llvm-project
324 строки · 11.3 Кб
1//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions performs analyses on basic blocks, and instructions
10// contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/CFG.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/IR/Dominators.h"
17#include "llvm/Support/CommandLine.h"
18
19using namespace llvm;
20
21// The max number of basic blocks explored during reachability analysis between
22// two basic blocks. This is kept reasonably small to limit compile time when
23// repeatedly used by clients of this analysis (such as captureTracking).
24static cl::opt<unsigned> DefaultMaxBBsToExplore(
25"dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26cl::desc("Max number of BBs to explore for reachability analysis"),
27cl::init(32));
28
29/// FindFunctionBackedges - Analyze the specified function to find all of the
30/// loop backedges in the function and return them. This is a relatively cheap
31/// (compared to computing dominators and loop info) analysis.
32///
33/// The output is added to Result, as pairs of <from,to> edge info.
34void llvm::FindFunctionBackedges(const Function &F,
35SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36const BasicBlock *BB = &F.getEntryBlock();
37if (succ_empty(BB))
38return;
39
40SmallPtrSet<const BasicBlock*, 8> Visited;
41SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42SmallPtrSet<const BasicBlock*, 8> InStack;
43
44Visited.insert(BB);
45VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46InStack.insert(BB);
47do {
48std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49const BasicBlock *ParentBB = Top.first;
50const_succ_iterator &I = Top.second;
51
52bool FoundNew = false;
53while (I != succ_end(ParentBB)) {
54BB = *I++;
55if (Visited.insert(BB).second) {
56FoundNew = true;
57break;
58}
59// Successor is in VisitStack, it's a back edge.
60if (InStack.count(BB))
61Result.push_back(std::make_pair(ParentBB, BB));
62}
63
64if (FoundNew) {
65// Go down one level if there is a unvisited successor.
66InStack.insert(BB);
67VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68} else {
69// Go up one level.
70InStack.erase(VisitStack.pop_back_val().first);
71}
72} while (!VisitStack.empty());
73}
74
75/// GetSuccessorNumber - Search for the specified successor of basic block BB
76/// and return its position in the terminator instruction's list of
77/// successors. It is an error to call this with a block that is not a
78/// successor.
79unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80const BasicBlock *Succ) {
81const Instruction *Term = BB->getTerminator();
82#ifndef NDEBUG
83unsigned e = Term->getNumSuccessors();
84#endif
85for (unsigned i = 0; ; ++i) {
86assert(i != e && "Didn't find edge?");
87if (Term->getSuccessor(i) == Succ)
88return i;
89}
90}
91
92/// isCriticalEdge - Return true if the specified edge is a critical edge.
93/// Critical edges are edges from a block with multiple successors to a block
94/// with multiple predecessors.
95bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96bool AllowIdenticalEdges) {
97assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99}
100
101bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102bool AllowIdenticalEdges) {
103assert(TI->isTerminator() && "Must be a terminator to have successors!");
104if (TI->getNumSuccessors() == 1) return false;
105
106assert(is_contained(predecessors(Dest), TI->getParent()) &&
107"No edge between TI's block and Dest.");
108
109const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110
111// If there is more than one predecessor, this is a critical edge...
112assert(I != E && "No preds, but we have an edge to the block?");
113const BasicBlock *FirstPred = *I;
114++I; // Skip one edge due to the incoming arc from TI.
115if (!AllowIdenticalEdges)
116return I != E;
117
118// If AllowIdenticalEdges is true, then we allow this edge to be considered
119// non-critical iff all preds come from TI's block.
120for (; I != E; ++I)
121if (*I != FirstPred)
122return true;
123return false;
124}
125
126// LoopInfo contains a mapping from basic block to the innermost loop. Find
127// the outermost loop in the loop nest that contains BB.
128static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129const Loop *L = LI->getLoopFor(BB);
130return L ? L->getOutermostLoop() : nullptr;
131}
132
133template <class StopSetT>
134static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist,
135const StopSetT &StopSet,
136const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
137const DominatorTree *DT, const LoopInfo *LI) {
138// When a stop block is unreachable, it's dominated from everywhere,
139// regardless of whether there's a path between the two blocks.
140if (DT) {
141for (auto *BB : StopSet) {
142if (!DT->isReachableFromEntry(BB)) {
143DT = nullptr;
144break;
145}
146}
147}
148
149// We can't skip directly from a block that dominates the stop block if the
150// exclusion block is potentially in between.
151if (ExclusionSet && !ExclusionSet->empty())
152DT = nullptr;
153
154// Normally any block in a loop is reachable from any other block in a loop,
155// however excluded blocks might partition the body of a loop to make that
156// untrue.
