomingValue(i);
1538
    // If the incoming value is this phi itself, skip the incoming value.
1539
    if (&I == V)
1540
      continue;
1541

1542
    Constant *C = dyn_cast<Constant>(V);
1543
    if (!C)
1544
      C = SimplifiedValues.lookup(V);
1545

1546
    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1547
    if (!C && CheckSROA)
1548
      BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1549

1550
    if (!C && !BaseAndOffset.first)
1551
      // The incoming value is neither a constant nor a pointer with constant
1552
      // offset, exit early.
1553
      return true;
1554

1555
    if (FirstC) {
1556
      if (FirstC == C)
1557
        // If we've seen a constant incoming value before and it is the same
1558
        // constant we see this time, continue checking the next incoming value.
1559
        continue;
1560
      // Otherwise early exit because we either see a different constant or saw
1561
      // a constant before but we have a pointer with constant offset this time.
1562
      return true;
1563
    }
1564

1565
    if (FirstV) {
1566
      // The same logic as above, but check pointer with constant offset here.
1567
      if (FirstBaseAndOffset == BaseAndOffset)
1568
        continue;
1569
      return true;
1570
    }
1571

1572
    if (C) {
1573
      // This is the 1st time we've seen a constant, record it.
1574
      FirstC = C;
1575
      continue;
1576
    }
1577

1578
    // The remaining case is that this is the 1st time we've seen a pointer with
1579
    // constant offset, record it.
1580
    FirstV = V;
1581
    FirstBaseAndOffset = BaseAndOffset;
1582
  }
1583

1584
  // Check if we can map phi to a constant.
1585
  if (FirstC) {
1586
    SimplifiedValues[&I] = FirstC;
1587
    return true;
1588
  }
1589

1590
  // Check if we can map phi to a pointer with constant offset.
1591
  if (FirstBaseAndOffset.first) {
1592
    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1593

1594
    if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1595
      SROAArgValues[&I] = SROAArg;
1596
  }
1597

1598
  return true;
1599
}
1600

1601
/// Check we can fold GEPs of constant-offset call site argument pointers.
1602
/// This requires target data and inbounds GEPs.
1603
///
1604
/// \return true if the specified GEP can be folded.
1605
bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1606
  // Check if we have a base + offset for the pointer.
1607
  std::pair<Value *, APInt> BaseAndOffset =
1608
      ConstantOffsetPtrs.lookup(I.getPointerOperand());
1609
  if (!BaseAndOffset.first)
1610
    return false;
1611

1612
  // Check if the offset of this GEP is constant, and if so accumulate it
1613
  // into Offset.
1614
  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1615
    return false;
1616

1617
  // Add the result as a new mapping to Base + Offset.
1618
  ConstantOffsetPtrs[&I] = BaseAndOffset;
1619

1620
  return true;
1621
}
1622

1623
bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1624
  auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1625

1626
  // Lambda to check whether a GEP's indices are all constant.
1627
  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1628
    for (const Use &Op : GEP.indices())
1629
      if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1630
        return false;
1631
    return true;
1632
  };
1633

1634
  if (!DisableGEPConstOperand)
1635
    if (simplifyInstruction(I))
1636
      return true;
1637

1638
  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1639
    if (SROAArg)
1640
      SROAArgValues[&I] = SROAArg;
1641

1642
    // Constant GEPs are modeled as free.
1643
    return true;
1644
  }
1645

1646
  // Variable GEPs will require math and will disable SROA.
1647
  if (SROAArg)
1648
    disableSROAForArg(SROAArg);
1649
  return isGEPFree(I);
1650
}
1651

1652
/// Simplify \p I if its operands are constants and update SimplifiedValues.
1653
bool CallAnalyzer::simplifyInstruction(Instruction &I) {
1654
  SmallVector<Constant *> COps;
1655
  for (Value *Op : I.operands()) {
1656
    Constant *COp = dyn_cast<Constant>(Op);
1657
    if (!COp)
1658
      COp = SimplifiedValues.lookup(Op);
1659
    if (!COp)
1660
      return false;
1661
    COps.push_back(COp);
1662
  }
1663
  auto *C = ConstantFoldInstOperands(&I, COps, DL);
1664
  if (!C)
1665
    return false;
1666
  SimplifiedValues[&I] = C;
1667
  return true;
1668
}
1669

1670
/// Try to simplify a call to llvm.is.constant.
1671
///
1672
/// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since
1673
/// we expect calls of this specific intrinsic to be infrequent.
1674
///
1675
/// FIXME: Given that we know CB's parent (F) caller
1676
/// (CandidateCall->getParent()->getParent()), we might be able to determine
1677
/// whether inlining F into F's caller would change how the call to
1678
/// llvm.is.constant would evaluate.
1679
bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) {
1680
  Value *Arg = CB.getArgOperand(0);
1681
  auto *C = dyn_cast<Constant>(Arg);
1682

1683
  if (!C)
1684
    C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg));
1685

1686
  Type *RT = CB.getFunctionType()->getReturnType();
1687
  SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0);
1688
  return true;
1689
}
1690

1691
bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) {
1692
  // As per the langref, "The fourth argument to llvm.objectsize determines if
1693
  // the value should be evaluated at runtime."
1694
  if (cast<ConstantInt>(CB.getArgOperand(3))->isOne())
1695
    return false;
1696

1697
  Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr,
1698
                                 /*MustSucceed=*/true);
1699
  Constant *C = dyn_cast_or_null<Constant>(V);
1700
  if (C)
1701
    SimplifiedValues[&CB] = C;
1702
  return C;
1703
}
1704

1705
bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1706
  // Propagate constants through bitcasts.
1707
  if (simplifyInstruction(I))
1708
    return true;
1709

1710
  // Track base/offsets through casts
1711
  std::pair<Value *, APInt> BaseAndOffset =
1712
      ConstantOffsetPtrs.lookup(I.getOperand(0));
1713
  // Casts don't change the offset, just wrap it up.
1714
  if (BaseAndOffset.first)
1715
    ConstantOffsetPtrs[&I] = BaseAndOffset;
1716

1717
  // Also look for SROA candidates here.
1718
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1719
    SROAArgValues[&I] = SROAArg;
1720

1721
  // Bitcasts are always zero cost.
1722
  return true;
1723
}
1724

1725
bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1726
  // Propagate constants through ptrtoint.
1727
  if (simplifyInstruction(I))
1728
    return true;
1729

1730
  // Track base/offset pairs when converted to a plain integer provided the
1731
  // integer is large enough to represent the pointer.
1732
  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1733
  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1734
  if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1735
    std::pair<Value *, APInt> BaseAndOffset =
1736
        ConstantOffsetPtrs.lookup(I.getOperand(0));
1737
    if (BaseAndOffset.first)
1738
      ConstantOffsetPtrs[&I] = BaseAndOffset;
1739
  }
1740

1741
  // This is really weird. Technically, ptrtoint will disable SROA. However,
1742
  // unless that ptrtoint is *used* somewhere in the live basic blocks after
1743
  // inlining, it will be nuked, and SROA should proceed. All of the uses which
1744
  // would block SROA would also block SROA if applied directly to a pointer,
1745
  // and so we can just add the integer in here. The only places where SROA is
1746
  // preserved either cannot fire on an integer, or won't in-and-of themselves
1747
  // disable SROA (ext) w/o some later use that we would see and disable.
1748
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1749
    SROAArgValues[&I] = SROAArg;
1750

1751
  return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1752
         TargetTransformInfo::TCC_Free;
1753
}
1754

1755
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1756
  // Propagate constants through ptrtoint.
1757
  if (simplifyInstruction(I))
1758
    return true;
1759

1760
  // Track base/offset pairs when round-tripped through a pointer without
1761
  // modifications provided the integer is not too large.
1762
  Value *Op = I.getOperand(0);
1763
  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1764
  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1765
    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1766
    if (BaseAndOffset.first)
1767
      ConstantOffsetPtrs[&I] = BaseAndOffset;
1768
  }
1769

1770
  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1771
  if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1772
    SROAArgValues[&I] = SROAArg;
1773

1774
  return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1775
         TargetTransformInfo::TCC_Free;
1776
}
1777

