llvm-project

Форк
0
324 строки · 11.3 Кб
1
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions performs analyses on basic blocks, and instructions
10
// contained within basic blocks.
11
//
12
//===----------------------------------------------------------------------===//
13

14
#include "llvm/Analysis/CFG.h"
15
#include "llvm/Analysis/LoopInfo.h"
16
#include "llvm/IR/Dominators.h"
17
#include "llvm/Support/CommandLine.h"
18

19
using namespace llvm;
20

21
// The max number of basic blocks explored during reachability analysis between
22
// two basic blocks. This is kept reasonably small to limit compile time when
23
// repeatedly used by clients of this analysis (such as captureTracking).
24
static cl::opt<unsigned> DefaultMaxBBsToExplore(
25
    "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26
    cl::desc("Max number of BBs to explore for reachability analysis"),
27
    cl::init(32));
28

29
/// FindFunctionBackedges - Analyze the specified function to find all of the
30
/// loop backedges in the function and return them.  This is a relatively cheap
31
/// (compared to computing dominators and loop info) analysis.
32
///
33
/// The output is added to Result, as pairs of <from,to> edge info.
34
void llvm::FindFunctionBackedges(const Function &F,
35
     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36
  const BasicBlock *BB = &F.getEntryBlock();
37
  if (succ_empty(BB))
38
    return;
39

40
  SmallPtrSet<const BasicBlock*, 8> Visited;
41
  SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42
  SmallPtrSet<const BasicBlock*, 8> InStack;
43

44
  Visited.insert(BB);
45
  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46
  InStack.insert(BB);
47
  do {
48
    std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49
    const BasicBlock *ParentBB = Top.first;
50
    const_succ_iterator &I = Top.second;
51

52
    bool FoundNew = false;
53
    while (I != succ_end(ParentBB)) {
54
      BB = *I++;
55
      if (Visited.insert(BB).second) {
56
        FoundNew = true;
57
        break;
58
      }
59
      // Successor is in VisitStack, it's a back edge.
60
      if (InStack.count(BB))
61
        Result.push_back(std::make_pair(ParentBB, BB));
62
    }
63

64
    if (FoundNew) {
65
      // Go down one level if there is a unvisited successor.
66
      InStack.insert(BB);
67
      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68
    } else {
69
      // Go up one level.
70
      InStack.erase(VisitStack.pop_back_val().first);
71
    }
72
  } while (!VisitStack.empty());
73
}
74

75
/// GetSuccessorNumber - Search for the specified successor of basic block BB
76
/// and return its position in the terminator instruction's list of
77
/// successors.  It is an error to call this with a block that is not a
78
/// successor.
79
unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80
    const BasicBlock *Succ) {
81
  const Instruction *Term = BB->getTerminator();
82
#ifndef NDEBUG
83
  unsigned e = Term->getNumSuccessors();
84
#endif
85
  for (unsigned i = 0; ; ++i) {
86
    assert(i != e && "Didn't find edge?");
87
    if (Term->getSuccessor(i) == Succ)
88
      return i;
89
  }
90
}
91

92
/// isCriticalEdge - Return true if the specified edge is a critical edge.
93
/// Critical edges are edges from a block with multiple successors to a block
94
/// with multiple predecessors.
95
bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96
                          bool AllowIdenticalEdges) {
97
  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98
  return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99
}
100

101
bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102
                          bool AllowIdenticalEdges) {
103
  assert(TI->isTerminator() && "Must be a terminator to have successors!");
104
  if (TI->getNumSuccessors() == 1) return false;
105

106
  assert(is_contained(predecessors(Dest), TI->getParent()) &&
107
         "No edge between TI's block and Dest.");
108

109
  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110

111
  // If there is more than one predecessor, this is a critical edge...
112
  assert(I != E && "No preds, but we have an edge to the block?");
113
  const BasicBlock *FirstPred = *I;
114
  ++I;        // Skip one edge due to the incoming arc from TI.
115
  if (!AllowIdenticalEdges)
116
    return I != E;
117

118
  // If AllowIdenticalEdges is true, then we allow this edge to be considered
119
  // non-critical iff all preds come from TI's block.
120
  for (; I != E; ++I)
121
    if (*I != FirstPred)
122
      return true;
123
  return false;
124
}
125

126
// LoopInfo contains a mapping from basic block to the innermost loop. Find
127
// the outermost loop in the loop nest that contains BB.
128
static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129
  const Loop *L = LI->getLoopFor(BB);
130
  return L ? L->getOutermostLoop() : nullptr;
131
}
132

133
template <class StopSetT>
134
static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist,
135
                            const StopSetT &StopSet,
136
                            const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
137
                            const DominatorTree *DT, const LoopInfo *LI) {
138
  // When a stop block is unreachable, it's dominated from everywhere,
139
  // regardless of whether there's a path between the two blocks.
140
  if (DT) {
141
    for (auto *BB : StopSet) {
142
      if (!DT->isReachableFromEntry(BB)) {
143
        DT = nullptr;
144
        break;
145
      }
146
    }
147
  }
148

149
  // We can't skip directly from a block that dominates the stop block if the
150
  // exclusion block is potentially in between.
151
  if (ExclusionSet && !ExclusionSet->empty())
152
    DT = nullptr;
153

154
  // Normally any block in a loop is reachable from any other block in a loop,
155
  // however excluded blocks might partition the body of a loop to make that
156
  // untrue.
157
  SmallPtrSet<const Loop *, 8> LoopsWithHoles;
158
  if (LI && ExclusionSet) {
159
    for (auto *BB : *ExclusionSet) {
160
      if (const Loop *L = getOutermostLoop(LI, BB))
161
        LoopsWithHoles.insert(L);
162
    }
163
  }
164

