llvm-project

Форк
0
/
DemandedBits.cpp 
585 строк · 19.7 Кб
1
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass implements a demanded bits analysis. A demanded bit is one that
10
// contributes to a result; bits that are not demanded can be either zero or
11
// one without affecting control or data flow. For example in this sequence:
12
//
13
//   %1 = add i32 %x, %y
14
//   %2 = trunc i32 %1 to i16
15
//
16
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17
// trunc.
18
//
19
//===----------------------------------------------------------------------===//
20

21
#include "llvm/Analysis/DemandedBits.h"
22
#include "llvm/ADT/APInt.h"
23
#include "llvm/ADT/SetVector.h"
24
#include "llvm/Analysis/AssumptionCache.h"
25
#include "llvm/Analysis/ValueTracking.h"
26
#include "llvm/IR/DataLayout.h"
27
#include "llvm/IR/Dominators.h"
28
#include "llvm/IR/InstIterator.h"
29
#include "llvm/IR/Instruction.h"
30
#include "llvm/IR/IntrinsicInst.h"
31
#include "llvm/IR/Module.h"
32
#include "llvm/IR/Operator.h"
33
#include "llvm/IR/PassManager.h"
34
#include "llvm/IR/PatternMatch.h"
35
#include "llvm/IR/Type.h"
36
#include "llvm/IR/Use.h"
37
#include "llvm/Support/Casting.h"
38
#include "llvm/Support/Debug.h"
39
#include "llvm/Support/KnownBits.h"
40
#include "llvm/Support/raw_ostream.h"
41
#include <algorithm>
42
#include <cstdint>
43

44
using namespace llvm;
45
using namespace llvm::PatternMatch;
46

47
#define DEBUG_TYPE "demanded-bits"
48

49
static bool isAlwaysLive(Instruction *I) {
50
  return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
51
         I->mayHaveSideEffects();
52
}
53

54
void DemandedBits::determineLiveOperandBits(
55
    const Instruction *UserI, const Value *Val, unsigned OperandNo,
56
    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
57
    bool &KnownBitsComputed) {
58
  unsigned BitWidth = AB.getBitWidth();
59

60
  // We're called once per operand, but for some instructions, we need to
61
  // compute known bits of both operands in order to determine the live bits of
62
  // either (when both operands are instructions themselves). We don't,
63
  // however, want to do this twice, so we cache the result in APInts that live
64
  // in the caller. For the two-relevant-operands case, both operand values are
65
  // provided here.
66
  auto ComputeKnownBits =
67
      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
68
        if (KnownBitsComputed)
69
          return;
70
        KnownBitsComputed = true;
71

72
        const DataLayout &DL = UserI->getDataLayout();
73
        Known = KnownBits(BitWidth);
74
        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
75

76
        if (V2) {
77
          Known2 = KnownBits(BitWidth);
78
          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
79
        }
80
      };
81

82
  switch (UserI->getOpcode()) {
83
  default: break;
84
  case Instruction::Call:
85
  case Instruction::Invoke:
86
    if (const auto *II = dyn_cast<IntrinsicInst>(UserI)) {
87
      switch (II->getIntrinsicID()) {
88
      default: break;
89
      case Intrinsic::bswap:
90
        // The alive bits of the input are the swapped alive bits of
91
        // the output.
92
        AB = AOut.byteSwap();
93
        break;
94
      case Intrinsic::bitreverse:
95
        // The alive bits of the input are the reversed alive bits of
96
        // the output.
97
        AB = AOut.reverseBits();
98
        break;
99
      case Intrinsic::ctlz:
100
        if (OperandNo == 0) {
101
          // We need some output bits, so we need all bits of the
102
          // input to the left of, and including, the leftmost bit
103
          // known to be one.
104
          ComputeKnownBits(BitWidth, Val, nullptr);
105
          AB = APInt::getHighBitsSet(BitWidth,
106
                 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
107
        }
108
        break;
109
      case Intrinsic::cttz:
110
        if (OperandNo == 0) {
111
          // We need some output bits, so we need all bits of the
112
          // input to the right of, and including, the rightmost bit
113
          // known to be one.
114
          ComputeKnownBits(BitWidth, Val, nullptr);
115
          AB = APInt::getLowBitsSet(BitWidth,
116
                 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
117
        }
118
        break;
119
      case Intrinsic::fshl:
120
      case Intrinsic::fshr: {
121
        const APInt *SA;
122
        if (OperandNo == 2) {
123
          // Shift amount is modulo the bitwidth. For powers of two we have
124
          // SA % BW == SA & (BW - 1).
125
          if (isPowerOf2_32(BitWidth))
126
            AB = BitWidth - 1;
127
        } else if (match(II->getOperand(2), m_APInt(SA))) {
128
          // Normalize to funnel shift left. APInt shifts of BitWidth are well-
129
          // defined, so no need to special-case zero shifts here.
130
          uint64_t ShiftAmt = SA->urem(BitWidth);
131
          if (II->getIntrinsicID() == Intrinsic::fshr)
132
            ShiftAmt = BitWidth - ShiftAmt;
133

