llvm-project

Форк
0
/
ConstantFolding.cpp 
3662 строки · 128.7 Кб
1
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines routines for folding instructions into constants.
10
//
11
// Also, to supplement the basic IR ConstantExpr simplifications,
12
// this file defines some additional folding routines that can make use of
13
// DataLayout information. These functions cannot go in IR due to library
14
// dependency issues.
15
//
16
//===----------------------------------------------------------------------===//
17

18
#include "llvm/Analysis/ConstantFolding.h"
19
#include "llvm/ADT/APFloat.h"
20
#include "llvm/ADT/APInt.h"
21
#include "llvm/ADT/APSInt.h"
22
#include "llvm/ADT/ArrayRef.h"
23
#include "llvm/ADT/DenseMap.h"
24
#include "llvm/ADT/STLExtras.h"
25
#include "llvm/ADT/SmallVector.h"
26
#include "llvm/ADT/StringRef.h"
27
#include "llvm/Analysis/TargetFolder.h"
28
#include "llvm/Analysis/TargetLibraryInfo.h"
29
#include "llvm/Analysis/ValueTracking.h"
30
#include "llvm/Analysis/VectorUtils.h"
31
#include "llvm/Config/config.h"
32
#include "llvm/IR/Constant.h"
33
#include "llvm/IR/ConstantFold.h"
34
#include "llvm/IR/Constants.h"
35
#include "llvm/IR/DataLayout.h"
36
#include "llvm/IR/DerivedTypes.h"
37
#include "llvm/IR/Function.h"
38
#include "llvm/IR/GlobalValue.h"
39
#include "llvm/IR/GlobalVariable.h"
40
#include "llvm/IR/InstrTypes.h"
41
#include "llvm/IR/Instruction.h"
42
#include "llvm/IR/Instructions.h"
43
#include "llvm/IR/IntrinsicInst.h"
44
#include "llvm/IR/Intrinsics.h"
45
#include "llvm/IR/IntrinsicsAArch64.h"
46
#include "llvm/IR/IntrinsicsAMDGPU.h"
47
#include "llvm/IR/IntrinsicsARM.h"
48
#include "llvm/IR/IntrinsicsWebAssembly.h"
49
#include "llvm/IR/IntrinsicsX86.h"
50
#include "llvm/IR/Operator.h"
51
#include "llvm/IR/Type.h"
52
#include "llvm/IR/Value.h"
53
#include "llvm/Support/Casting.h"
54
#include "llvm/Support/ErrorHandling.h"
55
#include "llvm/Support/KnownBits.h"
56
#include "llvm/Support/MathExtras.h"
57
#include <cassert>
58
#include <cerrno>
59
#include <cfenv>
60
#include <cmath>
61
#include <cstdint>
62

63
using namespace llvm;
64

65
namespace {
66

67
//===----------------------------------------------------------------------===//
68
// Constant Folding internal helper functions
69
//===----------------------------------------------------------------------===//
70

71
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72
                                        Constant *C, Type *SrcEltTy,
73
                                        unsigned NumSrcElts,
74
                                        const DataLayout &DL) {
75
  // Now that we know that the input value is a vector of integers, just shift
76
  // and insert them into our result.
77
  unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78
  for (unsigned i = 0; i != NumSrcElts; ++i) {
79
    Constant *Element;
80
    if (DL.isLittleEndian())
81
      Element = C->getAggregateElement(NumSrcElts - i - 1);
82
    else
83
      Element = C->getAggregateElement(i);
84

85
    if (Element && isa<UndefValue>(Element)) {
86
      Result <<= BitShift;
87
      continue;
88
    }
89

90
    auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91
    if (!ElementCI)
92
      return ConstantExpr::getBitCast(C, DestTy);
93

94
    Result <<= BitShift;
95
    Result |= ElementCI->getValue().zext(Result.getBitWidth());
96
  }
97

98
  return nullptr;
99
}
100

101
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
102
/// This always returns a non-null constant, but it may be a
103
/// ConstantExpr if unfoldable.
104
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105
  assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106
         "Invalid constantexpr bitcast!");
107

108
  // Catch the obvious splat cases.
109
  if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
110
    return Res;
111

112
  if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113
    // Handle a vector->scalar integer/fp cast.
114
    if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115
      unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116
      Type *SrcEltTy = VTy->getElementType();
117

118
      // If the vector is a vector of floating point, convert it to vector of int
119
      // to simplify things.
120
      if (SrcEltTy->isFloatingPointTy()) {
121
        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122
        auto *SrcIVTy = FixedVectorType::get(
123
            IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124
        // Ask IR to do the conversion now that #elts line up.
125
        C = ConstantExpr::getBitCast(C, SrcIVTy);
126
      }
127

128
      APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129
      if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130
                                                SrcEltTy, NumSrcElts, DL))
131
        return CE;
132

133
      if (isa<IntegerType>(DestTy))
134
        return ConstantInt::get(DestTy, Result);
135

136
      APFloat FP(DestTy->getFltSemantics(), Result);
137
      return ConstantFP::get(DestTy->getContext(), FP);
138
    }
139
  }
140

141
  // The code below only handles casts to vectors currently.
142
  auto *DestVTy = dyn_cast<VectorType>(DestTy);
143
  if (!DestVTy)
144
    return ConstantExpr::getBitCast(C, DestTy);
145

146
  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147
  // vector so the code below can handle it uniformly.
148
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149
    Constant *Ops = C; // don't take the address of C!
150
    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151
  }
152

153
  // If this is a bitcast from constant vector -> vector, fold it.
154
  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155
    return ConstantExpr::getBitCast(C, DestTy);
156

157
  // If the element types match, IR can fold it.
158
  unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159
  unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160
  if (NumDstElt == NumSrcElt)
161
    return ConstantExpr::getBitCast(C, DestTy);
162

163
  Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164
  Type *DstEltTy = DestVTy->getElementType();
165

166
  // Otherwise, we're changing the number of elements in a vector, which
167
  // requires endianness information to do the right thing.  For example,
168
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169
  // folds to (little endian):
170
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171
  // and to (big endian):
172
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173

174
  // First thing is first.  We only want to think about integer here, so if
175
  // we have something in FP form, recast it as integer.
176
  if (DstEltTy->isFloatingPointTy()) {
177
    // Fold to an vector of integers with same size as our FP type.
178
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179
    auto *DestIVTy = FixedVectorType::get(
180
        IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181
    // Recursively handle this integer conversion, if possible.
182
    C = FoldBitCast(C, DestIVTy, DL);
183

184
    // Finally, IR can handle this now that #elts line up.
185
    return ConstantExpr::getBitCast(C, DestTy);
186
  }
187

188
  // Okay, we know the destination is integer, if the input is FP, convert
189
  // it to integer first.
190
  if (SrcEltTy->isFloatingPointTy()) {
191
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192
    auto *SrcIVTy = FixedVectorType::get(
193
        IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194
    // Ask IR to do the conversion now that #elts line up.
195
    C = ConstantExpr::getBitCast(C, SrcIVTy);
196
    // If IR wasn't able to fold it, bail out.
197
    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198
        !isa<ConstantDataVector>(C))
199
      return C;
200
  }
201

202
  // Now we know that the input and output vectors are both integer vectors
203
  // of the same size, and that their #elements is not the same.  Do the
204
  // conversion here, which depends on whether the input or output has
205
  // more elements.
206
  bool isLittleEndian = DL.isLittleEndian();
207

208
  SmallVector<Constant*, 32> Result;
209
  if (NumDstElt < NumSrcElt) {
210
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211
    Constant *Zero = Constant::getNullValue(DstEltTy);
212
    unsigned Ratio = NumSrcElt/NumDstElt;
213
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214
    unsigned SrcElt = 0;
215
    for (unsigned i = 0; i != NumDstElt; ++i) {
216
      // Build each element of the result.
217
      Constant *Elt = Zero;
218
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219
      for (unsigned j = 0; j != Ratio; ++j) {
220
        Constant *Src = C->getAggregateElement(SrcElt++);
221
        if (Src && isa<UndefValue>(Src))
222
          Src = Constant::getNullValue(
223
              cast<VectorType>(C->getType())->getElementType());
224
        else
225
          Src = dyn_cast_or_null<ConstantInt>(Src);
226
        if (!Src)  // Reject constantexpr elements.
227
          return ConstantExpr::getBitCast(C, DestTy);
228

229
        // Zero extend the element to the right size.
230
        Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
231
                                      DL);
232
        assert(Src && "Constant folding cannot fail on plain integers");
233

234
        // Shift it to the right place, depending on endianness.
235
        Src = ConstantFoldBinaryOpOperands(
236
            Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
237
            DL);
238
        assert(Src && "Constant folding cannot fail on plain integers");
239

240
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
241

242
        // Mix it in.
243
        Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
244
        assert(Elt && "Constant folding cannot fail on plain integers");
245
      }
246
      Result.push_back(Elt);
247
    }
248
    return ConstantVector::get(Result);
249
  }
250

251
  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252
  unsigned Ratio = NumDstElt/NumSrcElt;
253
  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
254

255
  // Loop over each source value, expanding into multiple results.
256
  for (unsigned i = 0; i != NumSrcElt; ++i) {
257
    auto *Element = C->getAggregateElement(i);
258

259
    if (!Element) // Reject constantexpr elements.
260
      return ConstantExpr::getBitCast(C, DestTy);
261

262
    if (isa<UndefValue>(Element)) {
263
      // Correctly Propagate undef values.
264
      Result.append(Ratio, UndefValue::get(DstEltTy));
265
      continue;
266
    }
267

268
    auto *Src = dyn_cast<ConstantInt>(Element);
269
    if (!Src)
270
      return ConstantExpr::getBitCast(C, DestTy);
271

272
    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
273
    for (unsigned j = 0; j != Ratio; ++j) {
274
      // Shift the piece of the value into the right place, depending on
275
      // endianness.
276
      APInt Elt = Src->getValue().lshr(ShiftAmt);
277
      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
278

279
      // Truncate and remember this piece.
280
      Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
281
    }
282
  }
283

284
  return ConstantVector::get(Result);
285
}
286

287
} // end anonymous namespace
288

289
/// If this constant is a constant offset from a global, return the global and
290
/// the constant. Because of constantexprs, this function is recursive.
291
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
292
                                      APInt &Offset, const DataLayout &DL,
293
                                      DSOLocalEquivalent **DSOEquiv) {
294
  if (DSOEquiv)
295
    *DSOEquiv = nullptr;
296

297
  // Trivial case, constant is the global.
298
  if ((GV = dyn_cast<GlobalValue>(C))) {
299
    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
300
    Offset = APInt(BitWidth, 0);
301
    return true;
302
  }
303

304
  if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
305
    if (DSOEquiv)
306
      *DSOEquiv = FoundDSOEquiv;
307
    GV = FoundDSOEquiv->getGlobalValue();
308
    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
309
    Offset = APInt(BitWidth, 0);
310
    return true;
311
  }
312

313
  // Otherwise, if this isn't a constant expr, bail out.
314
  auto *CE = dyn_cast<ConstantExpr>(C);
315
  if (!CE) return false;
316

317
  // Look through ptr->int and ptr->ptr casts.
318
  if (CE->getOpcode() == Instruction::PtrToInt ||
319
      CE->getOpcode() == Instruction::BitCast)
320
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
321
                                      DSOEquiv);
322

323
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
324
  auto *GEP = dyn_cast<GEPOperator>(CE);
325
  if (!GEP)
326
    return false;
327

328
  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
329
  APInt TmpOffset(BitWidth, 0);
330

331
  // If the base isn't a global+constant, we aren't either.
332
  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
333
                                  DSOEquiv))
334
    return false;
335

336
  // Otherwise, add any offset that our operands provide.
337
  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
338
    return false;
339

340
  Offset = TmpOffset;
341
  return true;
342
}
343

344
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
345
                                               const DataLayout &DL) {
346
  do {
347
    Type *SrcTy = C->getType();
348
    if (SrcTy == DestTy)
349
      return C;
350

351
    TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
352
    TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
353
    if (!TypeSize::isKnownGE(SrcSize, DestSize))
354
      return nullptr;
355

356
    // Catch the obvious splat cases (since all-zeros can coerce non-integral
357
    // pointers legally).
358
    if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
359
      return Res;
360

361
    // If the type sizes are the same and a cast is legal, just directly
362
    // cast the constant.
363
    // But be careful not to coerce non-integral pointers illegally.
364
    if (SrcSize == DestSize &&
365
        DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
366
            DL.isNonIntegralPointerType(DestTy->getScalarType())) {
367
      Instruction::CastOps Cast = Instruction::BitCast;
368
      // If we are going from a pointer to int or vice versa, we spell the cast
369
      // differently.
370
      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
371
        Cast = Instruction::IntToPtr;
372
      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
373
        Cast = Instruction::PtrToInt;
374

375
      if (CastInst::castIsValid(Cast, C, DestTy))
376
        return ConstantFoldCastOperand(Cast, C, DestTy, DL);
377
    }
378

379
    // If this isn't an aggregate type, there is nothing we can do to drill down
380
    // and find a bitcastable constant.
381
    if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
382
      return nullptr;
383

384
    // We're simulating a load through a pointer that was bitcast to point to
385
    // a different type, so we can try to walk down through the initial
386
    // elements of an aggregate to see if some part of the aggregate is
387
    // castable to implement the "load" semantic model.
388
    if (SrcTy->isStructTy()) {
389
      // Struct types might have leading zero-length elements like [0 x i32],
390
      // which are certainly not what we are looking for, so skip them.
391
      unsigned Elem = 0;
392
      Constant *ElemC;
393
      do {
394
        ElemC = C->getAggregateElement(Elem++);
395
      } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
396
      C = ElemC;
397
    } else {
398
      // For non-byte-sized vector elements, the first element is not
399
      // necessarily located at the vector base address.
400
      if (auto *VT = dyn_cast<VectorType>(SrcTy))
401
        if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
402
          return nullptr;
403

404
      C = C->getAggregateElement(0u);
405
    }
406
  } while (C);
407

408
  return nullptr;
409
}
410

411
namespace {
412

413
/// Recursive helper to read bits out of global. C is the constant being copied
414
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415
/// results into and BytesLeft is the number of bytes left in
416
/// the CurPtr buffer. DL is the DataLayout.
417
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
418
                        unsigned BytesLeft, const DataLayout &DL) {
419
  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
420
         "Out of range access");
421

422
  // If this element is zero or undefined, we can just return since *CurPtr is
423
  // zero initialized.
424
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
425
    return true;
426

427
  if (auto *CI = dyn_cast<ConstantInt>(C)) {
428
    if ((CI->getBitWidth() & 7) != 0)
429
      return false;
430
    const APInt &Val = CI->getValue();
431
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
432

433
    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
434
      unsigned n = ByteOffset;
435
      if (!DL.isLittleEndian())
436
        n = IntBytes - n - 1;
437
      CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
438
      ++ByteOffset;
439
    }
440
    return true;
441
  }
442

443
  if (auto *CFP = dyn_cast<ConstantFP>(C)) {
444
    if (CFP->getType()->isDoubleTy()) {
445
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
446
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
447
    }
448
    if (CFP->getType()->isFloatTy()){
449
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
450
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
451
    }
452
    if (CFP->getType()->isHalfTy()){
453
      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
454
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455
    }
456
    return false;
457
  }
458

459
  if (auto *CS = dyn_cast<ConstantStruct>(C)) {
460
    const StructLayout *SL = DL.getStructLayout(CS->getType());
461
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
462
    uint64_t CurEltOffset = SL->getElementOffset(Index);
463
    ByteOffset -= CurEltOffset;
464

465
    while (true) {
466
      // If the element access is to the element itself and not to tail padding,
467
      // read the bytes from the element.
468
      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
469

470
      if (ByteOffset < EltSize &&
471
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
472
                              BytesLeft, DL))
473
        return false;
474

475
      ++Index;
476

477
      // Check to see if we read from the last struct element, if so we're done.
478
      if (Index == CS->getType()->getNumElements())
479
        return true;
480

481
      // If we read all of the bytes we needed from this element we're done.
482
      uint64_t NextEltOffset = SL->getElementOffset(Index);
483

484
      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
485
        return true;
486

487
      // Move to the next element of the struct.
488
      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
489
      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
490
      ByteOffset = 0;
491
      CurEltOffset = NextEltOffset;
492
    }
493
    // not reached.
494
  }
495