165
  SmallPtrSet<const Loop *, 2> StopLoops;
166
  if (LI) {
167
    for (auto *StopSetBB : StopSet) {
168
      if (const Loop *L = getOutermostLoop(LI, StopSetBB))
169
        StopLoops.insert(L);
170
    }
171
  }
172

173
  unsigned Limit = DefaultMaxBBsToExplore;
174
  SmallPtrSet<const BasicBlock*, 32> Visited;
175
  do {
176
    BasicBlock *BB = Worklist.pop_back_val();
177
    if (!Visited.insert(BB).second)
178
      continue;
179
    if (StopSet.contains(BB))
180
      return true;
181
    if (ExclusionSet && ExclusionSet->count(BB))
182
      continue;
183
    if (DT) {
184
      if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) {
185
            return DT->dominates(BB, StopBB);
186
          }))
187
        return true;
188
    }
189

190
    const Loop *Outer = nullptr;
191
    if (LI) {
192
      Outer = getOutermostLoop(LI, BB);
193
      // If we're in a loop with a hole, not all blocks in the loop are
194
      // reachable from all other blocks. That implies we can't simply jump to
195
      // the loop's exit blocks, as that exit might need to pass through an
196
      // excluded block. Clear Outer so we process BB's successors.
197
      if (LoopsWithHoles.count(Outer))
198
        Outer = nullptr;
199
      if (StopLoops.contains(Outer))
200
        return true;
201
    }
202

203
    if (!--Limit) {
204
      // We haven't been able to prove it one way or the other. Conservatively
205
      // answer true -- that there is potentially a path.
206
      return true;
207
    }
208

209
    if (Outer) {
210
      // All blocks in a single loop are reachable from all other blocks. From
211
      // any of these blocks, we can skip directly to the exits of the loop,
212
      // ignoring any other blocks inside the loop body.
213
      Outer->getExitBlocks(Worklist);
214
    } else {
215
      Worklist.append(succ_begin(BB), succ_end(BB));
216
    }
217
  } while (!Worklist.empty());
218

219
  // We have exhausted all possible paths and are certain that 'To' can not be
220
  // reached from 'From'.
221
  return false;
222
}
223

224
template <class T> class SingleEntrySet {
225
public:
226
  using const_iterator = const T *;
227

228
  SingleEntrySet(T Elem) : Elem(Elem) {}
229

230
  bool contains(T Other) const { return Elem == Other; }
231

232
  const_iterator begin() const { return &Elem; }
233
  const_iterator end() const { return &Elem + 1; }
234

235
private:
236
  T Elem;
237
};
238

239
bool llvm::isPotentiallyReachableFromMany(
240
    SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
241
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
242
    const LoopInfo *LI) {
243
  return isReachableImpl<SingleEntrySet<const BasicBlock *>>(
244
      Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT,
245
      LI);
246
}
247

248
bool llvm::isManyPotentiallyReachableFromMany(
249
    SmallVectorImpl<BasicBlock *> &Worklist,
250
    const SmallPtrSetImpl<const BasicBlock *> &StopSet,
251
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
252
    const LoopInfo *LI) {
253
  return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>(
254
      Worklist, StopSet, ExclusionSet, DT, LI);
255
}
256

257
bool llvm::isPotentiallyReachable(
258
    const BasicBlock *A, const BasicBlock *B,
259
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
260
    const LoopInfo *LI) {
261
  assert(A->getParent() == B->getParent() &&
262
         "This analysis is function-local!");
263

264
  if (DT) {
265
    if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
266
      return false;
267
    if (!ExclusionSet || ExclusionSet->empty()) {
268
      if (A->isEntryBlock() && DT->isReachableFromEntry(B))
269
        return true;
270
      if (B->isEntryBlock() && DT->isReachableFromEntry(A))
271
        return false;
272
    }
273
  }
274

275
  SmallVector<BasicBlock*, 32> Worklist;
276
  Worklist.push_back(const_cast<BasicBlock*>(A));
277

278
  return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
279
}
280

281
bool llvm::isPotentiallyReachable(
282
    const Instruction *A, const Instruction *B,
283
    const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
284
    const LoopInfo *LI) {
285
  assert(A->getParent()->getParent() == B->getParent()->getParent() &&
286
         "This analysis is function-local!");
287

288
  if (A->getParent() == B->getParent()) {
289
    // The same block case is special because it's the only time we're looking
290
    // within a single block to see which instruction comes first. Once we
291
    // start looking at multiple blocks, the first instruction of the block is
292
    // reachable, so we only need to determine reachability between whole
293
    // blocks.
294
    BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
295

296
    // If the block is in a loop then we can reach any instruction in the block
297
    // from any other instruction in the block by going around a backedge.
298
    if (LI && LI->getLoopFor(BB) != nullptr)
299
      return true;
300

301
    // If A comes before B, then B is definitively reachable from A.
302
    if (A == B || A->comesBefore(B))
303
      return true;
304

305
    // Can't be in a loop if it's the entry block -- the entry block may not
306
    // have predecessors.
307
    if (BB->isEntryBlock())
308
      return false;
309

310
    // Otherwise, continue doing the normal per-BB CFG walk.
311
    SmallVector<BasicBlock*, 32> Worklist;
312
    Worklist.append(succ_begin(BB), succ_end(BB));
313
    if (Worklist.empty()) {
314
      // We've proven that there's no path!
315
      return false;
316
    }
317

318
    return isPotentiallyReachableFromMany(Worklist, B->getParent(),
319
                                          ExclusionSet, DT, LI);
320
  }
321

322
  return isPotentiallyReachable(
323
      A->getParent(), B->getParent(), ExclusionSet, DT, LI);
324
}
325

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.