134
          if (OperandNo == 0)
135
            AB = AOut.lshr(ShiftAmt);
136
          else if (OperandNo == 1)
137
            AB = AOut.shl(BitWidth - ShiftAmt);
138
        }
139
        break;
140
      }
141
      case Intrinsic::umax:
142
      case Intrinsic::umin:
143
      case Intrinsic::smax:
144
      case Intrinsic::smin:
145
        // If low bits of result are not demanded, they are also not demanded
146
        // for the min/max operands.
147
        AB = APInt::getBitsSetFrom(BitWidth, AOut.countr_zero());
148
        break;
149
      }
150
    }
151
    break;
152
  case Instruction::Add:
153
    if (AOut.isMask()) {
154
      AB = AOut;
155
    } else {
156
      ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
157
      AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2);
158
    }
159
    break;
160
  case Instruction::Sub:
161
    if (AOut.isMask()) {
162
      AB = AOut;
163
    } else {
164
      ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
165
      AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2);
166
    }
167
    break;
168
  case Instruction::Mul:
169
    // Find the highest live output bit. We don't need any more input
170
    // bits than that (adds, and thus subtracts, ripple only to the
171
    // left).
172
    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
173
    break;
174
  case Instruction::Shl:
175
    if (OperandNo == 0) {
176
      const APInt *ShiftAmtC;
177
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
178
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
179
        AB = AOut.lshr(ShiftAmt);
180

181
        // If the shift is nuw/nsw, then the high bits are not dead
182
        // (because we've promised that they *must* be zero).
183
        const auto *S = cast<ShlOperator>(UserI);
184
        if (S->hasNoSignedWrap())
185
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
186
        else if (S->hasNoUnsignedWrap())
187
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
188
      }
189
    }
190
    break;
191
  case Instruction::LShr:
192
    if (OperandNo == 0) {
193
      const APInt *ShiftAmtC;
194
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
195
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
196
        AB = AOut.shl(ShiftAmt);
197

198
        // If the shift is exact, then the low bits are not dead
199
        // (they must be zero).
200
        if (cast<LShrOperator>(UserI)->isExact())
201
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
202
      }
203
    }
204
    break;
205
  case Instruction::AShr:
206
    if (OperandNo == 0) {
207
      const APInt *ShiftAmtC;
208
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
209
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
210
        AB = AOut.shl(ShiftAmt);
211
        // Because the high input bit is replicated into the
212
        // high-order bits of the result, if we need any of those
213
        // bits, then we must keep the highest input bit.
214
        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
215
            .getBoolValue())
216
          AB.setSignBit();
217

218
        // If the shift is exact, then the low bits are not dead
219
        // (they must be zero).
220
        if (cast<AShrOperator>(UserI)->isExact())
221
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
222
      }
223
    }
224
    break;
225
  case Instruction::And:
226
    AB = AOut;
227