496
  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
497
      isa<ConstantDataSequential>(C)) {
498
    uint64_t NumElts, EltSize;
499
    Type *EltTy;
500
    if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
501
      NumElts = AT->getNumElements();
502
      EltTy = AT->getElementType();
503
      EltSize = DL.getTypeAllocSize(EltTy);
504
    } else {
505
      NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
506
      EltTy = cast<FixedVectorType>(C->getType())->getElementType();
507
      // TODO: For non-byte-sized vectors, current implementation assumes there is
508
      // padding to the next byte boundary between elements.
509
      if (!DL.typeSizeEqualsStoreSize(EltTy))
510
        return false;
511

512
      EltSize = DL.getTypeStoreSize(EltTy);
513
    }
514
    uint64_t Index = ByteOffset / EltSize;
515
    uint64_t Offset = ByteOffset - Index * EltSize;
516

517
    for (; Index != NumElts; ++Index) {
518
      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519
                              BytesLeft, DL))
520
        return false;
521

522
      uint64_t BytesWritten = EltSize - Offset;
523
      assert(BytesWritten <= EltSize && "Not indexing into this element?");
524
      if (BytesWritten >= BytesLeft)
525
        return true;
526

527
      Offset = 0;
528
      BytesLeft -= BytesWritten;
529
      CurPtr += BytesWritten;
530
    }
531
    return true;
532
  }
533

534
  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535
    if (CE->getOpcode() == Instruction::IntToPtr &&
536
        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537
      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538
                                BytesLeft, DL);
539
    }
540
  }
541

542
  // Otherwise, unknown initializer type.
543
  return false;
544
}
545

546
Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547
                                       int64_t Offset, const DataLayout &DL) {
548
  // Bail out early. Not expect to load from scalable global variable.
549
  if (isa<ScalableVectorType>(LoadTy))
550
    return nullptr;
551

552
  auto *IntType = dyn_cast<IntegerType>(LoadTy);
553

554
  // If this isn't an integer load we can't fold it directly.
555
  if (!IntType) {
556
    // If this is a non-integer load, we can try folding it as an int load and
557
    // then bitcast the result.  This can be useful for union cases.  Note
558
    // that address spaces don't matter here since we're not going to result in
559
    // an actual new load.
560
    if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561
        !LoadTy->isVectorTy())
562
      return nullptr;
563

564
    Type *MapTy = Type::getIntNTy(C->getContext(),
565
                                  DL.getTypeSizeInBits(LoadTy).getFixedValue());
566
    if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567
      if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568
          !LoadTy->isX86_AMXTy())
569
        // Materializing a zero can be done trivially without a bitcast
570
        return Constant::getNullValue(LoadTy);
571
      Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572
      Res = FoldBitCast(Res, CastTy, DL);
573
      if (LoadTy->isPtrOrPtrVectorTy()) {
574
        // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575
        if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576
            !LoadTy->isX86_AMXTy())
577
          return Constant::getNullValue(LoadTy);
578
        if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579
          // Be careful not to replace a load of an addrspace value with an inttoptr here
580
          return nullptr;
581
        Res = ConstantExpr::getIntToPtr(Res, LoadTy);
582
      }
583
      return Res;
584
    }
585
    return nullptr;
586
  }
587

588
  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589
  if (BytesLoaded > 32 || BytesLoaded == 0)
590
    return nullptr;
591

592
  // If we're not accessing anything in this constant, the result is undefined.
593
  if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594
    return PoisonValue::get(IntType);
595

596
  // TODO: We should be able to support scalable types.
597
  TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598
  if (InitializerSize.isScalable())
599
    return nullptr;
600

601
  // If we're not accessing anything in this constant, the result is undefined.
602
  if (Offset >= (int64_t)InitializerSize.getFixedValue())
603
    return PoisonValue::get(IntType);
604

605
  unsigned char RawBytes[32] = {0};
606
  unsigned char *CurPtr = RawBytes;
607
  unsigned BytesLeft = BytesLoaded;
608

609
  // If we're loading off the beginning of the global, some bytes may be valid.
610
  if (Offset < 0) {
611
    CurPtr += -Offset;
612
    BytesLeft += Offset;
613
    Offset = 0;
614
  }
615

616
  if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617
    return nullptr;
618

619
  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620
  if (DL.isLittleEndian()) {
621
    ResultVal = RawBytes[BytesLoaded - 1];
622
    for (unsigned i = 1; i != BytesLoaded; ++i) {
623
      ResultVal <<= 8;
624
      ResultVal |= RawBytes[BytesLoaded - 1 - i];
625
    }
626
  } else {
627
    ResultVal = RawBytes[0];
628
    for (unsigned i = 1; i != BytesLoaded; ++i) {
629
      ResultVal <<= 8;
630
      ResultVal |= RawBytes[i];
631
    }
632
  }
633

634
  return ConstantInt::get(IntType->getContext(), ResultVal);
635
}
636

637
} // anonymous namespace
638

639
// If GV is a constant with an initializer read its representation starting
640
// at Offset and return it as a constant array of unsigned char.  Otherwise
641
// return null.
642
Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643
                                        uint64_t Offset) {
644
  if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645
    return nullptr;
646

647
  const DataLayout &DL = GV->getDataLayout();
648
  Constant *Init = const_cast<Constant *>(GV->getInitializer());
649
  TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650
  if (InitSize < Offset)
651
    return nullptr;
652

653
  uint64_t NBytes = InitSize - Offset;
654
  if (NBytes > UINT16_MAX)
655
    // Bail for large initializers in excess of 64K to avoid allocating
656
    // too much memory.
657
    // Offset is assumed to be less than or equal than InitSize (this
658
    // is enforced in ReadDataFromGlobal).
659
    return nullptr;
660

661
  SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662
  unsigned char *CurPtr = RawBytes.data();
663

664
  if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665
    return nullptr;
666

667
  return ConstantDataArray::get(GV->getContext(), RawBytes);
668
}
669

670
/// If this Offset points exactly to the start of an aggregate element, return
671
/// that element, otherwise return nullptr.
672
Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673
                              const DataLayout &DL) {
674
  if (Offset.isZero())
675
    return Base;
676

677
  if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678
    return nullptr;
679

680
  Type *ElemTy = Base->getType();
681
  SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682
  if (!Offset.isZero() || !Indices[0].isZero())
683
    return nullptr;
684

685
  Constant *C = Base;
686
  for (const APInt &Index : drop_begin(Indices)) {
687
    if (Index.isNegative() || Index.getActiveBits() >= 32)
688
      return nullptr;
689

690
    C = C->getAggregateElement(Index.getZExtValue());
691
    if (!C)
692
      return nullptr;
693
  }
694

695
  return C;
696
}
697

698
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699
                                          const APInt &Offset,
700
                                          const DataLayout &DL) {
701
  if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702
    if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703
      return Result;
704

705
  // Explicitly check for out-of-bounds access, so we return poison even if the
706
  // constant is a uniform value.
707
  TypeSize Size = DL.getTypeAllocSize(C->getType());
708
  if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709
    return PoisonValue::get(Ty);
710

711
  // Try an offset-independent fold of a uniform value.
712
  if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
713
    return Result;
714

715
  // Try hard to fold loads from bitcasted strange and non-type-safe things.
716
  if (Offset.getSignificantBits() <= 64)
717
    if (Constant *Result =
718
            FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719
      return Result;
720

721
  return nullptr;
722
}
723

724
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725
                                          const DataLayout &DL) {
726
  return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727
}
728

729
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730
                                             APInt Offset,
731
                                             const DataLayout &DL) {
732
  // We can only fold loads from constant globals with a definitive initializer.
733
  // Check this upfront, to skip expensive offset calculations.
734
  auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
735
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
736
    return nullptr;
737

738
  C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
739
          DL, Offset, /* AllowNonInbounds */ true));
740

741
  if (C == GV)
742
    if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
743
                                                     Offset, DL))
744
      return Result;
745

746
  // If this load comes from anywhere in a uniform constant global, the value
747
  // is always the same, regardless of the loaded offset.
748
  return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
749
}
750

751
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
752
                                             const DataLayout &DL) {
753
  APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
754
  return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
755
}
756

757
Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty,
758
                                                 const DataLayout &DL) {
759
  if (isa<PoisonValue>(C))
760
    return PoisonValue::get(Ty);
761
  if (isa<UndefValue>(C))
762
    return UndefValue::get(Ty);
763
  // If padding is needed when storing C to memory, then it isn't considered as
764
  // uniform.
765
  if (!DL.typeSizeEqualsStoreSize(C->getType()))
766
    return nullptr;
767
  if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
768
    return Constant::getNullValue(Ty);
769
  if (C->isAllOnesValue() &&
770
      (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
771
    return Constant::getAllOnesValue(Ty);
772
  return nullptr;
773
}
774

775
namespace {
776

777
/// One of Op0/Op1 is a constant expression.
778
/// Attempt to symbolically evaluate the result of a binary operator merging
779
/// these together.  If target data info is available, it is provided as DL,
780
/// otherwise DL is null.
781
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
782
                                    const DataLayout &DL) {
783
  // SROA
784

785
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
786
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
787
  // bits.
788

789
  if (Opc == Instruction::And) {
790
    KnownBits Known0 = computeKnownBits(Op0, DL);
791
    KnownBits Known1 = computeKnownBits(Op1, DL);
792
    if ((Known1.One | Known0.Zero).isAllOnes()) {
793
      // All the bits of Op0 that the 'and' could be masking are already zero.
794
      return Op0;
795
    }
796
    if ((Known0.One | Known1.Zero).isAllOnes()) {
797
      // All the bits of Op1 that the 'and' could be masking are already zero.
798
      return Op1;
799
    }
800

801
    Known0 &= Known1;
802
    if (Known0.isConstant())
803
      return ConstantInt::get(Op0->getType(), Known0.getConstant());
804
  }
805

806
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
807
  // constant.  This happens frequently when iterating over a global array.
808
  if (Opc == Instruction::Sub) {
809
    GlobalValue *GV1, *GV2;
810
    APInt Offs1, Offs2;
811

812
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
813
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
814
        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
815

816
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
817
        // PtrToInt may change the bitwidth so we have convert to the right size
818
        // first.
819
        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
820
                                                Offs2.zextOrTrunc(OpSize));
821
      }
822
  }
823

824
  return nullptr;
825
}
826

827
/// If array indices are not pointer-sized integers, explicitly cast them so
828
/// that they aren't implicitly casted by the getelementptr.
829
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
830
                         Type *ResultTy, GEPNoWrapFlags NW,
831
                         std::optional<ConstantRange> InRange,
832
                         const DataLayout &DL, const TargetLibraryInfo *TLI) {
833
  Type *IntIdxTy = DL.getIndexType(ResultTy);
834
  Type *IntIdxScalarTy = IntIdxTy->getScalarType();
835

836
  bool Any = false;
837
  SmallVector<Constant*, 32> NewIdxs;
838
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
839
    if ((i == 1 ||
840
         !isa<StructType>(GetElementPtrInst::getIndexedType(
841
             SrcElemTy, Ops.slice(1, i - 1)))) &&
842
        Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
843
      Any = true;
844
      Type *NewType =
845
          Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
846
      Constant *NewIdx = ConstantFoldCastOperand(
847
          CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
848
          DL);
849
      if (!NewIdx)
850
        return nullptr;
851
      NewIdxs.push_back(NewIdx);
852
    } else
853
      NewIdxs.push_back(Ops[i]);
854
  }
855

856
  if (!Any)
857
    return nullptr;
858

859
  Constant *C =
860
      ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
861
  return ConstantFoldConstant(C, DL, TLI);
862
}
863

864
/// If we can symbolically evaluate the GEP constant expression, do so.
865
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
866
                                  ArrayRef<Constant *> Ops,
867
                                  const DataLayout &DL,
868
                                  const TargetLibraryInfo *TLI) {
869
  Type *SrcElemTy = GEP->getSourceElementType();
870
  Type *ResTy = GEP->getType();
871
  if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
872
    return nullptr;
873

874
  if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
875
                                   GEP->getInRange(), DL, TLI))
876
    return C;
877

878
  Constant *Ptr = Ops[0];
879
  if (!Ptr->getType()->isPointerTy())
880
    return nullptr;
881

882
  Type *IntIdxTy = DL.getIndexType(Ptr->getType());
883

884
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
885
    if (!isa<ConstantInt>(Ops[i]))
886
      return nullptr;
887

888
  unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
889
  APInt Offset = APInt(
890
      BitWidth,
891
      DL.getIndexedOffsetInType(
892
          SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
893

894
  std::optional<ConstantRange> InRange = GEP->getInRange();
895
  if (InRange)
896
    InRange = InRange->sextOrTrunc(BitWidth);
897

898
  // If this is a GEP of a GEP, fold it all into a single GEP.
899
  GEPNoWrapFlags NW = GEP->getNoWrapFlags();
900
  bool Overflow = false;
901
  while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
902
    NW &= GEP->getNoWrapFlags();
903

904
    SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
905

906
    // Do not try the incorporate the sub-GEP if some index is not a number.
907
    bool AllConstantInt = true;
908
    for (Value *NestedOp : NestedOps)
909
      if (!isa<ConstantInt>(NestedOp)) {
910
        AllConstantInt = false;
911
        break;
912
      }
913
    if (!AllConstantInt)
914
      break;
915

916
    // TODO: Try to intersect two inrange attributes?
917
    if (!InRange) {
918
      InRange = GEP->getInRange();
919
      if (InRange)
920
        // Adjust inrange by offset until now.
921
        InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset);
922
    }
923

924
    Ptr = cast<Constant>(GEP->getOperand(0));
925
    SrcElemTy = GEP->getSourceElementType();
926
    Offset = Offset.sadd_ov(
927
        APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)),
928
        Overflow);
929
  }
930

931
  // Preserving nusw (without inbounds) also requires that the offset
932
  // additions did not overflow.
933
  if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
934
    NW = NW.withoutNoUnsignedSignedWrap();
935

936
  // If the base value for this address is a literal integer value, fold the
937
  // getelementptr to the resulting integer value casted to the pointer type.
938
  APInt BasePtr(BitWidth, 0);
939
  if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
940
    if (CE->getOpcode() == Instruction::IntToPtr) {
941
      if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
942
        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
943
    }
944
  }
945

946
  auto *PTy = cast<PointerType>(Ptr->getType());
947
  if ((Ptr->isNullValue() || BasePtr != 0) &&
948
      !DL.isNonIntegralPointerType(PTy)) {
949
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
950
    return ConstantExpr::getIntToPtr(C, ResTy);
951
  }
952

953
  // Try to infer inbounds for GEPs of globals.
954
  // TODO(gep_nowrap): Also infer nuw flag.
955
  if (!NW.isInBounds() && Offset.isNonNegative()) {
956
    bool CanBeNull, CanBeFreed;
957
    uint64_t DerefBytes =
958
        Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
959
    if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
960
      NW |= GEPNoWrapFlags::inBounds();
961
  }
962

963
  // Otherwise canonicalize this to a single ptradd.
964
  LLVMContext &Ctx = Ptr->getContext();
965
  return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr,
966
                                        ConstantInt::get(Ctx, Offset), NW,
967
                                        InRange);
968
}
969

970
/// Attempt to constant fold an instruction with the
971
/// specified opcode and operands.  If successful, the constant result is
972
/// returned, if not, null is returned.  Note that this function can fail when
973
/// attempting to fold instructions like loads and stores, which have no
974
/// constant expression form.
975
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
976
                                       ArrayRef<Constant *> Ops,
977
                                       const DataLayout &DL,
978
                                       const TargetLibraryInfo *TLI,
979
                                       bool AllowNonDeterministic) {
980
  Type *DestTy = InstOrCE->getType();
981

982
  if (Instruction::isUnaryOp(Opcode))
983
    return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
984

985
  if (Instruction::isBinaryOp(Opcode)) {
986
    switch (Opcode) {
987
    default:
988
      break;
989
    case Instruction::FAdd:
990
    case Instruction::FSub:
991
    case Instruction::FMul:
992
    case Instruction::FDiv:
993
    case Instruction::FRem:
994
      // Handle floating point instructions separately to account for denormals
995
      // TODO: If a constant expression is being folded rather than an
996
      // instruction, denormals will not be flushed/treated as zero
997
      if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
998
        return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
999
                                          AllowNonDeterministic);
1000
      }
1001
    }
1002
    return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1003
  }
1004

1005
  if (Instruction::isCast(Opcode))
1006
    return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1007