1778
bool CallAnalyzer::visitCastInst(CastInst &I) {
1779
  // Propagate constants through casts.
1780
  if (simplifyInstruction(I))
1781
    return true;
1782

1783
  // Disable SROA in the face of arbitrary casts we don't explicitly list
1784
  // elsewhere.
1785
  disableSROA(I.getOperand(0));
1786

1787
  // If this is a floating-point cast, and the target says this operation
1788
  // is expensive, this may eventually become a library call. Treat the cost
1789
  // as such.
1790
  switch (I.getOpcode()) {
1791
  case Instruction::FPTrunc:
1792
  case Instruction::FPExt:
1793
  case Instruction::UIToFP:
1794
  case Instruction::SIToFP:
1795
  case Instruction::FPToUI:
1796
  case Instruction::FPToSI:
1797
    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1798
      onCallPenalty();
1799
    break;
1800
  default:
1801
    break;
1802
  }
1803

1804
  return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1805
         TargetTransformInfo::TCC_Free;
1806
}
1807

1808
bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1809
  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1810
}
1811

1812
bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1813
  // Does the *call site* have the NonNull attribute set on an argument?  We
1814
  // use the attribute on the call site to memoize any analysis done in the
1815
  // caller. This will also trip if the callee function has a non-null
1816
  // parameter attribute, but that's a less interesting case because hopefully
1817
  // the callee would already have been simplified based on that.
1818
  if (Argument *A = dyn_cast<Argument>(V))
1819
    if (paramHasAttr(A, Attribute::NonNull))
1820
      return true;
1821

1822
  // Is this an alloca in the caller?  This is distinct from the attribute case
1823
  // above because attributes aren't updated within the inliner itself and we
1824
  // always want to catch the alloca derived case.
1825
  if (isAllocaDerivedArg(V))
1826
    // We can actually predict the result of comparisons between an
1827
    // alloca-derived value and null. Note that this fires regardless of
1828
    // SROA firing.
1829
    return true;
1830

1831
  return false;
1832
}
1833

1834
bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1835
  // If the normal destination of the invoke or the parent block of the call
1836
  // site is unreachable-terminated, there is little point in inlining this
1837
  // unless there is literally zero cost.
1838
  // FIXME: Note that it is possible that an unreachable-terminated block has a
1839
  // hot entry. For example, in below scenario inlining hot_call_X() may be
1840
  // beneficial :
1841
  // main() {
1842
  //   hot_call_1();
1843
  //   ...
1844
  //   hot_call_N()
1845
  //   exit(0);
1846
  // }
1847
  // For now, we are not handling this corner case here as it is rare in real
1848
  // code. In future, we should elaborate this based on BPI and BFI in more
1849
  // general threshold adjusting heuristics in updateThreshold().
1850
  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1851
    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1852
      return false;
1853
  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1854
    return false;
1855

1856
  return true;
1857
}
1858

1859
bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1860
                                            BlockFrequencyInfo *CallerBFI) {
1861
  // If global profile summary is available, then callsite's coldness is
1862
  // determined based on that.
1863
  if (PSI && PSI->hasProfileSummary())
1864
    return PSI->isColdCallSite(Call, CallerBFI);
1865

1866
  // Otherwise we need BFI to be available.
1867
  if (!CallerBFI)
1868
    return false;
1869

1870
  // Determine if the callsite is cold relative to caller's entry. We could
1871
  // potentially cache the computation of scaled entry frequency, but the added
1872
  // complexity is not worth it unless this scaling shows up high in the
1873
  // profiles.
1874
  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1875
  auto CallSiteBB = Call.getParent();
1876
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1877
  auto CallerEntryFreq =
1878
      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1879
  return CallSiteFreq < CallerEntryFreq * ColdProb;
1880
}
1881

1882
std::optional<int>
1883
InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1884
                                                BlockFrequencyInfo *CallerBFI) {
1885

1886
  // If global profile summary is available, then callsite's hotness is
1887
  // determined based on that.
1888
  if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1889
    return Params.HotCallSiteThreshold;
1890

1891
  // Otherwise we need BFI to be available and to have a locally hot callsite
1892
  // threshold.
1893
  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1894
    return std::nullopt;
1895

1896
  // Determine if the callsite is hot relative to caller's entry. We could
1897
  // potentially cache the computation of scaled entry frequency, but the added
1898
  // complexity is not worth it unless this scaling shows up high in the
1899
  // profiles.
1900
  const BasicBlock *CallSiteBB = Call.getParent();
1901
  BlockFrequency CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1902
  BlockFrequency CallerEntryFreq = CallerBFI->getEntryFreq();
1903
  std::optional<BlockFrequency> Limit = CallerEntryFreq.mul(HotCallSiteRelFreq);
1904
  if (Limit && CallSiteFreq >= *Limit)
1905
    return Params.LocallyHotCallSiteThreshold;
1906

1907
  // Otherwise treat it normally.
1908
  return std::nullopt;
1909
}
1910

1911
void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1912
  // If no size growth is allowed for this inlining, set Threshold to 0.
1913
  if (!allowSizeGrowth(Call)) {
1914
    Threshold = 0;
1915
    return;
1916
  }
1917

1918
  Function *Caller = Call.getCaller();
1919

1920
  // return min(A, B) if B is valid.
1921
  auto MinIfValid = [](int A, std::optional<int> B) {
1922
    return B ? std::min(A, *B) : A;
1923
  };
1924

1925
  // return max(A, B) if B is valid.
1926
  auto MaxIfValid = [](int A, std::optional<int> B) {
1927
    return B ? std::max(A, *B) : A;
1928
  };
1929

1930
  // Various bonus percentages. These are multiplied by Threshold to get the
1931
  // bonus values.
1932
  // SingleBBBonus: This bonus is applied if the callee has a single reachable
1933
  // basic block at the given callsite context. This is speculatively applied
1934
  // and withdrawn if more than one basic block is seen.
1935
  //
1936
  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1937
  // of the last call to a static function as inlining such functions is
1938
  // guaranteed to reduce code size.
1939
  //
1940
  // These bonus percentages may be set to 0 based on properties of the caller
1941
  // and the callsite.
1942
  int SingleBBBonusPercent = 50;
1943
  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1944
  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1945

1946
  // Lambda to set all the above bonus and bonus percentages to 0.
1947
  auto DisallowAllBonuses = [&]() {
1948
    SingleBBBonusPercent = 0;
1949
    VectorBonusPercent = 0;
1950
    LastCallToStaticBonus = 0;
1951
  };
1952

1953
  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1954
  // and reduce the threshold if the caller has the necessary attribute.
1955
  if (Caller->hasMinSize()) {
1956
    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1957
    // For minsize, we want to disable the single BB bonus and the vector
1958
    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1959
    // a static function will, at the minimum, eliminate the parameter setup and
1960
    // call/return instructions.
1961
    SingleBBBonusPercent = 0;
1962
    VectorBonusPercent = 0;
1963
  } else if (Caller->hasOptSize())
1964
    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1965

1966
  // Adjust the threshold based on inlinehint attribute and profile based
1967
  // hotness information if the caller does not have MinSize attribute.
1968
  if (!Caller->hasMinSize()) {
1969
    if (Callee.hasFnAttribute(Attribute::InlineHint))
1970
      Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1971

1972
    // FIXME: After switching to the new passmanager, simplify the logic below
1973
    // by checking only the callsite hotness/coldness as we will reliably
1974
    // have local profile information.
1975
    //
1976
    // Callsite hotness and coldness can be determined if sample profile is
1977
    // used (which adds hotness metadata to calls) or if caller's
1978
    // BlockFrequencyInfo is available.
1979
    BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1980
    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1981
    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1982
      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1983
      // FIXME: This should update the threshold only if it exceeds the
1984
      // current threshold, but AutoFDO + ThinLTO currently relies on this
1985
      // behavior to prevent inlining of hot callsites during ThinLTO
1986
      // compile phase.
1987
      Threshold = *HotCallSiteThreshold;
1988
    } else if (isColdCallSite(Call, CallerBFI)) {
1989
      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1990
      // Do not apply bonuses for a cold callsite including the
1991
      // LastCallToStatic bonus. While this bonus might result in code size
1992
      // reduction, it can cause the size of a non-cold caller to increase
1993
      // preventing it from being inlined.
1994
      DisallowAllBonuses();
1995
      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1996
    } else if (PSI) {
1997
      // Use callee's global profile information only if we have no way of
1998
      // determining this via callsite information.
1999
      if (PSI->isFunctionEntryHot(&Callee)) {
2000
        LLVM_DEBUG(dbgs() << "Hot callee.\n");
2001
        // If callsite hotness can not be determined, we may still know
2002
        // that the callee is hot and treat it as a weaker hint for threshold
2003
        // increase.
2004
        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
2005
      } else if (PSI->isFunctionEntryCold(&Callee)) {
2006
        LLVM_DEBUG(dbgs() << "Cold callee.\n");
2007
        // Do not apply bonuses for a cold callee including the
2008
        // LastCallToStatic bonus. While this bonus might result in code size
2009
        // reduction, it can cause the size of a non-cold caller to increase
2010
        // preventing it from being inlined.
2011
        DisallowAllBonuses();
2012
        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
2013
      }
2014
    }
2015
  }
2016