228
    // For bits that are known zero, the corresponding bits in the
229
    // other operand are dead (unless they're both zero, in which
230
    // case they can't both be dead, so just mark the LHS bits as
231
    // dead).
232
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
233
    if (OperandNo == 0)
234
      AB &= ~Known2.Zero;
235
    else
236
      AB &= ~(Known.Zero & ~Known2.Zero);
237
    break;
238
  case Instruction::Or:
239
    AB = AOut;
240

241
    // For bits that are known one, the corresponding bits in the
242
    // other operand are dead (unless they're both one, in which
243
    // case they can't both be dead, so just mark the LHS bits as
244
    // dead).
245
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
246
    if (OperandNo == 0)
247
      AB &= ~Known2.One;
248
    else
249
      AB &= ~(Known.One & ~Known2.One);
250
    break;
251
  case Instruction::Xor:
252
  case Instruction::PHI:
253
    AB = AOut;
254
    break;
255
  case Instruction::Trunc:
256
    AB = AOut.zext(BitWidth);
257
    break;
258
  case Instruction::ZExt:
259
    AB = AOut.trunc(BitWidth);
260
    break;
261
  case Instruction::SExt:
262
    AB = AOut.trunc(BitWidth);
263
    // Because the high input bit is replicated into the
264
    // high-order bits of the result, if we need any of those
265
    // bits, then we must keep the highest input bit.
266
    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
267
                                      AOut.getBitWidth() - BitWidth))
268
        .getBoolValue())
269
      AB.setSignBit();
270
    break;
271
  case Instruction::Select:
272
    if (OperandNo != 0)
273
      AB = AOut;
274
    break;
275
  case Instruction::ExtractElement:
276
    if (OperandNo == 0)
277
      AB = AOut;
278
    break;
279
  case Instruction::InsertElement:
280
  case Instruction::ShuffleVector:
281
    if (OperandNo == 0 || OperandNo == 1)
282
      AB = AOut;
283
    break;
284
  }
285
}
286

287
void DemandedBits::performAnalysis() {
288
  if (Analyzed)
289
    // Analysis already completed for this function.
290
    return;
291
  Analyzed = true;
292

293
  Visited.clear();
294
  AliveBits.clear();
295
  DeadUses.clear();
296

297
  SmallSetVector<Instruction*, 16> Worklist;
298

299
  // Collect the set of "root" instructions that are known live.
300
  for (Instruction &I : instructions(F)) {
301
    if (!isAlwaysLive(&I))
302
      continue;
303

304
    LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
305
    // For integer-valued instructions, set up an initial empty set of alive
306
    // bits and add the instruction to the work list. For other instructions
307
    // add their operands to the work list (for integer values operands, mark
308
    // all bits as live).
309
    Type *T = I.getType();
310
    if (T->isIntOrIntVectorTy()) {
311
      if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
312
        Worklist.insert(&I);
313

314
      continue;
315
    }
316

317
    // Non-integer-typed instructions...
318
    for (Use &OI : I.operands()) {
319
      if (auto *J = dyn_cast<Instruction>(OI)) {
320
        Type *T = J->getType();
321
        if (T->isIntOrIntVectorTy())
322
          AliveBits[J] = APInt::getAllOnes(T->getScalarSizeInBits());
323
        else
324
          Visited.insert(J);
325
        Worklist.insert(J);
326
      }
327
    }
328
    // To save memory, we don't add I to the Visited set here. Instead, we
329
    // check isAlwaysLive on every instruction when searching for dead
330
    // instructions later (we need to check isAlwaysLive for the
331
    // integer-typed instructions anyway).
332
  }
333

334
  // Propagate liveness backwards to operands.
335
  while (!Worklist.empty()) {
336
    Instruction *UserI = Worklist.pop_back_val();
337

338
    LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
339
    APInt AOut;
340
    bool InputIsKnownDead = false;
341
    if (UserI->getType()->isIntOrIntVectorTy()) {
342
      AOut = AliveBits[UserI];
343
      LLVM_DEBUG(dbgs() << " Alive Out: 0x"
344
                        << Twine::utohexstr(AOut.getLimitedValue()));
345

346
      // If all bits of the output are dead, then all bits of the input
347
      // are also dead.
348
      InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
349
    }
350
    LLVM_DEBUG(dbgs() << "\n");
351