1008
  if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1009
    Type *SrcElemTy = GEP->getSourceElementType();
1010
    if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1011
      return nullptr;
1012

1013
    if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1014
      return C;
1015

1016
    return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1017
                                          GEP->getNoWrapFlags(),
1018
                                          GEP->getInRange());
1019
  }
1020

1021
  if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1022
    return CE->getWithOperands(Ops);
1023

1024
  switch (Opcode) {
1025
  default: return nullptr;
1026
  case Instruction::ICmp:
1027
  case Instruction::FCmp: {
1028
    auto *C = cast<CmpInst>(InstOrCE);
1029
    return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1030
                                           DL, TLI, C);
1031
  }
1032
  case Instruction::Freeze:
1033
    return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1034
  case Instruction::Call:
1035
    if (auto *F = dyn_cast<Function>(Ops.back())) {
1036
      const auto *Call = cast<CallBase>(InstOrCE);
1037
      if (canConstantFoldCallTo(Call, F))
1038
        return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1039
                                AllowNonDeterministic);
1040
    }
1041
    return nullptr;
1042
  case Instruction::Select:
1043
    return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1044
  case Instruction::ExtractElement:
1045
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1046
  case Instruction::ExtractValue:
1047
    return ConstantFoldExtractValueInstruction(
1048
        Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1049
  case Instruction::InsertElement:
1050
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1051
  case Instruction::InsertValue:
1052
    return ConstantFoldInsertValueInstruction(
1053
        Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1054
  case Instruction::ShuffleVector:
1055
    return ConstantExpr::getShuffleVector(
1056
        Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1057
  case Instruction::Load: {
1058
    const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1059
    if (LI->isVolatile())
1060
      return nullptr;
1061
    return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1062
  }
1063
  }
1064
}
1065

1066
} // end anonymous namespace
1067

1068
//===----------------------------------------------------------------------===//
1069
// Constant Folding public APIs
1070
//===----------------------------------------------------------------------===//
1071

1072
namespace {
1073

1074
Constant *
1075
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1076
                         const TargetLibraryInfo *TLI,
1077
                         SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1078
  if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1079
    return const_cast<Constant *>(C);
1080

1081
  SmallVector<Constant *, 8> Ops;
1082
  for (const Use &OldU : C->operands()) {
1083
    Constant *OldC = cast<Constant>(&OldU);
1084
    Constant *NewC = OldC;
1085
    // Recursively fold the ConstantExpr's operands. If we have already folded
1086
    // a ConstantExpr, we don't have to process it again.
1087
    if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1088
      auto It = FoldedOps.find(OldC);
1089
      if (It == FoldedOps.end()) {
1090
        NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1091
        FoldedOps.insert({OldC, NewC});
1092
      } else {
1093
        NewC = It->second;
1094
      }
1095
    }
1096
    Ops.push_back(NewC);
1097
  }
1098

1099
  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1100
    if (Constant *Res = ConstantFoldInstOperandsImpl(
1101
            CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1102
      return Res;
1103
    return const_cast<Constant *>(C);
1104
  }
1105

1106
  assert(isa<ConstantVector>(C));
1107
  return ConstantVector::get(Ops);
1108
}
1109

1110
} // end anonymous namespace
1111

1112
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1113
                                        const TargetLibraryInfo *TLI) {
1114
  // Handle PHI nodes quickly here...
1115
  if (auto *PN = dyn_cast<PHINode>(I)) {
1116
    Constant *CommonValue = nullptr;
1117

1118
    SmallDenseMap<Constant *, Constant *> FoldedOps;
1119
    for (Value *Incoming : PN->incoming_values()) {
1120
      // If the incoming value is undef then skip it.  Note that while we could
1121
      // skip the value if it is equal to the phi node itself we choose not to
1122
      // because that would break the rule that constant folding only applies if
1123
      // all operands are constants.
1124
      if (isa<UndefValue>(Incoming))
1125
        continue;
1126
      // If the incoming value is not a constant, then give up.
1127
      auto *C = dyn_cast<Constant>(Incoming);
1128
      if (!C)
1129
        return nullptr;
1130
      // Fold the PHI's operands.
1131
      C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1132
      // If the incoming value is a different constant to
1133
      // the one we saw previously, then give up.
1134
      if (CommonValue && C != CommonValue)
1135
        return nullptr;
1136
      CommonValue = C;
1137
    }
1138

1139
    // If we reach here, all incoming values are the same constant or undef.
1140
    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1141
  }
1142

1143
  // Scan the operand list, checking to see if they are all constants, if so,
1144
  // hand off to ConstantFoldInstOperandsImpl.
1145
  if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1146
    return nullptr;
1147

1148
  SmallDenseMap<Constant *, Constant *> FoldedOps;
1149
  SmallVector<Constant *, 8> Ops;
1150
  for (const Use &OpU : I->operands()) {
1151
    auto *Op = cast<Constant>(&OpU);
1152
    // Fold the Instruction's operands.
1153
    Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1154
    Ops.push_back(Op);
1155
  }
1156

1157
  return ConstantFoldInstOperands(I, Ops, DL, TLI);
1158
}
1159

1160
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1161
                                     const TargetLibraryInfo *TLI) {
1162
  SmallDenseMap<Constant *, Constant *> FoldedOps;
1163
  return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1164
}
1165

1166
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1167
                                         ArrayRef<Constant *> Ops,
1168
                                         const DataLayout &DL,
1169
                                         const TargetLibraryInfo *TLI,
1170
                                         bool AllowNonDeterministic) {
1171
  return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1172
                                      AllowNonDeterministic);
1173
}
1174

1175
Constant *llvm::ConstantFoldCompareInstOperands(
1176
    unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1177
    const TargetLibraryInfo *TLI, const Instruction *I) {
1178
  CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1179
  // fold: icmp (inttoptr x), null         -> icmp x, 0
1180
  // fold: icmp null, (inttoptr x)         -> icmp 0, x
1181
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1182
  // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1183
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1184
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1185
  //
1186
  // FIXME: The following comment is out of data and the DataLayout is here now.
1187
  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1188
  // around to know if bit truncation is happening.
1189
  if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1190
    if (Ops1->isNullValue()) {
1191
      if (CE0->getOpcode() == Instruction::IntToPtr) {
1192
        Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1193
        // Convert the integer value to the right size to ensure we get the
1194
        // proper extension or truncation.
1195
        if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1196
                                                  /*IsSigned*/ false, DL)) {
1197
          Constant *Null = Constant::getNullValue(C->getType());
1198
          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1199
        }
1200
      }
1201

1202
      // Only do this transformation if the int is intptrty in size, otherwise
1203
      // there is a truncation or extension that we aren't modeling.
1204
      if (CE0->getOpcode() == Instruction::PtrToInt) {
1205
        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1206
        if (CE0->getType() == IntPtrTy) {
1207
          Constant *C = CE0->getOperand(0);
1208
          Constant *Null = Constant::getNullValue(C->getType());
1209
          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1210
        }
1211
      }
1212
    }
1213

1214
    if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1215
      if (CE0->getOpcode() == CE1->getOpcode()) {
1216
        if (CE0->getOpcode() == Instruction::IntToPtr) {
1217
          Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1218

1219
          // Convert the integer value to the right size to ensure we get the
1220
          // proper extension or truncation.
1221
          Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1222
                                                 /*IsSigned*/ false, DL);
1223
          Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1224
                                                 /*IsSigned*/ false, DL);
1225
          if (C0 && C1)
1226
            return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1227
        }
1228

1229
        // Only do this transformation if the int is intptrty in size, otherwise
1230
        // there is a truncation or extension that we aren't modeling.
1231
        if (CE0->getOpcode() == Instruction::PtrToInt) {
1232
          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1233
          if (CE0->getType() == IntPtrTy &&
1234
              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1235
            return ConstantFoldCompareInstOperands(
1236
                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1237
          }
1238
        }
1239
      }
1240
    }
1241

1242
    // Convert pointer comparison (base+offset1) pred (base+offset2) into
1243
    // offset1 pred offset2, for the case where the offset is inbounds. This
1244
    // only works for equality and unsigned comparison, as inbounds permits
1245
    // crossing the sign boundary. However, the offset comparison itself is
1246
    // signed.
1247
    if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1248
      unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1249
      APInt Offset0(IndexWidth, 0);
1250
      Value *Stripped0 =
1251
          Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1252
      APInt Offset1(IndexWidth, 0);
1253
      Value *Stripped1 =
1254
          Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1255
      if (Stripped0 == Stripped1)
1256
        return ConstantInt::getBool(
1257
            Ops0->getContext(),
1258
            ICmpInst::compare(Offset0, Offset1,
1259
                              ICmpInst::getSignedPredicate(Predicate)));
1260
    }
1261
  } else if (isa<ConstantExpr>(Ops1)) {
1262
    // If RHS is a constant expression, but the left side isn't, swap the
1263
    // operands and try again.
1264
    Predicate = ICmpInst::getSwappedPredicate(Predicate);
1265
    return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1266
  }
1267

1268
  // Flush any denormal constant float input according to denormal handling
1269
  // mode.
1270
  Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1271
  if (!Ops0)
1272
    return nullptr;
1273
  Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1274
  if (!Ops1)
1275
    return nullptr;
1276

1277
  return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1278
}
1279

1280
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1281
                                           const DataLayout &DL) {
1282
  assert(Instruction::isUnaryOp(Opcode));
1283

1284
  return ConstantFoldUnaryInstruction(Opcode, Op);
1285
}
1286

1287
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1288
                                             Constant *RHS,
1289
                                             const DataLayout &DL) {
1290
  assert(Instruction::isBinaryOp(Opcode));
1291
  if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1292
    if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1293
      return C;
1294

1295
  if (ConstantExpr::isDesirableBinOp(Opcode))
1296
    return ConstantExpr::get(Opcode, LHS, RHS);
1297
  return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1298
}
1299

1300
Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1301
                                bool IsOutput) {
1302
  if (!I || !I->getParent() || !I->getFunction())
1303
    return Operand;
1304

1305
  ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1306
  if (!CFP)
1307
    return Operand;
1308

1309
  const APFloat &APF = CFP->getValueAPF();
1310
  // TODO: Should this canonicalize nans?
1311
  if (!APF.isDenormal())
1312
    return Operand;
1313

1314
  Type *Ty = CFP->getType();
1315
  DenormalMode DenormMode =
1316
      I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1317
  DenormalMode::DenormalModeKind Mode =
1318
      IsOutput ? DenormMode.Output : DenormMode.Input;
1319
  switch (Mode) {
1320
  default:
1321
    llvm_unreachable("unknown denormal mode");
1322
  case DenormalMode::Dynamic:
1323
    return nullptr;
1324
  case DenormalMode::IEEE:
1325
    return Operand;
1326
  case DenormalMode::PreserveSign:
1327
    if (APF.isDenormal()) {
1328
      return ConstantFP::get(
1329
          Ty->getContext(),
1330
          APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1331
    }
1332
    return Operand;
1333
  case DenormalMode::PositiveZero:
1334
    if (APF.isDenormal()) {
1335
      return ConstantFP::get(Ty->getContext(),
1336
                             APFloat::getZero(Ty->getFltSemantics(), false));
1337
    }
1338
    return Operand;
1339
  }
1340
  return Operand;
1341
}
1342

1343
Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1344
                                           Constant *RHS, const DataLayout &DL,
1345
                                           const Instruction *I,
1346
                                           bool AllowNonDeterministic) {
1347
  if (Instruction::isBinaryOp(Opcode)) {
1348
    // Flush denormal inputs if needed.
1349
    Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1350
    if (!Op0)
1351
      return nullptr;
1352
    Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1353
    if (!Op1)
1354
      return nullptr;
1355

1356
    // If nsz or an algebraic FMF flag is set, the result of the FP operation
1357
    // may change due to future optimization. Don't constant fold them if
1358
    // non-deterministic results are not allowed.
1359
    if (!AllowNonDeterministic)
1360
      if (auto *FP = dyn_cast_or_null<FPMathOperator>(I))
1361
        if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1362
            FP->hasAllowContract() || FP->hasAllowReciprocal())
1363
          return nullptr;
1364

1365
    // Calculate constant result.
1366
    Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1367
    if (!C)
1368
      return nullptr;
1369

1370
    // Flush denormal output if needed.
1371
    C = FlushFPConstant(C, I, /* IsOutput */ true);
1372
    if (!C)
1373
      return nullptr;
1374

1375
    // The precise NaN value is non-deterministic.
1376
    if (!AllowNonDeterministic && C->isNaN())
1377
      return nullptr;
1378

1379
    return C;
1380
  }
1381
  // If instruction lacks a parent/function and the denormal mode cannot be
1382
  // determined, use the default (IEEE).
1383
  return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1384
}
1385

1386
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1387
                                        Type *DestTy, const DataLayout &DL) {
1388
  assert(Instruction::isCast(Opcode));
1389
  switch (Opcode) {
1390
  default:
1391
    llvm_unreachable("Missing case");
1392
  case Instruction::PtrToInt:
1393
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1394
      Constant *FoldedValue = nullptr;
1395
      // If the input is a inttoptr, eliminate the pair.  This requires knowing
1396
      // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1397
      if (CE->getOpcode() == Instruction::IntToPtr) {
1398
        // zext/trunc the inttoptr to pointer size.
1399
        FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1400
                                              DL.getIntPtrType(CE->getType()),
1401
                                              /*IsSigned=*/false, DL);
1402
      } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1403
        // If we have GEP, we can perform the following folds:
1404
        // (ptrtoint (gep null, x)) -> x
1405
        // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1406
        unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1407
        APInt BaseOffset(BitWidth, 0);
1408
        auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1409
            DL, BaseOffset, /*AllowNonInbounds=*/true));
1410
        if (Base->isNullValue()) {
1411
          FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1412
        } else {
1413
          // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1414
          if (GEP->getNumIndices() == 1 &&
1415
              GEP->getSourceElementType()->isIntegerTy(8)) {
1416
            auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1417
            auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1418
            Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1419
            if (Sub && Sub->getType() == IntIdxTy &&
1420
                Sub->getOpcode() == Instruction::Sub &&
1421
                Sub->getOperand(0)->isNullValue())
1422
              FoldedValue = ConstantExpr::getSub(
1423
                  ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1424
          }
1425
        }
1426
      }
1427
      if (FoldedValue) {
1428
        // Do a zext or trunc to get to the ptrtoint dest size.
1429
        return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1430
                                       DL);
1431
      }
1432
    }
1433
    break;
1434
  case Instruction::IntToPtr:
1435
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1436
    // the int size is >= the ptr size and the address spaces are the same.
1437
    // This requires knowing the width of a pointer, so it can't be done in
1438
    // ConstantExpr::getCast.
1439
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1440
      if (CE->getOpcode() == Instruction::PtrToInt) {
1441
        Constant *SrcPtr = CE->getOperand(0);
1442
        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1443
        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1444

1445
        if (MidIntSize >= SrcPtrSize) {
1446
          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1447
          if (SrcAS == DestTy->getPointerAddressSpace())
1448
            return FoldBitCast(CE->getOperand(0), DestTy, DL);
1449
        }
1450
      }
1451
    }
1452
    break;
1453
  case Instruction::Trunc:
1454
  case Instruction::ZExt:
1455
  case Instruction::SExt:
1456
  case Instruction::FPTrunc:
1457
  case Instruction::FPExt:
1458
  case Instruction::UIToFP:
1459
  case Instruction::SIToFP:
1460
  case Instruction::FPToUI:
1461
  case Instruction::FPToSI:
1462
  case Instruction::AddrSpaceCast:
1463
    break;
1464
  case Instruction::BitCast:
1465
    return FoldBitCast(C, DestTy, DL);
1466
  }
1467

1468
  if (ConstantExpr::isDesirableCastOp(Opcode))
1469
    return ConstantExpr::getCast(Opcode, C, DestTy);
1470
  return ConstantFoldCastInstruction(Opcode, C, DestTy);
1471
}
1472

1473
Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1474
                                        bool IsSigned, const DataLayout &DL) {
1475
  Type *SrcTy = C->getType();
1476
  if (SrcTy == DestTy)
1477
    return C;
1478
  if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1479
    return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1480
  if (IsSigned)
1481
    return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1482
  return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1483
}
1484

1485
//===----------------------------------------------------------------------===//
1486
//  Constant Folding for Calls
1487
//
1488