2017
  Threshold += TTI.adjustInliningThreshold(&Call);
2018

2019
  // Finally, take the target-specific inlining threshold multiplier into
2020
  // account.
2021
  Threshold *= TTI.getInliningThresholdMultiplier();
2022

2023
  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
2024
  VectorBonus = Threshold * VectorBonusPercent / 100;
2025

2026
  // If there is only one call of the function, and it has internal linkage,
2027
  // the cost of inlining it drops dramatically. It may seem odd to update
2028
  // Cost in updateThreshold, but the bonus depends on the logic in this method.
2029
  if (isSoleCallToLocalFunction(Call, F)) {
2030
    Cost -= LastCallToStaticBonus;
2031
    StaticBonusApplied = LastCallToStaticBonus;
2032
  }
2033
}
2034

2035
bool CallAnalyzer::visitCmpInst(CmpInst &I) {
2036
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2037
  // First try to handle simplified comparisons.
2038
  if (simplifyInstruction(I))
2039
    return true;
2040

2041
  if (I.getOpcode() == Instruction::FCmp)
2042
    return false;
2043

2044
  // Otherwise look for a comparison between constant offset pointers with
2045
  // a common base.
2046
  Value *LHSBase, *RHSBase;
2047
  APInt LHSOffset, RHSOffset;
2048
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2049
  if (LHSBase) {
2050
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2051
    if (RHSBase && LHSBase == RHSBase) {
2052
      // We have common bases, fold the icmp to a constant based on the
2053
      // offsets.
2054
      SimplifiedValues[&I] = ConstantInt::getBool(
2055
          I.getType(),
2056
          ICmpInst::compare(LHSOffset, RHSOffset, I.getPredicate()));
2057
      ++NumConstantPtrCmps;
2058
      return true;
2059
    }
2060
  }
2061

2062
  auto isImplicitNullCheckCmp = [](const CmpInst &I) {
2063
    for (auto *User : I.users())
2064
      if (auto *Instr = dyn_cast<Instruction>(User))
2065
        if (!Instr->getMetadata(LLVMContext::MD_make_implicit))
2066
          return false;
2067
    return true;
2068
  };
2069

2070
  // If the comparison is an equality comparison with null, we can simplify it
2071
  // if we know the value (argument) can't be null
2072
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) {
2073
    if (isKnownNonNullInCallee(I.getOperand(0))) {
2074
      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
2075
      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
2076
                                        : ConstantInt::getFalse(I.getType());
2077
      return true;
2078
    }
2079
    // Implicit null checks act as unconditional branches and their comparisons
2080
    // should be treated as simplified and free of cost.
2081
    if (isImplicitNullCheckCmp(I))
2082
      return true;
2083
  }
2084
  return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
2085
}
2086

2087
bool CallAnalyzer::visitSub(BinaryOperator &I) {
2088
  // Try to handle a special case: we can fold computing the difference of two
2089
  // constant-related pointers.
2090
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2091
  Value *LHSBase, *RHSBase;
2092
  APInt LHSOffset, RHSOffset;
2093
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
2094
  if (LHSBase) {
2095
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2096
    if (RHSBase && LHSBase == RHSBase) {
2097
      // We have common bases, fold the subtract to a constant based on the
2098
      // offsets.
2099
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
2100
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
2101
      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
2102
        SimplifiedValues[&I] = C;
2103
        ++NumConstantPtrDiffs;
2104
        return true;
2105
      }
2106
    }
2107
  }
2108

2109
  // Otherwise, fall back to the generic logic for simplifying and handling
2110
  // instructions.
2111
  return Base::visitSub(I);
2112
}
2113

2114
bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
2115
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2116
  Constant *CLHS = dyn_cast<Constant>(LHS);
2117
  if (!CLHS)
2118
    CLHS = SimplifiedValues.lookup(LHS);
2119
  Constant *CRHS = dyn_cast<Constant>(RHS);
2120
  if (!CRHS)
2121
    CRHS = SimplifiedValues.lookup(RHS);
2122

2123
  Value *SimpleV = nullptr;
2124
  if (auto FI = dyn_cast<FPMathOperator>(&I))
2125
    SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
2126
                            FI->getFastMathFlags(), DL);
2127
  else
2128
    SimpleV =
2129
        simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
2130

2131
  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2132
    SimplifiedValues[&I] = C;
2133

2134
  if (SimpleV)
2135
    return true;
2136

2137
  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
2138
  disableSROA(LHS);
2139
  disableSROA(RHS);
2140

2141
  // If the instruction is floating point, and the target says this operation
2142
  // is expensive, this may eventually become a library call. Treat the cost
2143
  // as such. Unless it's fneg which can be implemented with an xor.
2144
  using namespace llvm::PatternMatch;
2145
  if (I.getType()->isFloatingPointTy() &&
2146
      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
2147
      !match(&I, m_FNeg(m_Value())))
2148
    onCallPenalty();
2149

2150
  return false;
2151
}
2152

2153
bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
2154
  Value *Op = I.getOperand(0);
2155
  Constant *COp = dyn_cast<Constant>(Op);
2156
  if (!COp)
2157
    COp = SimplifiedValues.lookup(Op);
2158

2159
  Value *SimpleV = simplifyFNegInst(
2160
      COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
2161

2162
  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2163
    SimplifiedValues[&I] = C;
2164

2165
  if (SimpleV)
2166
    return true;
2167

2168
  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
2169
  disableSROA(Op);
2170

2171
  return false;
2172
}
2173

2174
bool CallAnalyzer::visitLoad(LoadInst &I) {
2175
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
2176
    return true;
2177

2178
  // If the data is already loaded from this address and hasn't been clobbered
2179
  // by any stores or calls, this load is likely to be redundant and can be
2180
  // eliminated.
2181
  if (EnableLoadElimination &&
2182
      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
2183
    onLoadEliminationOpportunity();
2184
    return true;
2185
  }
2186

2187
  onMemAccess();
2188
  return false;
2189
}
2190

2191
bool CallAnalyzer::visitStore(StoreInst &I) {
2192
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
2193
    return true;
2194

2195
  // The store can potentially clobber loads and prevent repeated loads from
2196
  // being eliminated.
2197
  // FIXME:
2198
  // 1. We can probably keep an initial set of eliminatable loads substracted
2199
  // from the cost even when we finally see a store. We just need to disable
2200
  // *further* accumulation of elimination savings.
2201
  // 2. We should probably at some point thread MemorySSA for the callee into
2202
  // this and then use that to actually compute *really* precise savings.
2203
  disableLoadElimination();
2204

2205
  onMemAccess();
2206
  return false;
2207
}
2208

2209
bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
2210
  // Constant folding for extract value is trivial.
2211
  if (simplifyInstruction(I))
2212
    return true;
2213

2214
  // SROA can't look through these, but they may be free.
2215
  return Base::visitExtractValue(I);
2216
}
2217

2218
bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
2219
  // Constant folding for insert value is trivial.
2220
  if (simplifyInstruction(I))
2221
    return true;
2222

2223
  // SROA can't look through these, but they may be free.
2224
  return Base::visitInsertValue(I);
2225
}
2226