352
    KnownBits Known, Known2;
353
    bool KnownBitsComputed = false;
354
    // Compute the set of alive bits for each operand. These are anded into the
355
    // existing set, if any, and if that changes the set of alive bits, the
356
    // operand is added to the work-list.
357
    for (Use &OI : UserI->operands()) {
358
      // We also want to detect dead uses of arguments, but will only store
359
      // demanded bits for instructions.
360
      auto *I = dyn_cast<Instruction>(OI);
361
      if (!I && !isa<Argument>(OI))
362
        continue;
363

364
      Type *T = OI->getType();
365
      if (T->isIntOrIntVectorTy()) {
366
        unsigned BitWidth = T->getScalarSizeInBits();
367
        APInt AB = APInt::getAllOnes(BitWidth);
368
        if (InputIsKnownDead) {
369
          AB = APInt(BitWidth, 0);
370
        } else {
371
          // Bits of each operand that are used to compute alive bits of the
372
          // output are alive, all others are dead.
373
          determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
374
                                   Known, Known2, KnownBitsComputed);
375

376
          // Keep track of uses which have no demanded bits.
377
          if (AB.isZero())
378
            DeadUses.insert(&OI);
379
          else
380
            DeadUses.erase(&OI);
381
        }
382

383
        if (I) {
384
          // If we've added to the set of alive bits (or the operand has not
385
          // been previously visited), then re-queue the operand to be visited
386
          // again.
387
          auto Res = AliveBits.try_emplace(I);
388
          if (Res.second || (AB |= Res.first->second) != Res.first->second) {
389
            Res.first->second = std::move(AB);
390
            Worklist.insert(I);
391
          }
392
        }
393
      } else if (I && Visited.insert(I).second) {
394
        Worklist.insert(I);
395
      }
396
    }
397
  }
398
}
399

400
APInt DemandedBits::getDemandedBits(Instruction *I) {
401
  performAnalysis();
402

403
  auto Found = AliveBits.find(I);
404
  if (Found != AliveBits.end())
405
    return Found->second;
406

407
  const DataLayout &DL = I->getDataLayout();
408
  return APInt::getAllOnes(DL.getTypeSizeInBits(I->getType()->getScalarType()));
409
}
410

411
APInt DemandedBits::getDemandedBits(Use *U) {
412
  Type *T = (*U)->getType();
413
  auto *UserI = cast<Instruction>(U->getUser());
414
  const DataLayout &DL = UserI->getDataLayout();
415
  unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType());
416

417
  // We only track integer uses, everything else produces a mask with all bits
418
  // set
419
  if (!T->isIntOrIntVectorTy())
420
    return APInt::getAllOnes(BitWidth);
421

422
  if (isUseDead(U))
423
    return APInt(BitWidth, 0);
424

425
  performAnalysis();
426

427
  APInt AOut = getDemandedBits(UserI);
428
  APInt AB = APInt::getAllOnes(BitWidth);
429
  KnownBits Known, Known2;
430
  bool KnownBitsComputed = false;
431

432
  determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known,
433
                           Known2, KnownBitsComputed);
434

435
  return AB;
436
}
437

438
bool DemandedBits::isInstructionDead(Instruction *I) {
439
  performAnalysis();
440

441
  return !Visited.count(I) && !AliveBits.contains(I) && !isAlwaysLive(I);
442
}
443

444
bool DemandedBits::isUseDead(Use *U) {
445
  // We only track integer uses, everything else is assumed live.
446
  if (!(*U)->getType()->isIntOrIntVectorTy())
447
    return false;
448

449
  // Uses by always-live instructions are never dead.
450
  auto *UserI = cast<Instruction>(U->getUser());
451
  if (isAlwaysLive(UserI))
452
    return false;
453

454
  performAnalysis();
455
  if (DeadUses.count(U))
456
    return true;
457

458
  // If no output bits are demanded, no input bits are demanded and the use
459
  // is dead. These uses might not be explicitly present in the DeadUses map.
460
  if (UserI->getType()->isIntOrIntVectorTy()) {
461
    auto Found = AliveBits.find(UserI);
462
    if (Found != AliveBits.end() && Found->second.isZero())
463
      return true;
464
  }
465