1489
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1490
  if (Call->isNoBuiltin())
1491
    return false;
1492
  if (Call->getFunctionType() != F->getFunctionType())
1493
    return false;
1494
  switch (F->getIntrinsicID()) {
1495
  // Operations that do not operate floating-point numbers and do not depend on
1496
  // FP environment can be folded even in strictfp functions.
1497
  case Intrinsic::bswap:
1498
  case Intrinsic::ctpop:
1499
  case Intrinsic::ctlz:
1500
  case Intrinsic::cttz:
1501
  case Intrinsic::fshl:
1502
  case Intrinsic::fshr:
1503
  case Intrinsic::launder_invariant_group:
1504
  case Intrinsic::strip_invariant_group:
1505
  case Intrinsic::masked_load:
1506
  case Intrinsic::get_active_lane_mask:
1507
  case Intrinsic::abs:
1508
  case Intrinsic::smax:
1509
  case Intrinsic::smin:
1510
  case Intrinsic::umax:
1511
  case Intrinsic::umin:
1512
  case Intrinsic::scmp:
1513
  case Intrinsic::ucmp:
1514
  case Intrinsic::sadd_with_overflow:
1515
  case Intrinsic::uadd_with_overflow:
1516
  case Intrinsic::ssub_with_overflow:
1517
  case Intrinsic::usub_with_overflow:
1518
  case Intrinsic::smul_with_overflow:
1519
  case Intrinsic::umul_with_overflow:
1520
  case Intrinsic::sadd_sat:
1521
  case Intrinsic::uadd_sat:
1522
  case Intrinsic::ssub_sat:
1523
  case Intrinsic::usub_sat:
1524
  case Intrinsic::smul_fix:
1525
  case Intrinsic::smul_fix_sat:
1526
  case Intrinsic::bitreverse:
1527
  case Intrinsic::is_constant:
1528
  case Intrinsic::vector_reduce_add:
1529
  case Intrinsic::vector_reduce_mul:
1530
  case Intrinsic::vector_reduce_and:
1531
  case Intrinsic::vector_reduce_or:
1532
  case Intrinsic::vector_reduce_xor:
1533
  case Intrinsic::vector_reduce_smin:
1534
  case Intrinsic::vector_reduce_smax:
1535
  case Intrinsic::vector_reduce_umin:
1536
  case Intrinsic::vector_reduce_umax:
1537
  // Target intrinsics
1538
  case Intrinsic::amdgcn_perm:
1539
  case Intrinsic::amdgcn_wave_reduce_umin:
1540
  case Intrinsic::amdgcn_wave_reduce_umax:
1541
  case Intrinsic::amdgcn_s_wqm:
1542
  case Intrinsic::amdgcn_s_quadmask:
1543
  case Intrinsic::amdgcn_s_bitreplicate:
1544
  case Intrinsic::arm_mve_vctp8:
1545
  case Intrinsic::arm_mve_vctp16:
1546
  case Intrinsic::arm_mve_vctp32:
1547
  case Intrinsic::arm_mve_vctp64:
1548
  case Intrinsic::aarch64_sve_convert_from_svbool:
1549
  // WebAssembly float semantics are always known
1550
  case Intrinsic::wasm_trunc_signed:
1551
  case Intrinsic::wasm_trunc_unsigned:
1552
    return true;
1553

1554
  // Floating point operations cannot be folded in strictfp functions in
1555
  // general case. They can be folded if FP environment is known to compiler.
1556
  case Intrinsic::minnum:
1557
  case Intrinsic::maxnum:
1558
  case Intrinsic::minimum:
1559
  case Intrinsic::maximum:
1560
  case Intrinsic::log:
1561
  case Intrinsic::log2:
1562
  case Intrinsic::log10:
1563
  case Intrinsic::exp:
1564
  case Intrinsic::exp2:
1565
  case Intrinsic::exp10:
1566
  case Intrinsic::sqrt:
1567
  case Intrinsic::sin:
1568
  case Intrinsic::cos:
1569
  case Intrinsic::pow:
1570
  case Intrinsic::powi:
1571
  case Intrinsic::ldexp:
1572
  case Intrinsic::fma:
1573
  case Intrinsic::fmuladd:
1574
  case Intrinsic::frexp:
1575
  case Intrinsic::fptoui_sat:
1576
  case Intrinsic::fptosi_sat:
1577
  case Intrinsic::convert_from_fp16:
1578
  case Intrinsic::convert_to_fp16:
1579
  case Intrinsic::amdgcn_cos:
1580
  case Intrinsic::amdgcn_cubeid:
1581
  case Intrinsic::amdgcn_cubema:
1582
  case Intrinsic::amdgcn_cubesc:
1583
  case Intrinsic::amdgcn_cubetc:
1584
  case Intrinsic::amdgcn_fmul_legacy:
1585
  case Intrinsic::amdgcn_fma_legacy:
1586
  case Intrinsic::amdgcn_fract:
1587
  case Intrinsic::amdgcn_sin:
1588
  // The intrinsics below depend on rounding mode in MXCSR.
1589
  case Intrinsic::x86_sse_cvtss2si:
1590
  case Intrinsic::x86_sse_cvtss2si64:
1591
  case Intrinsic::x86_sse_cvttss2si:
1592
  case Intrinsic::x86_sse_cvttss2si64:
1593
  case Intrinsic::x86_sse2_cvtsd2si:
1594
  case Intrinsic::x86_sse2_cvtsd2si64:
1595
  case Intrinsic::x86_sse2_cvttsd2si:
1596
  case Intrinsic::x86_sse2_cvttsd2si64:
1597
  case Intrinsic::x86_avx512_vcvtss2si32:
1598
  case Intrinsic::x86_avx512_vcvtss2si64:
1599
  case Intrinsic::x86_avx512_cvttss2si:
1600
  case Intrinsic::x86_avx512_cvttss2si64:
1601
  case Intrinsic::x86_avx512_vcvtsd2si32:
1602
  case Intrinsic::x86_avx512_vcvtsd2si64:
1603
  case Intrinsic::x86_avx512_cvttsd2si:
1604
  case Intrinsic::x86_avx512_cvttsd2si64:
1605
  case Intrinsic::x86_avx512_vcvtss2usi32:
1606
  case Intrinsic::x86_avx512_vcvtss2usi64:
1607
  case Intrinsic::x86_avx512_cvttss2usi:
1608
  case Intrinsic::x86_avx512_cvttss2usi64:
1609
  case Intrinsic::x86_avx512_vcvtsd2usi32:
1610
  case Intrinsic::x86_avx512_vcvtsd2usi64:
1611
  case Intrinsic::x86_avx512_cvttsd2usi:
1612
  case Intrinsic::x86_avx512_cvttsd2usi64:
1613
    return !Call->isStrictFP();
1614

1615
  // Sign operations are actually bitwise operations, they do not raise
1616
  // exceptions even for SNANs.
1617
  case Intrinsic::fabs:
1618
  case Intrinsic::copysign:
1619
  case Intrinsic::is_fpclass:
1620
  // Non-constrained variants of rounding operations means default FP
1621
  // environment, they can be folded in any case.
1622
  case Intrinsic::ceil:
1623
  case Intrinsic::floor:
1624
  case Intrinsic::round:
1625
  case Intrinsic::roundeven:
1626
  case Intrinsic::trunc:
1627
  case Intrinsic::nearbyint:
1628
  case Intrinsic::rint:
1629
  case Intrinsic::canonicalize:
1630
  // Constrained intrinsics can be folded if FP environment is known
1631
  // to compiler.
1632
  case Intrinsic::experimental_constrained_fma:
1633
  case Intrinsic::experimental_constrained_fmuladd:
1634
  case Intrinsic::experimental_constrained_fadd:
1635
  case Intrinsic::experimental_constrained_fsub:
1636
  case Intrinsic::experimental_constrained_fmul:
1637
  case Intrinsic::experimental_constrained_fdiv:
1638
  case Intrinsic::experimental_constrained_frem:
1639
  case Intrinsic::experimental_constrained_ceil:
1640
  case Intrinsic::experimental_constrained_floor:
1641
  case Intrinsic::experimental_constrained_round:
1642
  case Intrinsic::experimental_constrained_roundeven:
1643
  case Intrinsic::experimental_constrained_trunc:
1644
  case Intrinsic::experimental_constrained_nearbyint:
1645
  case Intrinsic::experimental_constrained_rint:
1646
  case Intrinsic::experimental_constrained_fcmp:
1647
  case Intrinsic::experimental_constrained_fcmps:
1648
    return true;
1649
  default:
1650
    return false;
1651
  case Intrinsic::not_intrinsic: break;
1652
  }
1653

1654
  if (!F->hasName() || Call->isStrictFP())
1655
    return false;
1656

1657
  // In these cases, the check of the length is required.  We don't want to
1658
  // return true for a name like "cos\0blah" which strcmp would return equal to
1659
  // "cos", but has length 8.
1660
  StringRef Name = F->getName();
1661
  switch (Name[0]) {
1662
  default:
1663
    return false;
1664
  case 'a':
1665
    return Name == "acos" || Name == "acosf" ||
1666
           Name == "asin" || Name == "asinf" ||
1667
           Name == "atan" || Name == "atanf" ||
1668
           Name == "atan2" || Name == "atan2f";
1669
  case 'c':
1670
    return Name == "ceil" || Name == "ceilf" ||
1671
           Name == "cos" || Name == "cosf" ||
1672
           Name == "cosh" || Name == "coshf";
1673
  case 'e':
1674
    return Name == "exp" || Name == "expf" ||
1675
           Name == "exp2" || Name == "exp2f";
1676
  case 'f':
1677
    return Name == "fabs" || Name == "fabsf" ||
1678
           Name == "floor" || Name == "floorf" ||
1679
           Name == "fmod" || Name == "fmodf";
1680
  case 'l':
1681
    return Name == "log" || Name == "logf" || Name == "log2" ||
1682
           Name == "log2f" || Name == "log10" || Name == "log10f" ||
1683
           Name == "logl";
1684
  case 'n':
1685
    return Name == "nearbyint" || Name == "nearbyintf";
1686
  case 'p':
1687
    return Name == "pow" || Name == "powf";
1688
  case 'r':
1689
    return Name == "remainder" || Name == "remainderf" ||
1690
           Name == "rint" || Name == "rintf" ||
1691
           Name == "round" || Name == "roundf";
1692
  case 's':
1693
    return Name == "sin" || Name == "sinf" ||
1694
           Name == "sinh" || Name == "sinhf" ||
1695
           Name == "sqrt" || Name == "sqrtf";
1696
  case 't':
1697
    return Name == "tan" || Name == "tanf" ||
1698
           Name == "tanh" || Name == "tanhf" ||
1699
           Name == "trunc" || Name == "truncf";
1700
  case '_':
1701
    // Check for various function names that get used for the math functions
1702
    // when the header files are preprocessed with the macro
1703
    // __FINITE_MATH_ONLY__ enabled.
1704
    // The '12' here is the length of the shortest name that can match.
1705
    // We need to check the size before looking at Name[1] and Name[2]
1706
    // so we may as well check a limit that will eliminate mismatches.
1707
    if (Name.size() < 12 || Name[1] != '_')
1708
      return false;
1709
    switch (Name[2]) {
1710
    default:
1711
      return false;
1712
    case 'a':
1713
      return Name == "__acos_finite" || Name == "__acosf_finite" ||
1714
             Name == "__asin_finite" || Name == "__asinf_finite" ||
1715
             Name == "__atan2_finite" || Name == "__atan2f_finite";
1716
    case 'c':
1717
      return Name == "__cosh_finite" || Name == "__coshf_finite";
1718
    case 'e':
1719
      return Name == "__exp_finite" || Name == "__expf_finite" ||
1720
             Name == "__exp2_finite" || Name == "__exp2f_finite";
1721
    case 'l':
1722
      return Name == "__log_finite" || Name == "__logf_finite" ||
1723
             Name == "__log10_finite" || Name == "__log10f_finite";
1724
    case 'p':
1725
      return Name == "__pow_finite" || Name == "__powf_finite";
1726
    case 's':
1727
      return Name == "__sinh_finite" || Name == "__sinhf_finite";
1728
    }
1729
  }
1730
}
1731

1732
namespace {
1733

1734
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1735
  if (Ty->isHalfTy() || Ty->isFloatTy()) {
1736
    APFloat APF(V);
1737
    bool unused;
1738
    APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1739
    return ConstantFP::get(Ty->getContext(), APF);
1740
  }
1741
  if (Ty->isDoubleTy())
1742
    return ConstantFP::get(Ty->getContext(), APFloat(V));
1743
  llvm_unreachable("Can only constant fold half/float/double");
1744
}
1745

1746
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1747
Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
1748
  if (Ty->isFP128Ty())
1749
    return ConstantFP::get(Ty, V);
1750
  llvm_unreachable("Can only constant fold fp128");
1751
}
1752
#endif
1753

1754
/// Clear the floating-point exception state.
1755
inline void llvm_fenv_clearexcept() {
1756
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1757
  feclearexcept(FE_ALL_EXCEPT);
1758
#endif
1759
  errno = 0;
1760
}
1761

1762
/// Test if a floating-point exception was raised.
1763
inline bool llvm_fenv_testexcept() {
1764
  int errno_val = errno;
1765
  if (errno_val == ERANGE || errno_val == EDOM)
1766
    return true;
1767
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1768
  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1769
    return true;
1770
#endif
1771
  return false;
1772
}
1773

1774
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1775
                         Type *Ty) {
1776
  llvm_fenv_clearexcept();
1777
  double Result = NativeFP(V.convertToDouble());
1778
  if (llvm_fenv_testexcept()) {
1779
    llvm_fenv_clearexcept();
1780
    return nullptr;
1781
  }
1782

1783
  return GetConstantFoldFPValue(Result, Ty);
1784
}
1785

1786
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1787
Constant *ConstantFoldFP128(long double (*NativeFP)(long double),
1788
                            const APFloat &V, Type *Ty) {
1789
  llvm_fenv_clearexcept();
1790
  float128 Result = NativeFP(V.convertToQuad());
1791
  if (llvm_fenv_testexcept()) {
1792
    llvm_fenv_clearexcept();
1793
    return nullptr;
1794
  }
1795

1796
  return GetConstantFoldFPValue128(Result, Ty);
1797
}
1798
#endif
1799

1800
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1801
                               const APFloat &V, const APFloat &W, Type *Ty) {
1802
  llvm_fenv_clearexcept();
1803
  double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1804
  if (llvm_fenv_testexcept()) {
1805
    llvm_fenv_clearexcept();
1806
    return nullptr;
1807
  }
1808

1809
  return GetConstantFoldFPValue(Result, Ty);
1810
}
1811

1812
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1813
  FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1814
  if (!VT)
1815
    return nullptr;
1816

1817
  // This isn't strictly necessary, but handle the special/common case of zero:
1818
  // all integer reductions of a zero input produce zero.
1819
  if (isa<ConstantAggregateZero>(Op))
1820
    return ConstantInt::get(VT->getElementType(), 0);
1821

1822
  // This is the same as the underlying binops - poison propagates.
1823
  if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1824
    return PoisonValue::get(VT->getElementType());
1825

1826
  // TODO: Handle undef.
1827
  if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1828
    return nullptr;
1829

1830
  auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1831
  if (!EltC)
1832
    return nullptr;
1833

1834
  APInt Acc = EltC->getValue();
1835
  for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1836
    if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1837
      return nullptr;
1838
    const APInt &X = EltC->getValue();
1839
    switch (IID) {
1840
    case Intrinsic::vector_reduce_add:
1841
      Acc = Acc + X;
1842
      break;
1843
    case Intrinsic::vector_reduce_mul:
1844
      Acc = Acc * X;
1845
      break;
1846
    case Intrinsic::vector_reduce_and:
1847
      Acc = Acc & X;
1848
      break;
1849
    case Intrinsic::vector_reduce_or:
1850
      Acc = Acc | X;
1851
      break;
1852
    case Intrinsic::vector_reduce_xor:
1853
      Acc = Acc ^ X;
1854
      break;
1855
    case Intrinsic::vector_reduce_smin:
1856
      Acc = APIntOps::smin(Acc, X);
1857
      break;
1858
    case Intrinsic::vector_reduce_smax:
1859
      Acc = APIntOps::smax(Acc, X);
1860
      break;
1861
    case Intrinsic::vector_reduce_umin:
1862
      Acc = APIntOps::umin(Acc, X);
1863
      break;
1864
    case Intrinsic::vector_reduce_umax:
1865
      Acc = APIntOps::umax(Acc, X);
1866
      break;
1867
    }
1868
  }
1869