2227
/// Try to simplify a call site.
2228
///
2229
/// Takes a concrete function and callsite and tries to actually simplify it by
2230
/// analyzing the arguments and call itself with instsimplify. Returns true if
2231
/// it has simplified the callsite to some other entity (a constant), making it
2232
/// free.
2233
bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
2234
  // FIXME: Using the instsimplify logic directly for this is inefficient
2235
  // because we have to continually rebuild the argument list even when no
2236
  // simplifications can be performed. Until that is fixed with remapping
2237
  // inside of instsimplify, directly constant fold calls here.
2238
  if (!canConstantFoldCallTo(&Call, F))
2239
    return false;
2240

2241
  // Try to re-map the arguments to constants.
2242
  SmallVector<Constant *, 4> ConstantArgs;
2243
  ConstantArgs.reserve(Call.arg_size());
2244
  for (Value *I : Call.args()) {
2245
    Constant *C = dyn_cast<Constant>(I);
2246
    if (!C)
2247
      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
2248
    if (!C)
2249
      return false; // This argument doesn't map to a constant.
2250

2251
    ConstantArgs.push_back(C);
2252
  }
2253
  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
2254
    SimplifiedValues[&Call] = C;
2255
    return true;
2256
  }
2257

2258
  return false;
2259
}
2260

2261
bool CallAnalyzer::visitCallBase(CallBase &Call) {
2262
  if (!onCallBaseVisitStart(Call))
2263
    return true;
2264

2265
  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
2266
      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
2267
    // This aborts the entire analysis.
2268
    ExposesReturnsTwice = true;
2269
    return false;
2270
  }
2271
  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
2272
    ContainsNoDuplicateCall = true;
2273

2274
  Function *F = Call.getCalledFunction();
2275
  bool IsIndirectCall = !F;
2276
  if (IsIndirectCall) {
2277
    // Check if this happens to be an indirect function call to a known function
2278
    // in this inline context. If not, we've done all we can.
2279
    Value *Callee = Call.getCalledOperand();
2280
    F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
2281
    if (!F || F->getFunctionType() != Call.getFunctionType()) {
2282
      onCallArgumentSetup(Call);
2283

2284
      if (!Call.onlyReadsMemory())
2285
        disableLoadElimination();
2286
      return Base::visitCallBase(Call);
2287
    }
2288
  }
2289

2290
  assert(F && "Expected a call to a known function");
2291

2292
  // When we have a concrete function, first try to simplify it directly.
2293
  if (simplifyCallSite(F, Call))
2294
    return true;
2295

2296
  // Next check if it is an intrinsic we know about.
2297
  // FIXME: Lift this into part of the InstVisitor.
2298
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
2299
    switch (II->getIntrinsicID()) {
2300
    default:
2301
      if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
2302
        disableLoadElimination();
2303
      return Base::visitCallBase(Call);
2304

2305
    case Intrinsic::load_relative:
2306
      onLoadRelativeIntrinsic();
2307
      return false;
2308

2309
    case Intrinsic::memset:
2310
    case Intrinsic::memcpy:
2311
    case Intrinsic::memmove:
2312
      disableLoadElimination();
2313
      // SROA can usually chew through these intrinsics, but they aren't free.
2314
      return false;
2315
    case Intrinsic::icall_branch_funnel:
2316
    case Intrinsic::localescape:
2317
      HasUninlineableIntrinsic = true;
2318
      return false;
2319
    case Intrinsic::vastart:
2320
      InitsVargArgs = true;
2321
      return false;
2322
    case Intrinsic::launder_invariant_group:
2323
    case Intrinsic::strip_invariant_group:
2324
      if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
2325
        SROAArgValues[II] = SROAArg;
2326
      return true;
2327
    case Intrinsic::is_constant:
2328
      return simplifyIntrinsicCallIsConstant(Call);
2329
    case Intrinsic::objectsize:
2330
      return simplifyIntrinsicCallObjectSize(Call);
2331
    }
2332
  }
2333

2334
  if (F == Call.getFunction()) {
2335
    // This flag will fully abort the analysis, so don't bother with anything
2336
    // else.
2337
    IsRecursiveCall = true;
2338
    if (!AllowRecursiveCall)
2339
      return false;
2340
  }
2341

2342
  if (TTI.isLoweredToCall(F)) {
2343
    onLoweredCall(F, Call, IsIndirectCall);
2344
  }
2345

2346
  if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
2347
    disableLoadElimination();
2348
  return Base::visitCallBase(Call);
2349
}
2350

2351
bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
2352
  // At least one return instruction will be free after inlining.
2353
  bool Free = !HasReturn;
2354
  HasReturn = true;
2355
  return Free;
2356
}
2357

2358
bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
2359
  // We model unconditional branches as essentially free -- they really
2360
  // shouldn't exist at all, but handling them makes the behavior of the
2361
  // inliner more regular and predictable. Interestingly, conditional branches
2362
  // which will fold away are also free.
2363
  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
2364
         BI.getMetadata(LLVMContext::MD_make_implicit) ||
2365
         isa_and_nonnull<ConstantInt>(
2366
             SimplifiedValues.lookup(BI.getCondition()));
2367
}
2368

2369
bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
2370
  bool CheckSROA = SI.getType()->isPointerTy();
2371
  Value *TrueVal = SI.getTrueValue();
2372
  Value *FalseVal = SI.getFalseValue();
2373

2374
  Constant *TrueC = dyn_cast<Constant>(TrueVal);
2375
  if (!TrueC)
2376
    TrueC = SimplifiedValues.lookup(TrueVal);
2377
  Constant *FalseC = dyn_cast<Constant>(FalseVal);
2378
  if (!FalseC)
2379
    FalseC = SimplifiedValues.lookup(FalseVal);
2380
  Constant *CondC =
2381
      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
2382

2383
  if (!CondC) {
2384
    // Select C, X, X => X
2385
    if (TrueC == FalseC && TrueC) {
2386
      SimplifiedValues[&SI] = TrueC;
2387
      return true;
2388
    }
2389

2390
    if (!CheckSROA)
2391
      return Base::visitSelectInst(SI);
2392

2393
    std::pair<Value *, APInt> TrueBaseAndOffset =
2394
        ConstantOffsetPtrs.lookup(TrueVal);
2395
    std::pair<Value *, APInt> FalseBaseAndOffset =
2396
        ConstantOffsetPtrs.lookup(FalseVal);
2397
    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
2398
      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
2399

2400
      if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
2401
        SROAArgValues[&SI] = SROAArg;
2402
      return true;
2403
    }
2404

2405
    return Base::visitSelectInst(SI);
2406
  }
2407

2408
  // Select condition is a constant.
2409
  Value *SelectedV = CondC->isAllOnesValue()  ? TrueVal
2410
                     : (CondC->isNullValue()) ? FalseVal
2411
                                              : nullptr;
2412
  if (!SelectedV) {
2413
    // Condition is a vector constant that is not all 1s or all 0s.  If all
2414
    // operands are constants, ConstantFoldSelectInstruction() can handle the
2415
    // cases such as select vectors.
2416
    if (TrueC && FalseC) {
2417
      if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) {
2418
        SimplifiedValues[&SI] = C;
2419
        return true;
2420
      }
2421
    }
2422
    return Base::visitSelectInst(SI);
2423
  }
2424

2425
  // Condition is either all 1s or all 0s. SI can be simplified.
2426
  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
2427
    SimplifiedValues[&SI] = SelectedC;
2428
    return true;
2429
  }
2430

2431
  if (!CheckSROA)
2432
    return true;
2433

2434
  std::pair<Value *, APInt> BaseAndOffset =
2435
      ConstantOffsetPtrs.lookup(SelectedV);
2436
  if (BaseAndOffset.first) {
2437
    ConstantOffsetPtrs[&SI] = BaseAndOffset;
2438

2439
    if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
2440
      SROAArgValues[&SI] = SROAArg;
2441
  }
2442

2443
  return true;
2444
}
2445

2446
bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2447
  // We model unconditional switches as free, see the comments on handling
2448
  // branches.
2449
  if (isa<ConstantInt>(SI.getCondition()))
2450
    return true;
2451
  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2452
    if (isa<ConstantInt>(V))
2453
      return true;
2454