157SmallPtrSet<const Loop *, 8> LoopsWithHoles;
158if (LI && ExclusionSet) {
159for (auto *BB : *ExclusionSet) {
160if (const Loop *L = getOutermostLoop(LI, BB))
161LoopsWithHoles.insert(L);
162}
163}
164
165SmallPtrSet<const Loop *, 2> StopLoops;
166if (LI) {
167for (auto *StopSetBB : StopSet) {
168if (const Loop *L = getOutermostLoop(LI, StopSetBB))
169StopLoops.insert(L);
170}
171}
172
173unsigned Limit = DefaultMaxBBsToExplore;
174SmallPtrSet<const BasicBlock*, 32> Visited;
175do {
176BasicBlock *BB = Worklist.pop_back_val();
177if (!Visited.insert(BB).second)
178continue;
179if (StopSet.contains(BB))
180return true;
181if (ExclusionSet && ExclusionSet->count(BB))
182continue;
183if (DT) {
184if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) {
185return DT->dominates(BB, StopBB);
186}))
187return true;
188}
189
190const Loop *Outer = nullptr;
191if (LI) {
192Outer = getOutermostLoop(LI, BB);
193// If we're in a loop with a hole, not all blocks in the loop are
194// reachable from all other blocks. That implies we can't simply jump to
195// the loop's exit blocks, as that exit might need to pass through an
196// excluded block. Clear Outer so we process BB's successors.
197if (LoopsWithHoles.count(Outer))
198Outer = nullptr;
199if (StopLoops.contains(Outer))
200return true;
201}
202
203if (!--Limit) {
204// We haven't been able to prove it one way or the other. Conservatively
205// answer true -- that there is potentially a path.
206return true;
207}
208
209if (Outer) {
210// All blocks in a single loop are reachable from all other blocks. From
211// any of these blocks, we can skip directly to the exits of the loop,
212// ignoring any other blocks inside the loop body.
213Outer->getExitBlocks(Worklist);
214} else {
215Worklist.append(succ_begin(BB), succ_end(BB));
216}
217} while (!Worklist.empty());
218
219// We have exhausted all possible paths and are certain that 'To' can not be
220// reached from 'From'.
221return false;
222}
223
224template <class T> class SingleEntrySet {
225public:
226using const_iterator = const T *;
227
228SingleEntrySet(T Elem) : Elem(Elem) {}
229
230bool contains(T Other) const { return Elem == Other; }
231
232const_iterator begin() const { return &Elem; }
233const_iterator end() const { return &Elem + 1; }
234
235private:
236T Elem;
237};
238
239bool llvm::isPotentiallyReachableFromMany(
240SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
241const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
242const LoopInfo *LI) {
243return isReachableImpl<SingleEntrySet<const BasicBlock *>>(
244Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT,
245LI);
246}
247
248bool llvm::isManyPotentiallyReachableFromMany(
249SmallVectorImpl<BasicBlock *> &Worklist,
250const SmallPtrSetImpl<const BasicBlock *> &StopSet,
251const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
252const LoopInfo *LI) {
253return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>(
254Worklist, StopSet, ExclusionSet, DT, LI);
255}
256
257bool llvm::isPotentiallyReachable(
258const BasicBlock *A, const BasicBlock *B,
259const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
260const LoopInfo *LI) {
261assert(A->getParent() == B->getParent() &&
262"This analysis is function-local!");
263
264if (DT) {
265if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
266return false;
267if (!ExclusionSet || ExclusionSet->empty()) {
268if (A->isEntryBlock() && DT->isReachableFromEntry(B))
269return true;
270if (B->isEntryBlock() && DT->isReachableFromEntry(A))
271return false;
272}
273}
274
275SmallVector<BasicBlock*, 32> Worklist;
276Worklist.push_back(const_cast<BasicBlock*>(A));
277
278return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
279}
280
281bool llvm::isPotentiallyReachable(
282const Instruction *A, const Instruction *B,
283const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
284const LoopInfo *LI) {
285assert(A->getParent()->getParent() == B->getParent()->getParent() &&
286"This analysis is function-local!");
287
288if (A->getParent() == B->getParent()) {
289// The same block case is special because it's the only time we're looking
290// within a single block to see which instruction comes first. Once we
291// start looking at multiple blocks, the first instruction of the block is
292// reachable, so we only need to determine reachability between whole
293// blocks.
294BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
295
296// If the block is in a loop then we can reach any instruction in the block
297// from any other instruction in the block by going around a backedge.
298if (LI && LI->getLoopFor(BB) != nullptr)
299return true;
300
301// If A comes before B, then B is definitively reachable from A.
302if (A == B || A->comesBefore(B))
303return true;
304
305// Can't be in a loop if it's the entry block -- the entry block may not
306// have predecessors.
307if (BB->isEntryBlock())
308return false;
309
310// Otherwise, continue doing the normal per-BB CFG walk.
311SmallVector<BasicBlock*, 32> Worklist;
312Worklist.append(succ_begin(BB), succ_end(BB));
313if (Worklist.empty()) {
314// We've proven that there's no path!
315return false;
316}
317
318return isPotentiallyReachableFromMany(Worklist, B->getParent(),
319ExclusionSet, DT, LI);
320}
321
322return isPotentiallyReachable(
323A->getParent(), B->getParent(), ExclusionSet, DT, LI);
324}
325