1870
  return ConstantInt::get(Op->getContext(), Acc);
1871
}
1872

1873
/// Attempt to fold an SSE floating point to integer conversion of a constant
1874
/// floating point. If roundTowardZero is false, the default IEEE rounding is
1875
/// used (toward nearest, ties to even). This matches the behavior of the
1876
/// non-truncating SSE instructions in the default rounding mode. The desired
1877
/// integer type Ty is used to select how many bits are available for the
1878
/// result. Returns null if the conversion cannot be performed, otherwise
1879
/// returns the Constant value resulting from the conversion.
1880
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1881
                                      Type *Ty, bool IsSigned) {
1882
  // All of these conversion intrinsics form an integer of at most 64bits.
1883
  unsigned ResultWidth = Ty->getIntegerBitWidth();
1884
  assert(ResultWidth <= 64 &&
1885
         "Can only constant fold conversions to 64 and 32 bit ints");
1886

1887
  uint64_t UIntVal;
1888
  bool isExact = false;
1889
  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1890
                                              : APFloat::rmNearestTiesToEven;
1891
  APFloat::opStatus status =
1892
      Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1893
                           IsSigned, mode, &isExact);
1894
  if (status != APFloat::opOK &&
1895
      (!roundTowardZero || status != APFloat::opInexact))
1896
    return nullptr;
1897
  return ConstantInt::get(Ty, UIntVal, IsSigned);
1898
}
1899

1900
double getValueAsDouble(ConstantFP *Op) {
1901
  Type *Ty = Op->getType();
1902

1903
  if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1904
    return Op->getValueAPF().convertToDouble();
1905

1906
  bool unused;
1907
  APFloat APF = Op->getValueAPF();
1908
  APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1909
  return APF.convertToDouble();
1910
}
1911

1912
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1913
  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1914
    C = &CI->getValue();
1915
    return true;
1916
  }
1917
  if (isa<UndefValue>(Op)) {
1918
    C = nullptr;
1919
    return true;
1920
  }
1921
  return false;
1922
}
1923

1924
/// Checks if the given intrinsic call, which evaluates to constant, is allowed
1925
/// to be folded.
1926
///
1927
/// \param CI Constrained intrinsic call.
1928
/// \param St Exception flags raised during constant evaluation.
1929
static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1930
                               APFloat::opStatus St) {
1931
  std::optional<RoundingMode> ORM = CI->getRoundingMode();
1932
  std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1933

1934
  // If the operation does not change exception status flags, it is safe
1935
  // to fold.
1936
  if (St == APFloat::opStatus::opOK)
1937
    return true;
1938

1939
  // If evaluation raised FP exception, the result can depend on rounding
1940
  // mode. If the latter is unknown, folding is not possible.
1941
  if (ORM && *ORM == RoundingMode::Dynamic)
1942
    return false;
1943

1944
  // If FP exceptions are ignored, fold the call, even if such exception is
1945
  // raised.
1946
  if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1947
    return true;
1948

1949
  // Leave the calculation for runtime so that exception flags be correctly set
1950
  // in hardware.
1951
  return false;
1952
}
1953

1954
/// Returns the rounding mode that should be used for constant evaluation.
1955
static RoundingMode
1956
getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1957
  std::optional<RoundingMode> ORM = CI->getRoundingMode();
1958
  if (!ORM || *ORM == RoundingMode::Dynamic)
1959
    // Even if the rounding mode is unknown, try evaluating the operation.
1960
    // If it does not raise inexact exception, rounding was not applied,
1961
    // so the result is exact and does not depend on rounding mode. Whether
1962
    // other FP exceptions are raised, it does not depend on rounding mode.
1963
    return RoundingMode::NearestTiesToEven;
1964
  return *ORM;
1965
}
1966

1967
/// Try to constant fold llvm.canonicalize for the given caller and value.
1968
static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1969
                                          const APFloat &Src) {
1970
  // Zero, positive and negative, is always OK to fold.
1971
  if (Src.isZero()) {
1972
    // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1973
    return ConstantFP::get(
1974
        CI->getContext(),
1975
        APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1976
  }
1977

1978
  if (!Ty->isIEEELikeFPTy())
1979
    return nullptr;
1980

1981
  // Zero is always canonical and the sign must be preserved.
1982
  //
1983
  // Denorms and nans may have special encodings, but it should be OK to fold a
1984
  // totally average number.
1985
  if (Src.isNormal() || Src.isInfinity())
1986
    return ConstantFP::get(CI->getContext(), Src);
1987

1988
  if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1989
    DenormalMode DenormMode =
1990
        CI->getFunction()->getDenormalMode(Src.getSemantics());
1991

1992
    if (DenormMode == DenormalMode::getIEEE())
1993
      return ConstantFP::get(CI->getContext(), Src);
1994

1995
    if (DenormMode.Input == DenormalMode::Dynamic)
1996
      return nullptr;
1997

1998
    // If we know if either input or output is flushed, we can fold.
1999
    if ((DenormMode.Input == DenormalMode::Dynamic &&
2000
         DenormMode.Output == DenormalMode::IEEE) ||
2001
        (DenormMode.Input == DenormalMode::IEEE &&
2002
         DenormMode.Output == DenormalMode::Dynamic))
2003
      return nullptr;
2004

2005
    bool IsPositive =
2006
        (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2007
         (DenormMode.Output == DenormalMode::PositiveZero &&
2008
          DenormMode.Input == DenormalMode::IEEE));
2009

2010
    return ConstantFP::get(CI->getContext(),
2011
                           APFloat::getZero(Src.getSemantics(), !IsPositive));
2012
  }
2013

2014
  return nullptr;
2015
}
2016

2017
static Constant *ConstantFoldScalarCall1(StringRef Name,
2018
                                         Intrinsic::ID IntrinsicID,
2019
                                         Type *Ty,
2020
                                         ArrayRef<Constant *> Operands,
2021
                                         const TargetLibraryInfo *TLI,
2022
                                         const CallBase *Call) {
2023
  assert(Operands.size() == 1 && "Wrong number of operands.");
2024

2025
  if (IntrinsicID == Intrinsic::is_constant) {
2026
    // We know we have a "Constant" argument. But we want to only
2027
    // return true for manifest constants, not those that depend on
2028
    // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2029
    if (Operands[0]->isManifestConstant())
2030
      return ConstantInt::getTrue(Ty->getContext());
2031
    return nullptr;
2032
  }
2033

2034
  if (isa<PoisonValue>(Operands[0])) {
2035
    // TODO: All of these operations should probably propagate poison.
2036
    if (IntrinsicID == Intrinsic::canonicalize)
2037
      return PoisonValue::get(Ty);
2038
  }
2039

2040
  if (isa<UndefValue>(Operands[0])) {
2041
    // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2042
    // ctpop() is between 0 and bitwidth, pick 0 for undef.
2043
    // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2044
    if (IntrinsicID == Intrinsic::cos ||
2045
        IntrinsicID == Intrinsic::ctpop ||
2046
        IntrinsicID == Intrinsic::fptoui_sat ||
2047
        IntrinsicID == Intrinsic::fptosi_sat ||
2048
        IntrinsicID == Intrinsic::canonicalize)
2049
      return Constant::getNullValue(Ty);
2050
    if (IntrinsicID == Intrinsic::bswap ||
2051
        IntrinsicID == Intrinsic::bitreverse ||
2052
        IntrinsicID == Intrinsic::launder_invariant_group ||
2053
        IntrinsicID == Intrinsic::strip_invariant_group)
2054
      return Operands[0];
2055
  }
2056

2057
  if (isa<ConstantPointerNull>(Operands[0])) {
2058
    // launder(null) == null == strip(null) iff in addrspace 0
2059
    if (IntrinsicID == Intrinsic::launder_invariant_group ||
2060
        IntrinsicID == Intrinsic::strip_invariant_group) {
2061
      // If instruction is not yet put in a basic block (e.g. when cloning
2062
      // a function during inlining), Call's caller may not be available.
2063
      // So check Call's BB first before querying Call->getCaller.
2064
      const Function *Caller =
2065
          Call->getParent() ? Call->getCaller() : nullptr;
2066
      if (Caller &&
2067
          !NullPointerIsDefined(
2068
              Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2069
        return Operands[0];
2070
      }
2071
      return nullptr;
2072
    }
2073
  }
2074

2075
  if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2076
    if (IntrinsicID == Intrinsic::convert_to_fp16) {
2077
      APFloat Val(Op->getValueAPF());
2078

2079
      bool lost = false;
2080
      Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2081

2082
      return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2083
    }
2084

2085
    APFloat U = Op->getValueAPF();
2086

2087
    if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2088
        IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2089
      bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2090

2091
      if (U.isNaN())
2092
        return nullptr;
2093

2094
      unsigned Width = Ty->getIntegerBitWidth();
2095
      APSInt Int(Width, !Signed);
2096
      bool IsExact = false;
2097
      APFloat::opStatus Status =
2098
          U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2099

2100
      if (Status == APFloat::opOK || Status == APFloat::opInexact)
2101
        return ConstantInt::get(Ty, Int);
2102

2103
      return nullptr;
2104
    }
2105

2106
    if (IntrinsicID == Intrinsic::fptoui_sat ||
2107
        IntrinsicID == Intrinsic::fptosi_sat) {
2108
      // convertToInteger() already has the desired saturation semantics.
2109
      APSInt Int(Ty->getIntegerBitWidth(),
2110
                 IntrinsicID == Intrinsic::fptoui_sat);
2111
      bool IsExact;
2112
      U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2113
      return ConstantInt::get(Ty, Int);
2114
    }
2115

2116
    if (IntrinsicID == Intrinsic::canonicalize)
2117
      return constantFoldCanonicalize(Ty, Call, U);
2118

2119
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2120
    if (Ty->isFP128Ty()) {
2121
      if (IntrinsicID == Intrinsic::log) {
2122
        float128 Result = logf128(Op->getValueAPF().convertToQuad());
2123
        return GetConstantFoldFPValue128(Result, Ty);
2124
      }
2125

2126
      LibFunc Fp128Func = NotLibFunc;
2127
      if (TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2128
          Fp128Func == LibFunc_logl)
2129
        return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2130
    }
2131
#endif
2132

2133
    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2134
      return nullptr;
2135

2136
    // Use internal versions of these intrinsics.
2137

2138
    if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2139
      U.roundToIntegral(APFloat::rmNearestTiesToEven);
2140
      return ConstantFP::get(Ty->getContext(), U);
2141
    }
2142

2143
    if (IntrinsicID == Intrinsic::round) {
2144
      U.roundToIntegral(APFloat::rmNearestTiesToAway);
2145
      return ConstantFP::get(Ty->getContext(), U);
2146
    }
2147

2148
    if (IntrinsicID == Intrinsic::roundeven) {
2149
      U.roundToIntegral(APFloat::rmNearestTiesToEven);
2150
      return ConstantFP::get(Ty->getContext(), U);
2151
    }
2152

2153
    if (IntrinsicID == Intrinsic::ceil) {
2154
      U.roundToIntegral(APFloat::rmTowardPositive);
2155
      return ConstantFP::get(Ty->getContext(), U);
2156
    }
2157

2158
    if (IntrinsicID == Intrinsic::floor) {
2159
      U.roundToIntegral(APFloat::rmTowardNegative);
2160
      return ConstantFP::get(Ty->getContext(), U);
2161
    }
2162

2163
    if (IntrinsicID == Intrinsic::trunc) {
2164
      U.roundToIntegral(APFloat::rmTowardZero);
2165
      return ConstantFP::get(Ty->getContext(), U);
2166
    }
2167

2168
    if (IntrinsicID == Intrinsic::fabs) {
2169
      U.clearSign();
2170
      return ConstantFP::get(Ty->getContext(), U);
2171
    }
2172

2173
    if (IntrinsicID == Intrinsic::amdgcn_fract) {
2174
      // The v_fract instruction behaves like the OpenCL spec, which defines
2175
      // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2176
      //   there to prevent fract(-small) from returning 1.0. It returns the
2177
      //   largest positive floating-point number less than 1.0."
2178
      APFloat FloorU(U);
2179
      FloorU.roundToIntegral(APFloat::rmTowardNegative);
2180
      APFloat FractU(U - FloorU);
2181
      APFloat AlmostOne(U.getSemantics(), 1);
2182
      AlmostOne.next(/*nextDown*/ true);
2183
      return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2184
    }
2185

2186
    // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2187
    // raise FP exceptions, unless the argument is signaling NaN.
2188

2189
    std::optional<APFloat::roundingMode> RM;
2190
    switch (IntrinsicID) {
2191
    default:
2192
      break;
2193
    case Intrinsic::experimental_constrained_nearbyint:
2194
    case Intrinsic::experimental_constrained_rint: {
2195
      auto CI = cast<ConstrainedFPIntrinsic>(Call);
2196
      RM = CI->getRoundingMode();
2197
      if (!RM || *RM == RoundingMode::Dynamic)
2198
        return nullptr;
2199
      break;
2200
    }
2201
    case Intrinsic::experimental_constrained_round:
2202
      RM = APFloat::rmNearestTiesToAway;
2203
      break;
2204
    case Intrinsic::experimental_constrained_ceil:
2205
      RM = APFloat::rmTowardPositive;
2206
      break;
2207
    case Intrinsic::experimental_constrained_floor:
2208
      RM = APFloat::rmTowardNegative;
2209
      break;
2210
    case Intrinsic::experimental_constrained_trunc:
2211
      RM = APFloat::rmTowardZero;
2212
      break;
2213
    }
2214
    if (RM) {
2215
      auto CI = cast<ConstrainedFPIntrinsic>(Call);
2216
      if (U.isFinite()) {
2217
        APFloat::opStatus St = U.roundToIntegral(*RM);
2218
        if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2219
            St == APFloat::opInexact) {
2220
          std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2221
          if (EB && *EB == fp::ebStrict)
2222
            return nullptr;
2223
        }
2224
      } else if (U.isSignaling()) {
2225
        std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2226
        if (EB && *EB != fp::ebIgnore)
2227
          return nullptr;
2228
        U = APFloat::getQNaN(U.getSemantics());
2229
      }
2230
      return ConstantFP::get(Ty->getContext(), U);
2231
    }
2232

2233
    /// We only fold functions with finite arguments. Folding NaN and inf is
2234
    /// likely to be aborted with an exception anyway, and some host libms
2235
    /// have known errors raising exceptions.
2236
    if (!U.isFinite())
2237
      return nullptr;
2238

2239
    /// Currently APFloat versions of these functions do not exist, so we use
2240
    /// the host native double versions.  Float versions are not called
2241
    /// directly but for all these it is true (float)(f((double)arg)) ==
2242
    /// f(arg).  Long double not supported yet.
2243
    const APFloat &APF = Op->getValueAPF();
2244

2245
    switch (IntrinsicID) {
2246
      default: break;
2247
      case Intrinsic::log:
2248
        return ConstantFoldFP(log, APF, Ty);
2249
      case Intrinsic::log2:
2250
        // TODO: What about hosts that lack a C99 library?
2251
        return ConstantFoldFP(log2, APF, Ty);
2252
      case Intrinsic::log10:
2253
        // TODO: What about hosts that lack a C99 library?
2254
        return ConstantFoldFP(log10, APF, Ty);
2255
      case Intrinsic::exp:
2256
        return ConstantFoldFP(exp, APF, Ty);
2257
      case Intrinsic::exp2:
2258
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2259
        return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2260
      case Intrinsic::exp10:
2261
        // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2262
        return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2263
      case Intrinsic::sin:
2264
        return ConstantFoldFP(sin, APF, Ty);
2265
      case Intrinsic::cos:
2266
        return ConstantFoldFP(cos, APF, Ty);
2267
      case Intrinsic::sqrt:
2268
        return ConstantFoldFP(sqrt, APF, Ty);
2269
      case Intrinsic::amdgcn_cos:
2270
      case Intrinsic::amdgcn_sin: {
2271
        double V = getValueAsDouble(Op);
2272
        if (V < -256.0 || V > 256.0)
2273
          // The gfx8 and gfx9 architectures handle arguments outside the range
2274
          // [-256, 256] differently. This should be a rare case so bail out
2275
          // rather than trying to handle the difference.
2276
          return nullptr;
2277
        bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2278
        double V4 = V * 4.0;
2279
        if (V4 == floor(V4)) {
2280
          // Force exact results for quarter-integer inputs.
2281
          const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2282
          V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2283
        } else {
2284
          if (IsCos)
2285
            V = cos(V * 2.0 * numbers::pi);
2286
          else
2287
            V = sin(V * 2.0 * numbers::pi);
2288
        }
2289
        return GetConstantFoldFPValue(V, Ty);
2290
      }
2291
    }
2292