2455
  // Assume the most general case where the switch is lowered into
2456
  // either a jump table, bit test, or a balanced binary tree consisting of
2457
  // case clusters without merging adjacent clusters with the same
2458
  // destination. We do not consider the switches that are lowered with a mix
2459
  // of jump table/bit test/binary search tree. The cost of the switch is
2460
  // proportional to the size of the tree or the size of jump table range.
2461
  //
2462
  // NB: We convert large switches which are just used to initialize large phi
2463
  // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
2464
  // inlining those. It will prevent inlining in cases where the optimization
2465
  // does not (yet) fire.
2466

2467
  unsigned JumpTableSize = 0;
2468
  BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2469
  unsigned NumCaseCluster =
2470
      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2471

2472
  onFinalizeSwitch(JumpTableSize, NumCaseCluster, SI.defaultDestUndefined());
2473
  return false;
2474
}
2475

2476
bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2477
  // We never want to inline functions that contain an indirectbr.  This is
2478
  // incorrect because all the blockaddress's (in static global initializers
2479
  // for example) would be referring to the original function, and this
2480
  // indirect jump would jump from the inlined copy of the function into the
2481
  // original function which is extremely undefined behavior.
2482
  // FIXME: This logic isn't really right; we can safely inline functions with
2483
  // indirectbr's as long as no other function or global references the
2484
  // blockaddress of a block within the current function.
2485
  HasIndirectBr = true;
2486
  return false;
2487
}
2488

2489
bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2490
  // FIXME: It's not clear that a single instruction is an accurate model for
2491
  // the inline cost of a resume instruction.
2492
  return false;
2493
}
2494

2495
bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2496
  // FIXME: It's not clear that a single instruction is an accurate model for
2497
  // the inline cost of a cleanupret instruction.
2498
  return false;
2499
}
2500

2501
bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2502
  // FIXME: It's not clear that a single instruction is an accurate model for
2503
  // the inline cost of a catchret instruction.
2504
  return false;
2505
}
2506

2507
bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2508
  // FIXME: It might be reasonably to discount the cost of instructions leading
2509
  // to unreachable as they have the lowest possible impact on both runtime and
2510
  // code size.
2511
  return true; // No actual code is needed for unreachable.
2512
}
2513

2514
bool CallAnalyzer::visitInstruction(Instruction &I) {
2515
  // Some instructions are free. All of the free intrinsics can also be
2516
  // handled by SROA, etc.
2517
  if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2518
      TargetTransformInfo::TCC_Free)
2519
    return true;
2520

2521
  // We found something we don't understand or can't handle. Mark any SROA-able
2522
  // values in the operand list as no longer viable.
2523
  for (const Use &Op : I.operands())
2524
    disableSROA(Op);
2525

2526
  return false;
2527
}
2528

2529
/// Analyze a basic block for its contribution to the inline cost.
2530
///
2531
/// This method walks the analyzer over every instruction in the given basic
2532
/// block and accounts for their cost during inlining at this callsite. It
2533
/// aborts early if the threshold has been exceeded or an impossible to inline
2534
/// construct has been detected. It returns false if inlining is no longer
2535
/// viable, and true if inlining remains viable.
2536
InlineResult
2537
CallAnalyzer::analyzeBlock(BasicBlock *BB,
2538
                           SmallPtrSetImpl<const Value *> &EphValues) {
2539
  for (Instruction &I : *BB) {
2540
    // FIXME: Currently, the number of instructions in a function regardless of
2541
    // our ability to simplify them during inline to constants or dead code,
2542
    // are actually used by the vector bonus heuristic. As long as that's true,
2543
    // we have to special case debug intrinsics here to prevent differences in
2544
    // inlining due to debug symbols. Eventually, the number of unsimplified
2545
    // instructions shouldn't factor into the cost computation, but until then,
2546
    // hack around it here.
2547
    // Similarly, skip pseudo-probes.
2548
    if (I.isDebugOrPseudoInst())
2549
      continue;
2550

2551
    // Skip ephemeral values.
2552
    if (EphValues.count(&I))
2553
      continue;
2554

2555
    ++NumInstructions;
2556
    if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2557
      ++NumVectorInstructions;
2558

2559
    // If the instruction simplified to a constant, there is no cost to this
2560
    // instruction. Visit the instructions using our InstVisitor to account for
2561
    // all of the per-instruction logic. The visit tree returns true if we
2562
    // consumed the instruction in any way, and false if the instruction's base
2563
    // cost should count against inlining.
2564
    onInstructionAnalysisStart(&I);
2565

2566
    if (Base::visit(&I))
2567
      ++NumInstructionsSimplified;
2568
    else
2569
      onMissedSimplification();
2570

2571
    onInstructionAnalysisFinish(&I);
2572
    using namespace ore;
2573
    // If the visit this instruction detected an uninlinable pattern, abort.
2574
    InlineResult IR = InlineResult::success();
2575
    if (IsRecursiveCall && !AllowRecursiveCall)
2576
      IR = InlineResult::failure("recursive");
2577
    else if (ExposesReturnsTwice)
2578
      IR = InlineResult::failure("exposes returns twice");
2579
    else if (HasDynamicAlloca)
2580
      IR = InlineResult::failure("dynamic alloca");
2581
    else if (HasIndirectBr)
2582
      IR = InlineResult::failure("indirect branch");
2583
    else if (HasUninlineableIntrinsic)
2584
      IR = InlineResult::failure("uninlinable intrinsic");
2585
    else if (InitsVargArgs)
2586
      IR = InlineResult::failure("varargs");
2587
    if (!IR.isSuccess()) {
2588
      if (ORE)
2589
        ORE->emit([&]() {
2590
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2591
                                          &CandidateCall)
2592
                 << NV("Callee", &F) << " has uninlinable pattern ("
2593
                 << NV("InlineResult", IR.getFailureReason())
2594
                 << ") and cost is not fully computed";
2595
        });
2596
      return IR;
2597
    }
2598

2599
    // If the caller is a recursive function then we don't want to inline
2600
    // functions which allocate a lot of stack space because it would increase
2601
    // the caller stack usage dramatically.
2602
    if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) {
2603
      auto IR =
2604
          InlineResult::failure("recursive and allocates too much stack space");
2605
      if (ORE)
2606
        ORE->emit([&]() {
2607
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2608
                                          &CandidateCall)
2609
                 << NV("Callee", &F) << " is "
2610
                 << NV("InlineResult", IR.getFailureReason())
2611
                 << ". Cost is not fully computed";
2612
        });
2613
      return IR;
2614
    }
2615

2616
    if (shouldStop())
2617
      return InlineResult::failure(
2618
          "Call site analysis is not favorable to inlining.");
2619
  }
2620

2621
  return InlineResult::success();
2622
}
2623

2624
/// Compute the base pointer and cumulative constant offsets for V.
2625
///
2626
/// This strips all constant offsets off of V, leaving it the base pointer, and
2627
/// accumulates the total constant offset applied in the returned constant. It
2628
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
2629
/// no constant offsets applied.
2630
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2631
  if (!V->getType()->isPointerTy())
2632
    return nullptr;
2633

2634
  unsigned AS = V->getType()->getPointerAddressSpace();
2635
  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2636
  APInt Offset = APInt::getZero(IntPtrWidth);
2637

2638
  // Even though we don't look through PHI nodes, we could be called on an
2639
  // instruction in an unreachable block, which may be on a cycle.
2640
  SmallPtrSet<Value *, 4> Visited;
2641
  Visited.insert(V);
2642
  do {
2643
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2644
      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2645
        return nullptr;
2646
      V = GEP->getPointerOperand();
2647
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2648
      if (GA->isInterposable())
2649
        break;
2650
      V = GA->getAliasee();
2651
    } else {
2652
      break;
2653
    }
2654
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2655
  } while (Visited.insert(V).second);
2656

2657
  Type *IdxPtrTy = DL.getIndexType(V->getType());
2658
  return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2659
}
2660

2661
/// Find dead blocks due to deleted CFG edges during inlining.
2662
///
2663
/// If we know the successor of the current block, \p CurrBB, has to be \p
2664
/// NextBB, the other successors of \p CurrBB are dead if these successors have
2665
/// no live incoming CFG edges.  If one block is found to be dead, we can
2666
/// continue growing the dead block list by checking the successors of the dead
2667
/// blocks to see if all their incoming edges are dead or not.
2668
void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2669
  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2670
    // A CFG edge is dead if the predecessor is dead or the predecessor has a
2671
    // known successor which is not the one under exam.
2672
    return (DeadBlocks.count(Pred) ||
2673
            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2674
  };
2675