466
  return false;
467
}
468

469
void DemandedBits::print(raw_ostream &OS) {
470
  auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) {
471
    OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue())
472
       << " for ";
473
    if (V) {
474
      V->printAsOperand(OS, false);
475
      OS << " in ";
476
    }
477
    OS << *I << '\n';
478
  };
479

480
  OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n";
481
  performAnalysis();
482
  for (auto &KV : AliveBits) {
483
    Instruction *I = KV.first;
484
    PrintDB(I, KV.second);
485

486
    for (Use &OI : I->operands()) {
487
      PrintDB(I, getDemandedBits(&OI), OI);
488
    }
489
  }
490
}
491

492
static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo,
493
                                              const APInt &AOut,
494
                                              const KnownBits &LHS,
495
                                              const KnownBits &RHS,
496
                                              bool CarryZero, bool CarryOne) {
497
  assert(!(CarryZero && CarryOne) &&
498
         "Carry can't be zero and one at the same time");
499

500
  // The following check should be done by the caller, as it also indicates
501
  // that LHS and RHS don't need to be computed.
502
  //
503
  // if (AOut.isMask())
504
  //   return AOut;
505

506
  // Boundary bits' carry out is unaffected by their carry in.
507
  APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One);
508

509
  // First, the alive carry bits are determined from the alive output bits:
510
  // Let demand ripple to the right but only up to any set bit in Bound.
511
  //   AOut         = -1----
512
  //   Bound        = ----1-
513
  //   ACarry&~AOut = --111-
514
  APInt RBound = Bound.reverseBits();
515
  APInt RAOut = AOut.reverseBits();
516
  APInt RProp = RAOut + (RAOut | ~RBound);
517
  APInt RACarry = RProp ^ ~RBound;
518
  APInt ACarry = RACarry.reverseBits();
519

520
  // Then, the alive input bits are determined from the alive carry bits:
521
  APInt NeededToMaintainCarryZero;
522
  APInt NeededToMaintainCarryOne;
523
  if (OperandNo == 0) {
524
    NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero;
525
    NeededToMaintainCarryOne = LHS.One | ~RHS.One;
526
  } else {
527
    NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero;
528
    NeededToMaintainCarryOne = RHS.One | ~LHS.One;
529
  }
530

531
  // As in computeForAddCarry
532
  APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero;
533
  APInt PossibleSumOne = LHS.One + RHS.One + CarryOne;
534

535
  // The below is simplified from
536
  //
537
  // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
538
  // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
539
  // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne);
540
  //
541
  // APInt NeededToMaintainCarry =
542
  //   (CarryKnownZero & NeededToMaintainCarryZero) |
543
  //   (CarryKnownOne  & NeededToMaintainCarryOne) |
544
  //   CarryUnknown;
545

546
  APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) &
547
                                (PossibleSumOne | NeededToMaintainCarryOne);
548

549
  APInt AB = AOut | (ACarry & NeededToMaintainCarry);
550
  return AB;
551
}
552

553
APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo,
554
                                                const APInt &AOut,
555
                                                const KnownBits &LHS,
556
                                                const KnownBits &RHS) {
557
  return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true,
558
                                          false);
559
}
560

561
APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo,
562
                                                const APInt &AOut,
563
                                                const KnownBits &LHS,
564
                                                const KnownBits &RHS) {
565
  KnownBits NRHS;
566
  NRHS.Zero = RHS.One;
567
  NRHS.One = RHS.Zero;
568
  return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false,
569
                                          true);
570
}
571

572
AnalysisKey DemandedBitsAnalysis::Key;
573

574
DemandedBits DemandedBitsAnalysis::run(Function &F,
575
                                             FunctionAnalysisManager &AM) {
576
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
577
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
578
  return DemandedBits(F, AC, DT);
579
}
580

581
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
582
                                               FunctionAnalysisManager &AM) {
583
  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
584
  return PreservedAnalyses::all();
585
}
586

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.