2293
    if (!TLI)
2294
      return nullptr;
2295

2296
    LibFunc Func = NotLibFunc;
2297
    if (!TLI->getLibFunc(Name, Func))
2298
      return nullptr;
2299

2300
    switch (Func) {
2301
    default:
2302
      break;
2303
    case LibFunc_acos:
2304
    case LibFunc_acosf:
2305
    case LibFunc_acos_finite:
2306
    case LibFunc_acosf_finite:
2307
      if (TLI->has(Func))
2308
        return ConstantFoldFP(acos, APF, Ty);
2309
      break;
2310
    case LibFunc_asin:
2311
    case LibFunc_asinf:
2312
    case LibFunc_asin_finite:
2313
    case LibFunc_asinf_finite:
2314
      if (TLI->has(Func))
2315
        return ConstantFoldFP(asin, APF, Ty);
2316
      break;
2317
    case LibFunc_atan:
2318
    case LibFunc_atanf:
2319
      if (TLI->has(Func))
2320
        return ConstantFoldFP(atan, APF, Ty);
2321
      break;
2322
    case LibFunc_ceil:
2323
    case LibFunc_ceilf:
2324
      if (TLI->has(Func)) {
2325
        U.roundToIntegral(APFloat::rmTowardPositive);
2326
        return ConstantFP::get(Ty->getContext(), U);
2327
      }
2328
      break;
2329
    case LibFunc_cos:
2330
    case LibFunc_cosf:
2331
      if (TLI->has(Func))
2332
        return ConstantFoldFP(cos, APF, Ty);
2333
      break;
2334
    case LibFunc_cosh:
2335
    case LibFunc_coshf:
2336
    case LibFunc_cosh_finite:
2337
    case LibFunc_coshf_finite:
2338
      if (TLI->has(Func))
2339
        return ConstantFoldFP(cosh, APF, Ty);
2340
      break;
2341
    case LibFunc_exp:
2342
    case LibFunc_expf:
2343
    case LibFunc_exp_finite:
2344
    case LibFunc_expf_finite:
2345
      if (TLI->has(Func))
2346
        return ConstantFoldFP(exp, APF, Ty);
2347
      break;
2348
    case LibFunc_exp2:
2349
    case LibFunc_exp2f:
2350
    case LibFunc_exp2_finite:
2351
    case LibFunc_exp2f_finite:
2352
      if (TLI->has(Func))
2353
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2354
        return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2355
      break;
2356
    case LibFunc_fabs:
2357
    case LibFunc_fabsf:
2358
      if (TLI->has(Func)) {
2359
        U.clearSign();
2360
        return ConstantFP::get(Ty->getContext(), U);
2361
      }
2362
      break;
2363
    case LibFunc_floor:
2364
    case LibFunc_floorf:
2365
      if (TLI->has(Func)) {
2366
        U.roundToIntegral(APFloat::rmTowardNegative);
2367
        return ConstantFP::get(Ty->getContext(), U);
2368
      }
2369
      break;
2370
    case LibFunc_log:
2371
    case LibFunc_logf:
2372
    case LibFunc_log_finite:
2373
    case LibFunc_logf_finite:
2374
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2375
        return ConstantFoldFP(log, APF, Ty);
2376
      break;
2377
    case LibFunc_log2:
2378
    case LibFunc_log2f:
2379
    case LibFunc_log2_finite:
2380
    case LibFunc_log2f_finite:
2381
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2382
        // TODO: What about hosts that lack a C99 library?
2383
        return ConstantFoldFP(log2, APF, Ty);
2384
      break;
2385
    case LibFunc_log10:
2386
    case LibFunc_log10f:
2387
    case LibFunc_log10_finite:
2388
    case LibFunc_log10f_finite:
2389
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2390
        // TODO: What about hosts that lack a C99 library?
2391
        return ConstantFoldFP(log10, APF, Ty);
2392
      break;
2393
    case LibFunc_logl:
2394
      return nullptr;
2395
    case LibFunc_nearbyint:
2396
    case LibFunc_nearbyintf:
2397
    case LibFunc_rint:
2398
    case LibFunc_rintf:
2399
      if (TLI->has(Func)) {
2400
        U.roundToIntegral(APFloat::rmNearestTiesToEven);
2401
        return ConstantFP::get(Ty->getContext(), U);
2402
      }
2403
      break;
2404
    case LibFunc_round:
2405
    case LibFunc_roundf:
2406
      if (TLI->has(Func)) {
2407
        U.roundToIntegral(APFloat::rmNearestTiesToAway);
2408
        return ConstantFP::get(Ty->getContext(), U);
2409
      }
2410
      break;
2411
    case LibFunc_sin:
2412
    case LibFunc_sinf:
2413
      if (TLI->has(Func))
2414
        return ConstantFoldFP(sin, APF, Ty);
2415
      break;
2416
    case LibFunc_sinh:
2417
    case LibFunc_sinhf:
2418
    case LibFunc_sinh_finite:
2419
    case LibFunc_sinhf_finite:
2420
      if (TLI->has(Func))
2421
        return ConstantFoldFP(sinh, APF, Ty);
2422
      break;
2423
    case LibFunc_sqrt:
2424
    case LibFunc_sqrtf:
2425
      if (!APF.isNegative() && TLI->has(Func))
2426
        return ConstantFoldFP(sqrt, APF, Ty);
2427
      break;
2428
    case LibFunc_tan:
2429
    case LibFunc_tanf:
2430
      if (TLI->has(Func))
2431
        return ConstantFoldFP(tan, APF, Ty);
2432
      break;
2433
    case LibFunc_tanh:
2434
    case LibFunc_tanhf:
2435
      if (TLI->has(Func))
2436
        return ConstantFoldFP(tanh, APF, Ty);
2437
      break;
2438
    case LibFunc_trunc:
2439
    case LibFunc_truncf:
2440
      if (TLI->has(Func)) {
2441
        U.roundToIntegral(APFloat::rmTowardZero);
2442
        return ConstantFP::get(Ty->getContext(), U);
2443
      }
2444
      break;
2445
    }
2446
    return nullptr;
2447
  }
2448

2449
  if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2450
    switch (IntrinsicID) {
2451
    case Intrinsic::bswap:
2452
      return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2453
    case Intrinsic::ctpop:
2454
      return ConstantInt::get(Ty, Op->getValue().popcount());
2455
    case Intrinsic::bitreverse:
2456
      return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2457
    case Intrinsic::convert_from_fp16: {
2458
      APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2459

2460
      bool lost = false;
2461
      APFloat::opStatus status = Val.convert(
2462
          Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2463

2464
      // Conversion is always precise.
2465
      (void)status;
2466
      assert(status != APFloat::opInexact && !lost &&
2467
             "Precision lost during fp16 constfolding");
2468

2469
      return ConstantFP::get(Ty->getContext(), Val);
2470
    }
2471

2472
    case Intrinsic::amdgcn_s_wqm: {
2473
      uint64_t Val = Op->getZExtValue();
2474
      Val |= (Val & 0x5555555555555555ULL) << 1 |
2475
             ((Val >> 1) & 0x5555555555555555ULL);
2476
      Val |= (Val & 0x3333333333333333ULL) << 2 |
2477
             ((Val >> 2) & 0x3333333333333333ULL);
2478
      return ConstantInt::get(Ty, Val);
2479
    }
2480

2481
    case Intrinsic::amdgcn_s_quadmask: {
2482
      uint64_t Val = Op->getZExtValue();
2483
      uint64_t QuadMask = 0;
2484
      for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
2485
        if (!(Val & 0xF))
2486
          continue;
2487

2488
        QuadMask |= (1ULL << I);
2489
      }
2490
      return ConstantInt::get(Ty, QuadMask);
2491
    }
2492

2493
    case Intrinsic::amdgcn_s_bitreplicate: {
2494
      uint64_t Val = Op->getZExtValue();
2495
      Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
2496
      Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
2497
      Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
2498
      Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
2499
      Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
2500
      Val = Val | Val << 1;
2501
      return ConstantInt::get(Ty, Val);
2502
    }
2503

2504
    default:
2505
      return nullptr;
2506
    }
2507
  }
2508

2509
  switch (IntrinsicID) {
2510
  default: break;
2511
  case Intrinsic::vector_reduce_add:
2512
  case Intrinsic::vector_reduce_mul:
2513
  case Intrinsic::vector_reduce_and:
2514
  case Intrinsic::vector_reduce_or:
2515
  case Intrinsic::vector_reduce_xor:
2516
  case Intrinsic::vector_reduce_smin:
2517
  case Intrinsic::vector_reduce_smax:
2518
  case Intrinsic::vector_reduce_umin:
2519
  case Intrinsic::vector_reduce_umax:
2520
    if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2521
      return C;
2522
    break;
2523
  }
2524

2525
  // Support ConstantVector in case we have an Undef in the top.
2526
  if (isa<ConstantVector>(Operands[0]) ||
2527
      isa<ConstantDataVector>(Operands[0])) {
2528
    auto *Op = cast<Constant>(Operands[0]);
2529
    switch (IntrinsicID) {
2530
    default: break;
2531
    case Intrinsic::x86_sse_cvtss2si:
2532
    case Intrinsic::x86_sse_cvtss2si64:
2533
    case Intrinsic::x86_sse2_cvtsd2si:
2534
    case Intrinsic::x86_sse2_cvtsd2si64:
2535
      if (ConstantFP *FPOp =
2536
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2537
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2538
                                           /*roundTowardZero=*/false, Ty,
2539
                                           /*IsSigned*/true);
2540
      break;
2541
    case Intrinsic::x86_sse_cvttss2si:
2542
    case Intrinsic::x86_sse_cvttss2si64:
2543
    case Intrinsic::x86_sse2_cvttsd2si:
2544
    case Intrinsic::x86_sse2_cvttsd2si64:
2545
      if (ConstantFP *FPOp =
2546
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2547
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2548
                                           /*roundTowardZero=*/true, Ty,
2549
                                           /*IsSigned*/true);
2550
      break;
2551
    }
2552
  }
2553

2554
  return nullptr;
2555
}
2556

2557
static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2558
                                 const ConstrainedFPIntrinsic *Call) {
2559
  APFloat::opStatus St = APFloat::opOK;
2560
  auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2561
  FCmpInst::Predicate Cond = FCmp->getPredicate();
2562
  if (FCmp->isSignaling()) {
2563
    if (Op1.isNaN() || Op2.isNaN())
2564
      St = APFloat::opInvalidOp;
2565
  } else {
2566
    if (Op1.isSignaling() || Op2.isSignaling())
2567
      St = APFloat::opInvalidOp;
2568
  }
2569
  bool Result = FCmpInst::compare(Op1, Op2, Cond);
2570
  if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2571
    return ConstantInt::get(Call->getType()->getScalarType(), Result);
2572
  return nullptr;
2573
}
2574

2575
static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
2576
                                      ArrayRef<Constant *> Operands,
2577
                                      const TargetLibraryInfo *TLI) {
2578
  if (!TLI)
2579
    return nullptr;
2580

2581
  LibFunc Func = NotLibFunc;
2582
  if (!TLI->getLibFunc(Name, Func))
2583
    return nullptr;
2584

2585
  const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
2586
  if (!Op1)
2587
    return nullptr;
2588

2589
  const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
2590
  if (!Op2)
2591
    return nullptr;
2592

2593
  const APFloat &Op1V = Op1->getValueAPF();
2594
  const APFloat &Op2V = Op2->getValueAPF();
2595

2596
  switch (Func) {
2597
  default:
2598
    break;
2599
  case LibFunc_pow:
2600
  case LibFunc_powf:
2601
  case LibFunc_pow_finite:
2602
  case LibFunc_powf_finite:
2603
    if (TLI->has(Func))
2604
      return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2605
    break;
2606
  case LibFunc_fmod:
2607
  case LibFunc_fmodf:
2608
    if (TLI->has(Func)) {
2609
      APFloat V = Op1->getValueAPF();
2610
      if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2611
        return ConstantFP::get(Ty->getContext(), V);
2612
    }
2613
    break;
2614
  case LibFunc_remainder:
2615
  case LibFunc_remainderf:
2616
    if (TLI->has(Func)) {
2617
      APFloat V = Op1->getValueAPF();
2618
      if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2619
        return ConstantFP::get(Ty->getContext(), V);
2620
    }
2621
    break;
2622
  case LibFunc_atan2:
2623
  case LibFunc_atan2f:
2624
    // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2625
    // (Solaris), so we do not assume a known result for that.
2626
    if (Op1V.isZero() && Op2V.isZero())
2627
      return nullptr;
2628
    [[fallthrough]];
2629
  case LibFunc_atan2_finite:
2630
  case LibFunc_atan2f_finite:
2631
    if (TLI->has(Func))
2632
      return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2633
    break;
2634
  }
2635

2636
  return nullptr;
2637
}
2638

2639
static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
2640
                                            ArrayRef<Constant *> Operands,
2641
                                            const CallBase *Call) {
2642
  assert(Operands.size() == 2 && "Wrong number of operands.");
2643

2644
  if (Ty->isFloatingPointTy()) {
2645
    // TODO: We should have undef handling for all of the FP intrinsics that
2646
    //       are attempted to be folded in this function.
2647
    bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2648
    bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2649
    switch (IntrinsicID) {
2650
    case Intrinsic::maxnum:
2651
    case Intrinsic::minnum:
2652
    case Intrinsic::maximum:
2653
    case Intrinsic::minimum:
2654
      // If one argument is undef, return the other argument.
2655
      if (IsOp0Undef)
2656
        return Operands[1];
2657
      if (IsOp1Undef)
2658
        return Operands[0];
2659
      break;
2660
    }
2661
  }
2662

2663
  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2664
    const APFloat &Op1V = Op1->getValueAPF();
2665

2666
    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2667
      if (Op2->getType() != Op1->getType())
2668
        return nullptr;
2669
      const APFloat &Op2V = Op2->getValueAPF();
2670

2671
      if (const auto *ConstrIntr =
2672
              dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) {
2673
        RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2674
        APFloat Res = Op1V;
2675
        APFloat::opStatus St;
2676
        switch (IntrinsicID) {
2677
        default:
2678
          return nullptr;
2679
        case Intrinsic::experimental_constrained_fadd:
2680
          St = Res.add(Op2V, RM);
2681
          break;
2682
        case Intrinsic::experimental_constrained_fsub:
2683
          St = Res.subtract(Op2V, RM);
2684
          break;
2685
        case Intrinsic::experimental_constrained_fmul:
2686
          St = Res.multiply(Op2V, RM);
2687
          break;
2688
        case Intrinsic::experimental_constrained_fdiv:
2689
          St = Res.divide(Op2V, RM);
2690
          break;
2691
        case Intrinsic::experimental_constrained_frem:
2692
          St = Res.mod(Op2V);
2693
          break;
2694
        case Intrinsic::experimental_constrained_fcmp:
2695
        case Intrinsic::experimental_constrained_fcmps:
2696
          return evaluateCompare(Op1V, Op2V, ConstrIntr);
2697
        }
2698
        if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2699
                               St))
2700
          return ConstantFP::get(Ty->getContext(), Res);
2701
        return nullptr;
2702
      }
2703

2704
      switch (IntrinsicID) {
2705
      default:
2706
        break;
2707
      case Intrinsic::copysign:
2708
        return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2709
      case Intrinsic::minnum:
2710
        return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2711
      case Intrinsic::maxnum:
2712
        return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2713
      case Intrinsic::minimum:
2714
        return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2715
      case Intrinsic::maximum:
2716
        return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2717
      }
2718

2719
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2720
        return nullptr;
2721

2722
      switch (IntrinsicID) {
2723
      default:
2724
        break;
2725
      case Intrinsic::pow:
2726
        return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2727
      case Intrinsic::amdgcn_fmul_legacy:
2728
        // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2729
        // NaN or infinity, gives +0.0.
2730
        if (Op1V.isZero() || Op2V.isZero())
2731
          return ConstantFP::getZero(Ty);
2732
        return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2733
      }
2734