2676
  auto IsNewlyDead = [&](BasicBlock *BB) {
2677
    // If all the edges to a block are dead, the block is also dead.
2678
    return (!DeadBlocks.count(BB) &&
2679
            llvm::all_of(predecessors(BB),
2680
                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2681
  };
2682

2683
  for (BasicBlock *Succ : successors(CurrBB)) {
2684
    if (Succ == NextBB || !IsNewlyDead(Succ))
2685
      continue;
2686
    SmallVector<BasicBlock *, 4> NewDead;
2687
    NewDead.push_back(Succ);
2688
    while (!NewDead.empty()) {
2689
      BasicBlock *Dead = NewDead.pop_back_val();
2690
      if (DeadBlocks.insert(Dead).second)
2691
        // Continue growing the dead block lists.
2692
        for (BasicBlock *S : successors(Dead))
2693
          if (IsNewlyDead(S))
2694
            NewDead.push_back(S);
2695
    }
2696
  }
2697
}
2698

2699
/// Analyze a call site for potential inlining.
2700
///
2701
/// Returns true if inlining this call is viable, and false if it is not
2702
/// viable. It computes the cost and adjusts the threshold based on numerous
2703
/// factors and heuristics. If this method returns false but the computed cost
2704
/// is below the computed threshold, then inlining was forcibly disabled by
2705
/// some artifact of the routine.
2706
InlineResult CallAnalyzer::analyze() {
2707
  ++NumCallsAnalyzed;
2708

2709
  auto Result = onAnalysisStart();
2710
  if (!Result.isSuccess())
2711
    return Result;
2712

2713
  if (F.empty())
2714
    return InlineResult::success();
2715

2716
  Function *Caller = CandidateCall.getFunction();
2717
  // Check if the caller function is recursive itself.
2718
  for (User *U : Caller->users()) {
2719
    CallBase *Call = dyn_cast<CallBase>(U);
2720
    if (Call && Call->getFunction() == Caller) {
2721
      IsCallerRecursive = true;
2722
      break;
2723
    }
2724
  }
2725

2726
  // Populate our simplified values by mapping from function arguments to call
2727
  // arguments with known important simplifications.
2728
  auto CAI = CandidateCall.arg_begin();
2729
  for (Argument &FAI : F.args()) {
2730
    assert(CAI != CandidateCall.arg_end());
2731
    if (Constant *C = dyn_cast<Constant>(CAI))
2732
      SimplifiedValues[&FAI] = C;
2733

2734
    Value *PtrArg = *CAI;
2735
    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2736
      ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2737

2738
      // We can SROA any pointer arguments derived from alloca instructions.
2739
      if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2740
        SROAArgValues[&FAI] = SROAArg;
2741
        onInitializeSROAArg(SROAArg);
2742
        EnabledSROAAllocas.insert(SROAArg);
2743
      }
2744
    }
2745
    ++CAI;
2746
  }
2747
  NumConstantArgs = SimplifiedValues.size();
2748
  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2749
  NumAllocaArgs = SROAArgValues.size();
2750

2751
  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2752
  // the ephemeral values multiple times (and they're completely determined by
2753
  // the callee, so this is purely duplicate work).
2754
  SmallPtrSet<const Value *, 32> EphValues;
2755
  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2756

2757
  // The worklist of live basic blocks in the callee *after* inlining. We avoid
2758
  // adding basic blocks of the callee which can be proven to be dead for this
2759
  // particular call site in order to get more accurate cost estimates. This
2760
  // requires a somewhat heavyweight iteration pattern: we need to walk the
2761
  // basic blocks in a breadth-first order as we insert live successors. To
2762
  // accomplish this, prioritizing for small iterations because we exit after
2763
  // crossing our threshold, we use a small-size optimized SetVector.
2764
  typedef SmallSetVector<BasicBlock *, 16> BBSetVector;
2765
  BBSetVector BBWorklist;
2766
  BBWorklist.insert(&F.getEntryBlock());
2767

2768
  // Note that we *must not* cache the size, this loop grows the worklist.
2769
  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2770
    if (shouldStop())
2771
      break;
2772

2773
    BasicBlock *BB = BBWorklist[Idx];
2774
    if (BB->empty())
2775
      continue;
2776

2777
    onBlockStart(BB);
2778

2779
    // Disallow inlining a blockaddress with uses other than strictly callbr.
2780
    // A blockaddress only has defined behavior for an indirect branch in the
2781
    // same function, and we do not currently support inlining indirect
2782
    // branches.  But, the inliner may not see an indirect branch that ends up
2783
    // being dead code at a particular call site. If the blockaddress escapes
2784
    // the function, e.g., via a global variable, inlining may lead to an
2785
    // invalid cross-function reference.
2786
    // FIXME: pr/39560: continue relaxing this overt restriction.
2787
    if (BB->hasAddressTaken())
2788
      for (User *U : BlockAddress::get(&*BB)->users())
2789
        if (!isa<CallBrInst>(*U))
2790
          return InlineResult::failure("blockaddress used outside of callbr");
2791

2792
    // Analyze the cost of this block. If we blow through the threshold, this
2793
    // returns false, and we can bail on out.
2794
    InlineResult IR = analyzeBlock(BB, EphValues);
2795
    if (!IR.isSuccess())
2796
      return IR;
2797

2798
    Instruction *TI = BB->getTerminator();
2799

2800
    // Add in the live successors by first checking whether we have terminator
2801
    // that may be simplified based on the values simplified by this call.
2802
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2803
      if (BI->isConditional()) {
2804
        Value *Cond = BI->getCondition();
2805
        if (ConstantInt *SimpleCond =
2806
                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2807
          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2808
          BBWorklist.insert(NextBB);
2809
          KnownSuccessors[BB] = NextBB;
2810
          findDeadBlocks(BB, NextBB);
2811
          continue;
2812
        }
2813
      }
2814
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2815
      Value *Cond = SI->getCondition();
2816
      if (ConstantInt *SimpleCond =
2817
              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2818
        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2819
        BBWorklist.insert(NextBB);
2820
        KnownSuccessors[BB] = NextBB;
2821
        findDeadBlocks(BB, NextBB);
2822
        continue;
2823
      }
2824
    }
2825

2826
    // If we're unable to select a particular successor, just count all of
2827
    // them.
2828
    for (BasicBlock *Succ : successors(BB))
2829
      BBWorklist.insert(Succ);
2830

2831
    onBlockAnalyzed(BB);
2832
  }
2833

2834
  // If this is a noduplicate call, we can still inline as long as
2835
  // inlining this would cause the removal of the caller (so the instruction
2836
  // is not actually duplicated, just moved).
2837
  if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall)
2838
    return InlineResult::failure("noduplicate");
2839

2840
  // If the callee's stack size exceeds the user-specified threshold,
2841
  // do not let it be inlined.
2842
  // The command line option overrides a limit set in the function attributes.
2843
  size_t FinalStackSizeThreshold = StackSizeThreshold;
2844
  if (!StackSizeThreshold.getNumOccurrences())
2845
    if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt(
2846
            Caller, InlineConstants::MaxInlineStackSizeAttributeName))
2847
      FinalStackSizeThreshold = *AttrMaxStackSize;
2848
  if (AllocatedSize > FinalStackSizeThreshold)
2849
    return InlineResult::failure("stacksize");
2850

2851
  return finalizeAnalysis();
2852
}
2853

2854
void InlineCostCallAnalyzer::print(raw_ostream &OS) {
2855
#define DEBUG_PRINT_STAT(x) OS << "      " #x ": " << x << "\n"
2856
  if (PrintInstructionComments)
2857
    F.print(OS, &Writer);
2858
  DEBUG_PRINT_STAT(NumConstantArgs);
2859
  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2860
  DEBUG_PRINT_STAT(NumAllocaArgs);
2861
  DEBUG_PRINT_STAT(NumConstantPtrCmps);
2862
  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2863
  DEBUG_PRINT_STAT(NumInstructionsSimplified);
2864
  DEBUG_PRINT_STAT(NumInstructions);
2865
  DEBUG_PRINT_STAT(SROACostSavings);
2866
  DEBUG_PRINT_STAT(SROACostSavingsLost);
2867
  DEBUG_PRINT_STAT(LoadEliminationCost);
2868
  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2869
  DEBUG_PRINT_STAT(Cost);
2870
  DEBUG_PRINT_STAT(Threshold);
2871
#undef DEBUG_PRINT_STAT
2872
}
2873