2735
    } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2736
      switch (IntrinsicID) {
2737
      case Intrinsic::ldexp: {
2738
        return ConstantFP::get(
2739
            Ty->getContext(),
2740
            scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
2741
      }
2742
      case Intrinsic::is_fpclass: {
2743
        FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2744
        bool Result =
2745
          ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2746
          ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2747
          ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2748
          ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2749
          ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2750
          ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2751
          ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2752
          ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2753
          ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2754
          ((Mask & fcPosInf) && Op1V.isPosInfinity());
2755
        return ConstantInt::get(Ty, Result);
2756
      }
2757
      default:
2758
        break;
2759
      }
2760

2761
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2762
        return nullptr;
2763
      if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2764
        return ConstantFP::get(
2765
            Ty->getContext(),
2766
            APFloat((float)std::pow((float)Op1V.convertToDouble(),
2767
                                    (int)Op2C->getZExtValue())));
2768
      if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2769
        return ConstantFP::get(
2770
            Ty->getContext(),
2771
            APFloat((float)std::pow((float)Op1V.convertToDouble(),
2772
                                    (int)Op2C->getZExtValue())));
2773
      if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2774
        return ConstantFP::get(
2775
            Ty->getContext(),
2776
            APFloat((double)std::pow(Op1V.convertToDouble(),
2777
                                     (int)Op2C->getZExtValue())));
2778
    }
2779
    return nullptr;
2780
  }
2781

2782
  if (Operands[0]->getType()->isIntegerTy() &&
2783
      Operands[1]->getType()->isIntegerTy()) {
2784
    const APInt *C0, *C1;
2785
    if (!getConstIntOrUndef(Operands[0], C0) ||
2786
        !getConstIntOrUndef(Operands[1], C1))
2787
      return nullptr;
2788

2789
    switch (IntrinsicID) {
2790
    default: break;
2791
    case Intrinsic::smax:
2792
    case Intrinsic::smin:
2793
    case Intrinsic::umax:
2794
    case Intrinsic::umin:
2795
      // This is the same as for binary ops - poison propagates.
2796
      // TODO: Poison handling should be consolidated.
2797
      if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2798
        return PoisonValue::get(Ty);
2799

2800
      if (!C0 && !C1)
2801
        return UndefValue::get(Ty);
2802
      if (!C0 || !C1)
2803
        return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2804
      return ConstantInt::get(
2805
          Ty, ICmpInst::compare(*C0, *C1,
2806
                                MinMaxIntrinsic::getPredicate(IntrinsicID))
2807
                  ? *C0
2808
                  : *C1);
2809

2810
    case Intrinsic::scmp:
2811
    case Intrinsic::ucmp:
2812
      if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2813
        return PoisonValue::get(Ty);
2814

2815
      if (!C0 || !C1)
2816
        return ConstantInt::get(Ty, 0);
2817

2818
      int Res;
2819
      if (IntrinsicID == Intrinsic::scmp)
2820
        Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
2821
      else
2822
        Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
2823
      return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
2824

2825
    case Intrinsic::usub_with_overflow:
2826
    case Intrinsic::ssub_with_overflow:
2827
      // X - undef -> { 0, false }
2828
      // undef - X -> { 0, false }
2829
      if (!C0 || !C1)
2830
        return Constant::getNullValue(Ty);
2831
      [[fallthrough]];
2832
    case Intrinsic::uadd_with_overflow:
2833
    case Intrinsic::sadd_with_overflow:
2834
      // X + undef -> { -1, false }
2835
      // undef + x -> { -1, false }
2836
      if (!C0 || !C1) {
2837
        return ConstantStruct::get(
2838
            cast<StructType>(Ty),
2839
            {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2840
             Constant::getNullValue(Ty->getStructElementType(1))});
2841
      }
2842
      [[fallthrough]];
2843
    case Intrinsic::smul_with_overflow:
2844
    case Intrinsic::umul_with_overflow: {
2845
      // undef * X -> { 0, false }
2846
      // X * undef -> { 0, false }
2847
      if (!C0 || !C1)
2848
        return Constant::getNullValue(Ty);
2849

2850
      APInt Res;
2851
      bool Overflow;
2852
      switch (IntrinsicID) {
2853
      default: llvm_unreachable("Invalid case");
2854
      case Intrinsic::sadd_with_overflow:
2855
        Res = C0->sadd_ov(*C1, Overflow);
2856
        break;
2857
      case Intrinsic::uadd_with_overflow:
2858
        Res = C0->uadd_ov(*C1, Overflow);
2859
        break;
2860
      case Intrinsic::ssub_with_overflow:
2861
        Res = C0->ssub_ov(*C1, Overflow);
2862
        break;
2863
      case Intrinsic::usub_with_overflow:
2864
        Res = C0->usub_ov(*C1, Overflow);
2865
        break;
2866
      case Intrinsic::smul_with_overflow:
2867
        Res = C0->smul_ov(*C1, Overflow);
2868
        break;
2869
      case Intrinsic::umul_with_overflow:
2870
        Res = C0->umul_ov(*C1, Overflow);
2871
        break;
2872
      }
2873
      Constant *Ops[] = {
2874
        ConstantInt::get(Ty->getContext(), Res),
2875
        ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2876
      };
2877
      return ConstantStruct::get(cast<StructType>(Ty), Ops);
2878
    }
2879
    case Intrinsic::uadd_sat:
2880
    case Intrinsic::sadd_sat:
2881
      // This is the same as for binary ops - poison propagates.
2882
      // TODO: Poison handling should be consolidated.
2883
      if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2884
        return PoisonValue::get(Ty);
2885

2886
      if (!C0 && !C1)
2887
        return UndefValue::get(Ty);
2888
      if (!C0 || !C1)
2889
        return Constant::getAllOnesValue(Ty);
2890
      if (IntrinsicID == Intrinsic::uadd_sat)
2891
        return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2892
      else
2893
        return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2894
    case Intrinsic::usub_sat:
2895
    case Intrinsic::ssub_sat:
2896
      // This is the same as for binary ops - poison propagates.
2897
      // TODO: Poison handling should be consolidated.
2898
      if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2899
        return PoisonValue::get(Ty);
2900

2901
      if (!C0 && !C1)
2902
        return UndefValue::get(Ty);
2903
      if (!C0 || !C1)
2904
        return Constant::getNullValue(Ty);
2905
      if (IntrinsicID == Intrinsic::usub_sat)
2906
        return ConstantInt::get(Ty, C0->usub_sat(*C1));
2907
      else
2908
        return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2909
    case Intrinsic::cttz:
2910
    case Intrinsic::ctlz:
2911
      assert(C1 && "Must be constant int");
2912

2913
      // cttz(0, 1) and ctlz(0, 1) are poison.
2914
      if (C1->isOne() && (!C0 || C0->isZero()))
2915
        return PoisonValue::get(Ty);
2916
      if (!C0)
2917
        return Constant::getNullValue(Ty);
2918
      if (IntrinsicID == Intrinsic::cttz)
2919
        return ConstantInt::get(Ty, C0->countr_zero());
2920
      else
2921
        return ConstantInt::get(Ty, C0->countl_zero());
2922

2923
    case Intrinsic::abs:
2924
      assert(C1 && "Must be constant int");
2925
      assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2926

2927
      // Undef or minimum val operand with poison min --> undef
2928
      if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2929
        return UndefValue::get(Ty);
2930

2931
      // Undef operand with no poison min --> 0 (sign bit must be clear)
2932
      if (!C0)
2933
        return Constant::getNullValue(Ty);
2934

2935
      return ConstantInt::get(Ty, C0->abs());
2936
    case Intrinsic::amdgcn_wave_reduce_umin:
2937
    case Intrinsic::amdgcn_wave_reduce_umax:
2938
      return dyn_cast<Constant>(Operands[0]);
2939
    }
2940

2941
    return nullptr;
2942
  }
2943

2944
  // Support ConstantVector in case we have an Undef in the top.
2945
  if ((isa<ConstantVector>(Operands[0]) ||
2946
       isa<ConstantDataVector>(Operands[0])) &&
2947
      // Check for default rounding mode.
2948
      // FIXME: Support other rounding modes?
2949
      isa<ConstantInt>(Operands[1]) &&
2950
      cast<ConstantInt>(Operands[1])->getValue() == 4) {
2951
    auto *Op = cast<Constant>(Operands[0]);
2952
    switch (IntrinsicID) {
2953
    default: break;
2954
    case Intrinsic::x86_avx512_vcvtss2si32:
2955
    case Intrinsic::x86_avx512_vcvtss2si64:
2956
    case Intrinsic::x86_avx512_vcvtsd2si32:
2957
    case Intrinsic::x86_avx512_vcvtsd2si64:
2958
      if (ConstantFP *FPOp =
2959
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2960
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2961
                                           /*roundTowardZero=*/false, Ty,
2962
                                           /*IsSigned*/true);
2963
      break;
2964
    case Intrinsic::x86_avx512_vcvtss2usi32:
2965
    case Intrinsic::x86_avx512_vcvtss2usi64:
2966
    case Intrinsic::x86_avx512_vcvtsd2usi32:
2967
    case Intrinsic::x86_avx512_vcvtsd2usi64:
2968
      if (ConstantFP *FPOp =
2969
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2970
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2971
                                           /*roundTowardZero=*/false, Ty,
2972
                                           /*IsSigned*/false);
2973
      break;
2974
    case Intrinsic::x86_avx512_cvttss2si:
2975
    case Intrinsic::x86_avx512_cvttss2si64:
2976
    case Intrinsic::x86_avx512_cvttsd2si:
2977
    case Intrinsic::x86_avx512_cvttsd2si64:
2978
      if (ConstantFP *FPOp =
2979
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2980
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2981
                                           /*roundTowardZero=*/true, Ty,
2982
                                           /*IsSigned*/true);
2983
      break;
2984
    case Intrinsic::x86_avx512_cvttss2usi:
2985
    case Intrinsic::x86_avx512_cvttss2usi64:
2986
    case Intrinsic::x86_avx512_cvttsd2usi:
2987
    case Intrinsic::x86_avx512_cvttsd2usi64:
2988
      if (ConstantFP *FPOp =
2989
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2990
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2991
                                           /*roundTowardZero=*/true, Ty,
2992
                                           /*IsSigned*/false);
2993
      break;
2994
    }
2995
  }
2996
  return nullptr;
2997
}
2998

2999
static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3000
                                               const APFloat &S0,
3001
                                               const APFloat &S1,
3002
                                               const APFloat &S2) {
3003
  unsigned ID;
3004
  const fltSemantics &Sem = S0.getSemantics();
3005
  APFloat MA(Sem), SC(Sem), TC(Sem);
3006
  if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3007
    if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3008
      // S2 < 0
3009
      ID = 5;
3010
      SC = -S0;
3011
    } else {
3012
      ID = 4;
3013
      SC = S0;
3014
    }
3015
    MA = S2;
3016
    TC = -S1;
3017
  } else if (abs(S1) >= abs(S0)) {
3018
    if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3019
      // S1 < 0
3020
      ID = 3;
3021
      TC = -S2;
3022
    } else {
3023
      ID = 2;
3024
      TC = S2;
3025
    }
3026
    MA = S1;
3027
    SC = S0;
3028
  } else {
3029
    if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3030
      // S0 < 0
3031
      ID = 1;
3032
      SC = S2;
3033
    } else {
3034
      ID = 0;
3035
      SC = -S2;
3036
    }
3037
    MA = S0;
3038
    TC = -S1;
3039
  }
3040
  switch (IntrinsicID) {
3041
  default:
3042
    llvm_unreachable("unhandled amdgcn cube intrinsic");
3043
  case Intrinsic::amdgcn_cubeid:
3044
    return APFloat(Sem, ID);
3045
  case Intrinsic::amdgcn_cubema:
3046
    return MA + MA;
3047
  case Intrinsic::amdgcn_cubesc:
3048
    return SC;
3049
  case Intrinsic::amdgcn_cubetc:
3050
    return TC;
3051
  }
3052
}
3053

3054
static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3055
                                                 Type *Ty) {
3056
  const APInt *C0, *C1, *C2;
3057
  if (!getConstIntOrUndef(Operands[0], C0) ||
3058
      !getConstIntOrUndef(Operands[1], C1) ||
3059
      !getConstIntOrUndef(Operands[2], C2))
3060
    return nullptr;
3061

3062
  if (!C2)
3063
    return UndefValue::get(Ty);
3064

3065
  APInt Val(32, 0);
3066
  unsigned NumUndefBytes = 0;
3067
  for (unsigned I = 0; I < 32; I += 8) {
3068
    unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3069
    unsigned B = 0;
3070

3071
    if (Sel >= 13)
3072
      B = 0xff;
3073
    else if (Sel == 12)
3074
      B = 0x00;
3075
    else {
3076
      const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3077
      if (!Src)
3078
        ++NumUndefBytes;
3079
      else if (Sel < 8)
3080
        B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3081
      else
3082
        B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3083
    }
3084

3085
    Val.insertBits(B, I, 8);
3086
  }
3087

3088
  if (NumUndefBytes == 4)
3089
    return UndefValue::get(Ty);
3090

3091
  return ConstantInt::get(Ty, Val);
3092
}
3093

3094
static Constant *ConstantFoldScalarCall3(StringRef Name,
3095
                                         Intrinsic::ID IntrinsicID,
3096
                                         Type *Ty,
3097
                                         ArrayRef<Constant *> Operands,
3098
                                         const TargetLibraryInfo *TLI,
3099
                                         const CallBase *Call) {
3100
  assert(Operands.size() == 3 && "Wrong number of operands.");
3101

3102
  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3103
    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3104
      if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3105
        const APFloat &C1 = Op1->getValueAPF();
3106
        const APFloat &C2 = Op2->getValueAPF();
3107
        const APFloat &C3 = Op3->getValueAPF();
3108

3109
        if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3110
          RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3111
          APFloat Res = C1;
3112
          APFloat::opStatus St;
3113
          switch (IntrinsicID) {
3114
          default:
3115
            return nullptr;
3116
          case Intrinsic::experimental_constrained_fma:
3117
          case Intrinsic::experimental_constrained_fmuladd:
3118
            St = Res.fusedMultiplyAdd(C2, C3, RM);
3119
            break;
3120
          }
3121
          if (mayFoldConstrained(
3122
                  const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3123
            return ConstantFP::get(Ty->getContext(), Res);
3124
          return nullptr;
3125
        }
3126

3127
        switch (IntrinsicID) {
3128
        default: break;
3129
        case Intrinsic::amdgcn_fma_legacy: {
3130
          // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3131
          // NaN or infinity, gives +0.0.
3132
          if (C1.isZero() || C2.isZero()) {
3133
            // It's tempting to just return C3 here, but that would give the
3134
            // wrong result if C3 was -0.0.
3135
            return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3136
          }
3137
          [[fallthrough]];
3138
        }
3139
        case Intrinsic::fma:
3140
        case Intrinsic::fmuladd: {
3141
          APFloat V = C1;
3142
          V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3143
          return ConstantFP::get(Ty->getContext(), V);
3144
        }
3145
        case Intrinsic::amdgcn_cubeid:
3146
        case Intrinsic::amdgcn_cubema:
3147
        case Intrinsic::amdgcn_cubesc:
3148
        case Intrinsic::amdgcn_cubetc: {
3149
          APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3150
          return ConstantFP::get(Ty->getContext(), V);
3151
        }
3152
        }
3153
      }
3154
    }
3155
  }
3156

3157
  if (IntrinsicID == Intrinsic::smul_fix ||
3158
      IntrinsicID == Intrinsic::smul_fix_sat) {
3159
    // poison * C -> poison
3160
    // C * poison -> poison
3161
    if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3162
      return PoisonValue::get(Ty);
3163

3164
    const APInt *C0, *C1;
3165
    if (!getConstIntOrUndef(Operands[0], C0) ||
3166
        !getConstIntOrUndef(Operands[1], C1))
3167
      return nullptr;
3168

3169
    // undef * C -> 0
3170
    // C * undef -> 0
3171
    if (!C0 || !C1)
3172
      return Constant::getNullValue(Ty);
3173