2874
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2875
/// Dump stats about this call's analysis.
2876
LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); }
2877
#endif
2878

2879
/// Test that there are no attribute conflicts between Caller and Callee
2880
///        that prevent inlining.
2881
static bool functionsHaveCompatibleAttributes(
2882
    Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2883
    function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2884
  // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2885
  // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2886
  // object, and always returns the same object (which is overwritten on each
2887
  // GetTLI call). Therefore we copy the first result.
2888
  auto CalleeTLI = GetTLI(*Callee);
2889
  return (IgnoreTTIInlineCompatible ||
2890
          TTI.areInlineCompatible(Caller, Callee)) &&
2891
         GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2892
                                             InlineCallerSupersetNoBuiltin) &&
2893
         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2894
}
2895

2896
int llvm::getCallsiteCost(const TargetTransformInfo &TTI, const CallBase &Call,
2897
                          const DataLayout &DL) {
2898
  int64_t Cost = 0;
2899
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2900
    if (Call.isByValArgument(I)) {
2901
      // We approximate the number of loads and stores needed by dividing the
2902
      // size of the byval type by the target's pointer size.
2903
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2904
      unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
2905
      unsigned AS = PTy->getAddressSpace();
2906
      unsigned PointerSize = DL.getPointerSizeInBits(AS);
2907
      // Ceiling division.
2908
      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2909

2910
      // If it generates more than 8 stores it is likely to be expanded as an
2911
      // inline memcpy so we take that as an upper bound. Otherwise we assume
2912
      // one load and one store per word copied.
2913
      // FIXME: The maxStoresPerMemcpy setting from the target should be used
2914
      // here instead of a magic number of 8, but it's not available via
2915
      // DataLayout.
2916
      NumStores = std::min(NumStores, 8U);
2917

2918
      Cost += 2 * NumStores * InstrCost;
2919
    } else {
2920
      // For non-byval arguments subtract off one instruction per call
2921
      // argument.
2922
      Cost += InstrCost;
2923
    }
2924
  }
2925
  // The call instruction also disappears after inlining.
2926
  Cost += InstrCost;
2927
  Cost += TTI.getInlineCallPenalty(Call.getCaller(), Call, CallPenalty);
2928

2929
  return std::min<int64_t>(Cost, INT_MAX);
2930
}
2931

2932
InlineCost llvm::getInlineCost(
2933
    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2934
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2935
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2936
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2937
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2938
  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2939
                       GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2940
}
2941

2942
std::optional<int> llvm::getInliningCostEstimate(
2943
    CallBase &Call, TargetTransformInfo &CalleeTTI,
2944
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2945
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2946
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2947
  const InlineParams Params = {/* DefaultThreshold*/ 0,
2948
                               /*HintThreshold*/ {},
2949
                               /*ColdThreshold*/ {},
2950
                               /*OptSizeThreshold*/ {},
2951
                               /*OptMinSizeThreshold*/ {},
2952
                               /*HotCallSiteThreshold*/ {},
2953
                               /*LocallyHotCallSiteThreshold*/ {},
2954
                               /*ColdCallSiteThreshold*/ {},
2955
                               /*ComputeFullInlineCost*/ true,
2956
                               /*EnableDeferral*/ true};
2957

2958
  InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2959
                            GetAssumptionCache, GetBFI, PSI, ORE, true,
2960
                            /*IgnoreThreshold*/ true);
2961
  auto R = CA.analyze();
2962
  if (!R.isSuccess())
2963
    return std::nullopt;
2964
  return CA.getCost();
2965
}
2966

2967
std::optional<InlineCostFeatures> llvm::getInliningCostFeatures(
2968
    CallBase &Call, TargetTransformInfo &CalleeTTI,
2969
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2970
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2971
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2972
  InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
2973
                                 ORE, *Call.getCalledFunction(), Call);
2974
  auto R = CFA.analyze();
2975
  if (!R.isSuccess())
2976
    return std::nullopt;
2977
  return CFA.features();
2978
}
2979

2980
std::optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2981
    CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2982
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2983

2984
  // Cannot inline indirect calls.
2985
  if (!Callee)
2986
    return InlineResult::failure("indirect call");
2987

2988
  // When callee coroutine function is inlined into caller coroutine function
2989
  // before coro-split pass,
2990
  // coro-early pass can not handle this quiet well.
2991
  // So we won't inline the coroutine function if it have not been unsplited
2992
  if (Callee->isPresplitCoroutine())
2993
    return InlineResult::failure("unsplited coroutine call");
2994

2995
  // Never inline calls with byval arguments that does not have the alloca
2996
  // address space. Since byval arguments can be replaced with a copy to an
2997
  // alloca, the inlined code would need to be adjusted to handle that the
2998
  // argument is in the alloca address space (so it is a little bit complicated
2999
  // to solve).
3000
  unsigned AllocaAS = Callee->getDataLayout().getAllocaAddrSpace();
3001
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
3002
    if (Call.isByValArgument(I)) {
3003
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
3004
      if (PTy->getAddressSpace() != AllocaAS)
3005
        return InlineResult::failure("byval arguments without alloca"
3006
                                     " address space");
3007
    }
3008

3009
  // Calls to functions with always-inline attributes should be inlined
3010
  // whenever possible.
3011
  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
3012
    if (Call.getAttributes().hasFnAttr(Attribute::NoInline))
3013
      return InlineResult::failure("noinline call site attribute");
3014

3015
    auto IsViable = isInlineViable(*Callee);
3016
    if (IsViable.isSuccess())
3017
      return InlineResult::success();
3018
    return InlineResult::failure(IsViable.getFailureReason());
3019
  }
3020

3021
  // Never inline functions with conflicting attributes (unless callee has
3022
  // always-inline attribute).
3023
  Function *Caller = Call.getCaller();
3024
  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
3025
    return InlineResult::failure("conflicting attributes");
3026

3027
  // Don't inline this call if the caller has the optnone attribute.
3028
  if (Caller->hasOptNone())
3029
    return InlineResult::failure("optnone attribute");
3030

3031
  // Don't inline a function that treats null pointer as valid into a caller
3032
  // that does not have this attribute.
3033
  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
3034
    return InlineResult::failure("nullptr definitions incompatible");
3035

3036
  // Don't inline functions which can be interposed at link-time.
3037
  if (Callee->isInterposable())
3038
    return InlineResult::failure("interposable");
3039

3040
  // Don't inline functions marked noinline.
3041
  if (Callee->hasFnAttribute(Attribute::NoInline))
3042
    return InlineResult::failure("noinline function attribute");
3043

3044
  // Don't inline call sites marked noinline.
3045
  if (Call.isNoInline())
3046
    return InlineResult::failure("noinline call site attribute");
3047

3048
  return std::nullopt;
3049
}
3050

3051
InlineCost llvm::getInlineCost(
3052
    CallBase &Call, Function *Callee, const InlineParams &Params,
3053
    TargetTransformInfo &CalleeTTI,
3054
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
3055
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
3056
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3057
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
3058

3059
  auto UserDecision =
3060
      llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
3061

3062
  if (UserDecision) {
3063
    if (UserDecision->isSuccess())
3064
      return llvm::InlineCost::getAlways("always inline attribute");
3065
    return llvm::InlineCost::getNever(UserDecision->getFailureReason());
3066
  }
3067

3068
  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
3069
                          << "... (caller:" << Call.getCaller()->getName()
3070
                          << ")\n");
3071

3072
  InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
3073
                            GetAssumptionCache, GetBFI, PSI, ORE);
3074
  InlineResult ShouldInline = CA.analyze();
3075