3174
    // This code performs rounding towards negative infinity in case the result
3175
    // cannot be represented exactly for the given scale. Targets that do care
3176
    // about rounding should use a target hook for specifying how rounding
3177
    // should be done, and provide their own folding to be consistent with
3178
    // rounding. This is the same approach as used by
3179
    // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3180
    unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3181
    unsigned Width = C0->getBitWidth();
3182
    assert(Scale < Width && "Illegal scale.");
3183
    unsigned ExtendedWidth = Width * 2;
3184
    APInt Product =
3185
        (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3186
    if (IntrinsicID == Intrinsic::smul_fix_sat) {
3187
      APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3188
      APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3189
      Product = APIntOps::smin(Product, Max);
3190
      Product = APIntOps::smax(Product, Min);
3191
    }
3192
    return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3193
  }
3194

3195
  if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3196
    const APInt *C0, *C1, *C2;
3197
    if (!getConstIntOrUndef(Operands[0], C0) ||
3198
        !getConstIntOrUndef(Operands[1], C1) ||
3199
        !getConstIntOrUndef(Operands[2], C2))
3200
      return nullptr;
3201

3202
    bool IsRight = IntrinsicID == Intrinsic::fshr;
3203
    if (!C2)
3204
      return Operands[IsRight ? 1 : 0];
3205
    if (!C0 && !C1)
3206
      return UndefValue::get(Ty);
3207

3208
    // The shift amount is interpreted as modulo the bitwidth. If the shift
3209
    // amount is effectively 0, avoid UB due to oversized inverse shift below.
3210
    unsigned BitWidth = C2->getBitWidth();
3211
    unsigned ShAmt = C2->urem(BitWidth);
3212
    if (!ShAmt)
3213
      return Operands[IsRight ? 1 : 0];
3214

3215
    // (C0 << ShlAmt) | (C1 >> LshrAmt)
3216
    unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3217
    unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3218
    if (!C0)
3219
      return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3220
    if (!C1)
3221
      return ConstantInt::get(Ty, C0->shl(ShlAmt));
3222
    return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3223
  }
3224

3225
  if (IntrinsicID == Intrinsic::amdgcn_perm)
3226
    return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3227

3228
  return nullptr;
3229
}
3230

3231
static Constant *ConstantFoldScalarCall(StringRef Name,
3232
                                        Intrinsic::ID IntrinsicID,
3233
                                        Type *Ty,
3234
                                        ArrayRef<Constant *> Operands,
3235
                                        const TargetLibraryInfo *TLI,
3236
                                        const CallBase *Call) {
3237
  if (Operands.size() == 1)
3238
    return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3239

3240
  if (Operands.size() == 2) {
3241
    if (Constant *FoldedLibCall =
3242
            ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
3243
      return FoldedLibCall;
3244
    }
3245
    return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
3246
  }
3247

3248
  if (Operands.size() == 3)
3249
    return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3250

3251
  return nullptr;
3252
}
3253

3254
static Constant *ConstantFoldFixedVectorCall(
3255
    StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3256
    ArrayRef<Constant *> Operands, const DataLayout &DL,
3257
    const TargetLibraryInfo *TLI, const CallBase *Call) {
3258
  SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3259
  SmallVector<Constant *, 4> Lane(Operands.size());
3260
  Type *Ty = FVTy->getElementType();
3261

3262
  switch (IntrinsicID) {
3263
  case Intrinsic::masked_load: {
3264
    auto *SrcPtr = Operands[0];
3265
    auto *Mask = Operands[2];
3266
    auto *Passthru = Operands[3];
3267

3268
    Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3269

3270
    SmallVector<Constant *, 32> NewElements;
3271
    for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3272
      auto *MaskElt = Mask->getAggregateElement(I);
3273
      if (!MaskElt)
3274
        break;
3275
      auto *PassthruElt = Passthru->getAggregateElement(I);
3276
      auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3277
      if (isa<UndefValue>(MaskElt)) {
3278
        if (PassthruElt)
3279
          NewElements.push_back(PassthruElt);
3280
        else if (VecElt)
3281
          NewElements.push_back(VecElt);
3282
        else
3283
          return nullptr;
3284
      }
3285
      if (MaskElt->isNullValue()) {
3286
        if (!PassthruElt)
3287
          return nullptr;
3288
        NewElements.push_back(PassthruElt);
3289
      } else if (MaskElt->isOneValue()) {
3290
        if (!VecElt)
3291
          return nullptr;
3292
        NewElements.push_back(VecElt);
3293
      } else {
3294
        return nullptr;
3295
      }
3296
    }
3297
    if (NewElements.size() != FVTy->getNumElements())
3298
      return nullptr;
3299
    return ConstantVector::get(NewElements);
3300
  }
3301
  case Intrinsic::arm_mve_vctp8:
3302
  case Intrinsic::arm_mve_vctp16:
3303
  case Intrinsic::arm_mve_vctp32:
3304
  case Intrinsic::arm_mve_vctp64: {
3305
    if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3306
      unsigned Lanes = FVTy->getNumElements();
3307
      uint64_t Limit = Op->getZExtValue();
3308

3309
      SmallVector<Constant *, 16> NCs;
3310
      for (unsigned i = 0; i < Lanes; i++) {
3311
        if (i < Limit)
3312
          NCs.push_back(ConstantInt::getTrue(Ty));
3313
        else
3314
          NCs.push_back(ConstantInt::getFalse(Ty));
3315
      }
3316
      return ConstantVector::get(NCs);
3317
    }
3318
    return nullptr;
3319
  }
3320
  case Intrinsic::get_active_lane_mask: {
3321
    auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3322
    auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3323
    if (Op0 && Op1) {
3324
      unsigned Lanes = FVTy->getNumElements();
3325
      uint64_t Base = Op0->getZExtValue();
3326
      uint64_t Limit = Op1->getZExtValue();
3327

3328
      SmallVector<Constant *, 16> NCs;
3329
      for (unsigned i = 0; i < Lanes; i++) {
3330
        if (Base + i < Limit)
3331
          NCs.push_back(ConstantInt::getTrue(Ty));
3332
        else
3333
          NCs.push_back(ConstantInt::getFalse(Ty));
3334
      }
3335
      return ConstantVector::get(NCs);
3336
    }
3337
    return nullptr;
3338
  }
3339
  default:
3340
    break;
3341
  }
3342

3343
  for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3344
    // Gather a column of constants.
3345
    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3346
      // Some intrinsics use a scalar type for certain arguments.
3347
      if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3348
        Lane[J] = Operands[J];
3349
        continue;
3350
      }
3351

3352
      Constant *Agg = Operands[J]->getAggregateElement(I);
3353
      if (!Agg)
3354
        return nullptr;
3355

3356
      Lane[J] = Agg;
3357
    }
3358

3359
    // Use the regular scalar folding to simplify this column.
3360
    Constant *Folded =
3361
        ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3362
    if (!Folded)
3363
      return nullptr;
3364
    Result[I] = Folded;
3365
  }
3366

3367
  return ConstantVector::get(Result);
3368
}
3369

3370
static Constant *ConstantFoldScalableVectorCall(
3371
    StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3372
    ArrayRef<Constant *> Operands, const DataLayout &DL,
3373
    const TargetLibraryInfo *TLI, const CallBase *Call) {
3374
  switch (IntrinsicID) {
3375
  case Intrinsic::aarch64_sve_convert_from_svbool: {
3376
    auto *Src = dyn_cast<Constant>(Operands[0]);
3377
    if (!Src || !Src->isNullValue())
3378
      break;
3379

3380
    return ConstantInt::getFalse(SVTy);
3381
  }
3382
  default:
3383
    break;
3384
  }
3385
  return nullptr;
3386
}
3387

3388
static std::pair<Constant *, Constant *>
3389
ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3390
  if (isa<PoisonValue>(Op))
3391
    return {Op, PoisonValue::get(IntTy)};
3392

3393
  auto *ConstFP = dyn_cast<ConstantFP>(Op);
3394
  if (!ConstFP)
3395
    return {};
3396

3397
  const APFloat &U = ConstFP->getValueAPF();
3398
  int FrexpExp;
3399
  APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3400
  Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3401

3402
  // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3403
  // using undef.
3404
  Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3405
                                           : ConstantInt::getNullValue(IntTy);
3406
  return {Result0, Result1};
3407
}
3408

3409
/// Handle intrinsics that return tuples, which may be tuples of vectors.
3410
static Constant *
3411
ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3412
                       StructType *StTy, ArrayRef<Constant *> Operands,
3413
                       const DataLayout &DL, const TargetLibraryInfo *TLI,
3414
                       const CallBase *Call) {
3415

3416
  switch (IntrinsicID) {
3417
  case Intrinsic::frexp: {
3418
    Type *Ty0 = StTy->getContainedType(0);
3419
    Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3420

3421
    if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3422
      SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3423
      SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3424

3425
      for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3426
        Constant *Lane = Operands[0]->getAggregateElement(I);
3427
        std::tie(Results0[I], Results1[I]) =
3428
            ConstantFoldScalarFrexpCall(Lane, Ty1);
3429
        if (!Results0[I])
3430
          return nullptr;
3431
      }
3432

3433
      return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3434
                                 ConstantVector::get(Results1));
3435
    }
3436

3437
    auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3438
    if (!Result0)
3439
      return nullptr;
3440
    return ConstantStruct::get(StTy, Result0, Result1);
3441
  }
3442
  default:
3443
    // TODO: Constant folding of vector intrinsics that fall through here does
3444
    // not work (e.g. overflow intrinsics)
3445
    return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3446
  }
3447

3448
  return nullptr;
3449
}
3450

3451
} // end anonymous namespace
3452

3453
Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS,
3454
                                            Constant *RHS, Type *Ty,
3455
                                            Instruction *FMFSource) {
3456
  return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS},
3457
                                    dyn_cast_if_present<CallBase>(FMFSource));
3458
}
3459

3460
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3461
                                 ArrayRef<Constant *> Operands,
3462
                                 const TargetLibraryInfo *TLI,
3463
                                 bool AllowNonDeterministic) {
3464
  if (Call->isNoBuiltin())
3465
    return nullptr;
3466
  if (!F->hasName())
3467
    return nullptr;
3468

3469
  // If this is not an intrinsic and not recognized as a library call, bail out.
3470
  Intrinsic::ID IID = F->getIntrinsicID();
3471
  if (IID == Intrinsic::not_intrinsic) {
3472
    if (!TLI)
3473
      return nullptr;
3474
    LibFunc LibF;
3475
    if (!TLI->getLibFunc(*F, LibF))
3476
      return nullptr;
3477
  }
3478

3479
  // Conservatively assume that floating-point libcalls may be
3480
  // non-deterministic.
3481
  Type *Ty = F->getReturnType();
3482
  if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
3483
    return nullptr;
3484

3485
  StringRef Name = F->getName();
3486
  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3487
    return ConstantFoldFixedVectorCall(
3488
        Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
3489

3490
  if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3491
    return ConstantFoldScalableVectorCall(
3492
        Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
3493

3494
  if (auto *StTy = dyn_cast<StructType>(Ty))
3495
    return ConstantFoldStructCall(Name, IID, StTy, Operands,
3496
                                  F->getDataLayout(), TLI, Call);
3497

3498
  // TODO: If this is a library function, we already discovered that above,
3499
  //       so we should pass the LibFunc, not the name (and it might be better
3500
  //       still to separate intrinsic handling from libcalls).
3501
  return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3502
}
3503

3504
bool llvm::isMathLibCallNoop(const CallBase *Call,
3505
                             const TargetLibraryInfo *TLI) {
3506
  // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3507
  // (and to some extent ConstantFoldScalarCall).
3508
  if (Call->isNoBuiltin() || Call->isStrictFP())
3509
    return false;
3510
  Function *F = Call->getCalledFunction();
3511
  if (!F)
3512
    return false;
3513

3514
  LibFunc Func;
3515
  if (!TLI || !TLI->getLibFunc(*F, Func))
3516
    return false;
3517

3518
  if (Call->arg_size() == 1) {
3519
    if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3520
      const APFloat &Op = OpC->getValueAPF();
3521
      switch (Func) {
3522
      case LibFunc_logl:
3523
      case LibFunc_log:
3524
      case LibFunc_logf:
3525
      case LibFunc_log2l:
3526
      case LibFunc_log2:
3527
      case LibFunc_log2f:
3528
      case LibFunc_log10l:
3529
      case LibFunc_log10:
3530
      case LibFunc_log10f:
3531
        return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3532

3533
      case LibFunc_expl:
3534
      case LibFunc_exp:
3535
      case LibFunc_expf:
3536
        // FIXME: These boundaries are slightly conservative.
3537
        if (OpC->getType()->isDoubleTy())
3538
          return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3539
        if (OpC->getType()->isFloatTy())
3540
          return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3541
        break;
3542

3543
      case LibFunc_exp2l:
3544
      case LibFunc_exp2:
3545
      case LibFunc_exp2f:
3546
        // FIXME: These boundaries are slightly conservative.
3547
        if (OpC->getType()->isDoubleTy())
3548
          return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3549
        if (OpC->getType()->isFloatTy())
3550
          return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3551
        break;
3552

3553
      case LibFunc_sinl:
3554
      case LibFunc_sin:
3555
      case LibFunc_sinf:
3556
      case LibFunc_cosl:
3557
      case LibFunc_cos:
3558
      case LibFunc_cosf:
3559
        return !Op.isInfinity();
3560

3561
      case LibFunc_tanl:
3562
      case LibFunc_tan:
3563
      case LibFunc_tanf: {
3564
        // FIXME: Stop using the host math library.
3565
        // FIXME: The computation isn't done in the right precision.
3566
        Type *Ty = OpC->getType();
3567
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3568
          return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3569
        break;
3570
      }
3571

3572
      case LibFunc_atan:
3573
      case LibFunc_atanf:
3574
      case LibFunc_atanl:
3575
        // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3576
        return true;
3577

3578

3579
      case LibFunc_asinl:
3580
      case LibFunc_asin:
3581
      case LibFunc_asinf:
3582
      case LibFunc_acosl:
3583
      case LibFunc_acos:
3584
      case LibFunc_acosf:
3585
        return !(Op < APFloat(Op.getSemantics(), "-1") ||
3586
                 Op > APFloat(Op.getSemantics(), "1"));
3587

3588
      case LibFunc_sinh:
3589
      case LibFunc_cosh:
3590
      case LibFunc_sinhf:
3591
      case LibFunc_coshf:
3592
      case LibFunc_sinhl:
3593
      case LibFunc_coshl:
3594
        // FIXME: These boundaries are slightly conservative.
3595
        if (OpC->getType()->isDoubleTy())
3596
          return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3597
        if (OpC->getType()->isFloatTy())
3598
          return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3599
        break;
3600

3601
      case LibFunc_sqrtl:
3602
      case LibFunc_sqrt:
3603
      case LibFunc_sqrtf:
3604
        return Op.isNaN() || Op.isZero() || !Op.isNegative();
3605

3606
      // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3607
      // maybe others?
3608
      default:
3609
        break;
3610
      }
3611
    }
3612
  }
3613

3614
  if (Call->arg_size() == 2) {
3615
    ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3616
    ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3617
    if (Op0C && Op1C) {
3618
      const APFloat &Op0 = Op0C->getValueAPF();
3619
      const APFloat &Op1 = Op1C->getValueAPF();
3620

3621
      switch (Func) {
3622
      case LibFunc_powl:
3623
      case LibFunc_pow:
3624
      case LibFunc_powf: {
3625
        // FIXME: Stop using the host math library.
3626
        // FIXME: The computation isn't done in the right precision.
3627
        Type *Ty = Op0C->getType();
3628
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3629
          if (Ty == Op1C->getType())
3630
            return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3631
        }
3632
        break;
3633
      }
3634

3635
      case LibFunc_fmodl:
3636
      case LibFunc_fmod:
3637
      case LibFunc_fmodf:
3638
      case LibFunc_remainderl:
3639
      case LibFunc_remainder:
3640
      case LibFunc_remainderf:
3641
        return Op0.isNaN() || Op1.isNaN() ||
3642
               (!Op0.isInfinity() && !Op1.isZero());
3643

3644
      case LibFunc_atan2:
3645
      case LibFunc_atan2f:
3646
      case LibFunc_atan2l:
3647
        // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3648
        // GLIBC and MSVC do not appear to raise an error on those, we
3649
        // cannot rely on that behavior. POSIX and C11 say that a domain error
3650
        // may occur, so allow for that possibility.
3651
        return !Op0.isZero() || !Op1.isZero();
3652

3653
      default:
3654
        break;
3655
      }
3656
    }
3657
  }
3658

3659
  return false;
3660
}
3661

3662
void TargetFolder::anchor() {}
3663

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.