3076
  LLVM_DEBUG(CA.dump());
3077

3078
  // Always make cost benefit based decision explicit.
3079
  // We use always/never here since threshold is not meaningful,
3080
  // as it's not what drives cost-benefit analysis.
3081
  if (CA.wasDecidedByCostBenefit()) {
3082
    if (ShouldInline.isSuccess())
3083
      return InlineCost::getAlways("benefit over cost",
3084
                                   CA.getCostBenefitPair());
3085
    else
3086
      return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
3087
  }
3088

3089
  if (CA.wasDecidedByCostThreshold())
3090
    return InlineCost::get(CA.getCost(), CA.getThreshold(),
3091
                           CA.getStaticBonusApplied());
3092

3093
  // No details on how the decision was made, simply return always or never.
3094
  return ShouldInline.isSuccess()
3095
             ? InlineCost::getAlways("empty function")
3096
             : InlineCost::getNever(ShouldInline.getFailureReason());
3097
}
3098

3099
InlineResult llvm::isInlineViable(Function &F) {
3100
  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
3101
  for (BasicBlock &BB : F) {
3102
    // Disallow inlining of functions which contain indirect branches.
3103
    if (isa<IndirectBrInst>(BB.getTerminator()))
3104
      return InlineResult::failure("contains indirect branches");
3105

3106
    // Disallow inlining of blockaddresses which are used by non-callbr
3107
    // instructions.
3108
    if (BB.hasAddressTaken())
3109
      for (User *U : BlockAddress::get(&BB)->users())
3110
        if (!isa<CallBrInst>(*U))
3111
          return InlineResult::failure("blockaddress used outside of callbr");
3112

3113
    for (auto &II : BB) {
3114
      CallBase *Call = dyn_cast<CallBase>(&II);
3115
      if (!Call)
3116
        continue;
3117

3118
      // Disallow recursive calls.
3119
      Function *Callee = Call->getCalledFunction();
3120
      if (&F == Callee)
3121
        return InlineResult::failure("recursive call");
3122

3123
      // Disallow calls which expose returns-twice to a function not previously
3124
      // attributed as such.
3125
      if (!ReturnsTwice && isa<CallInst>(Call) &&
3126
          cast<CallInst>(Call)->canReturnTwice())
3127
        return InlineResult::failure("exposes returns-twice attribute");
3128

3129
      if (Callee)
3130
        switch (Callee->getIntrinsicID()) {
3131
        default:
3132
          break;
3133
        case llvm::Intrinsic::icall_branch_funnel:
3134
          // Disallow inlining of @llvm.icall.branch.funnel because current
3135
          // backend can't separate call targets from call arguments.
3136
          return InlineResult::failure(
3137
              "disallowed inlining of @llvm.icall.branch.funnel");
3138
        case llvm::Intrinsic::localescape:
3139
          // Disallow inlining functions that call @llvm.localescape. Doing this
3140
          // correctly would require major changes to the inliner.
3141
          return InlineResult::failure(
3142
              "disallowed inlining of @llvm.localescape");
3143
        case llvm::Intrinsic::vastart:
3144
          // Disallow inlining of functions that initialize VarArgs with
3145
          // va_start.
3146
          return InlineResult::failure(
3147
              "contains VarArgs initialized with va_start");
3148
        }
3149
    }
3150
  }
3151

3152
  return InlineResult::success();
3153
}
3154

3155
// APIs to create InlineParams based on command line flags and/or other
3156
// parameters.
3157

3158
InlineParams llvm::getInlineParams(int Threshold) {
3159
  InlineParams Params;
3160

3161
  // This field is the threshold to use for a callee by default. This is
3162
  // derived from one or more of:
3163
  //  * optimization or size-optimization levels,
3164
  //  * a value passed to createFunctionInliningPass function, or
3165
  //  * the -inline-threshold flag.
3166
  //  If the -inline-threshold flag is explicitly specified, that is used
3167
  //  irrespective of anything else.
3168
  if (InlineThreshold.getNumOccurrences() > 0)
3169
    Params.DefaultThreshold = InlineThreshold;
3170
  else
3171
    Params.DefaultThreshold = Threshold;
3172

3173
  // Set the HintThreshold knob from the -inlinehint-threshold.
3174
  Params.HintThreshold = HintThreshold;
3175

3176
  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
3177
  Params.HotCallSiteThreshold = HotCallSiteThreshold;
3178

3179
  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
3180
  // populate LocallyHotCallSiteThreshold. Later, we populate
3181
  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
3182
  // we know that optimization level is O3 (in the getInlineParams variant that
3183
  // takes the opt and size levels).
3184
  // FIXME: Remove this check (and make the assignment unconditional) after
3185
  // addressing size regression issues at O2.
3186
  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
3187
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3188

3189
  // Set the ColdCallSiteThreshold knob from the
3190
  // -inline-cold-callsite-threshold.
3191
  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
3192

3193
  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
3194
  // -inlinehint-threshold commandline option is not explicitly given. If that
3195
  // option is present, then its value applies even for callees with size and
3196
  // minsize attributes.
3197
  // If the -inline-threshold is not specified, set the ColdThreshold from the
3198
  // -inlinecold-threshold even if it is not explicitly passed. If
3199
  // -inline-threshold is specified, then -inlinecold-threshold needs to be
3200
  // explicitly specified to set the ColdThreshold knob
3201
  if (InlineThreshold.getNumOccurrences() == 0) {
3202
    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
3203
    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
3204
    Params.ColdThreshold = ColdThreshold;
3205
  } else if (ColdThreshold.getNumOccurrences() > 0) {
3206
    Params.ColdThreshold = ColdThreshold;
3207
  }
3208
  return Params;
3209
}
3210

3211
InlineParams llvm::getInlineParams() {
3212
  return getInlineParams(DefaultThreshold);
3213
}
3214

3215
// Compute the default threshold for inlining based on the opt level and the
3216
// size opt level.
3217
static int computeThresholdFromOptLevels(unsigned OptLevel,
3218
                                         unsigned SizeOptLevel) {
3219
  if (OptLevel > 2)
3220
    return InlineConstants::OptAggressiveThreshold;
3221
  if (SizeOptLevel == 1) // -Os
3222
    return InlineConstants::OptSizeThreshold;
3223
  if (SizeOptLevel == 2) // -Oz
3224
    return InlineConstants::OptMinSizeThreshold;
3225
  return DefaultThreshold;
3226
}
3227

3228
InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
3229
  auto Params =
3230
      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
3231
  // At O3, use the value of -locally-hot-callsite-threshold option to populate
3232
  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
3233
  // when it is specified explicitly.
3234
  if (OptLevel > 2)
3235
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3236
  return Params;
3237
}
3238

3239
PreservedAnalyses
3240
InlineCostAnnotationPrinterPass::run(Function &F,
3241
                                     FunctionAnalysisManager &FAM) {
3242
  PrintInstructionComments = true;
3243
  std::function<AssumptionCache &(Function &)> GetAssumptionCache =
3244
      [&](Function &F) -> AssumptionCache & {
3245
    return FAM.getResult<AssumptionAnalysis>(F);
3246
  };
3247
  Module *M = F.getParent();
3248
  ProfileSummaryInfo PSI(*M);
3249
  DataLayout DL(M);
3250
  TargetTransformInfo TTI(DL);
3251
  // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
3252
  // In the current implementation, the type of InlineParams doesn't matter as
3253
  // the pass serves only for verification of inliner's decisions.
3254
  // We can add a flag which determines InlineParams for this run. Right now,
3255
  // the default InlineParams are used.
3256
  const InlineParams Params = llvm::getInlineParams();
3257
  for (BasicBlock &BB : F) {
3258
    for (Instruction &I : BB) {
3259
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3260
        Function *CalledFunction = CI->getCalledFunction();
3261
        if (!CalledFunction || CalledFunction->isDeclaration())
3262
          continue;
3263
        OptimizationRemarkEmitter ORE(CalledFunction);
3264
        InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
3265
                                    GetAssumptionCache, nullptr, &PSI, &ORE);
3266
        ICCA.analyze();
3267
        OS << "      Analyzing call of " << CalledFunction->getName()
3268
           << "... (caller:" << CI->getCaller()->getName() << ")\n";
3269
        ICCA.print(OS);
3270
        OS << "\n";
3271
      }
3272
    }
3273
  }
3274
  return PreservedAnalyses::all();
3275
}
3276

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.