llvm-project

Форк
0
/
InputFiles.cpp 
2360 строк · 94.1 Кб
1
//===- InputFiles.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains functions to parse Mach-O object files. In this comment,
10
// we describe the Mach-O file structure and how we parse it.
11
//
12
// Mach-O is not very different from ELF or COFF. The notion of symbols,
13
// sections and relocations exists in Mach-O as it does in ELF and COFF.
14
//
15
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16
// In ELF/COFF, sections are an atomic unit of data copied from input files to
17
// output files. When we merge or garbage-collect sections, we treat each
18
// section as an atomic unit. In Mach-O, that's not the case. Sections can
19
// consist of multiple subsections, and subsections are a unit of merging and
20
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
21
// ELF/COFF's sections than Mach-O's sections are.
22
//
23
// A section can have multiple symbols. A symbol that does not have the
24
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25
// definition, a symbol is always present at the beginning of each subsection. A
26
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27
// point to a middle of a subsection.
28
//
29
// The notion of subsections also affects how relocations are represented in
30
// Mach-O. All references within a section need to be explicitly represented as
31
// relocations if they refer to different subsections, because we obviously need
32
// to fix up addresses if subsections are laid out in an output file differently
33
// than they were in object files. To represent that, Mach-O relocations can
34
// refer to an unnamed location via its address. Scattered relocations (those
35
// with the R_SCATTERED bit set) always refer to unnamed locations.
36
// Non-scattered relocations refer to an unnamed location if r_extern is not set
37
// and r_symbolnum is zero.
38
//
39
// Without the above differences, I think you can use your knowledge about ELF
40
// and COFF for Mach-O.
41
//
42
//===----------------------------------------------------------------------===//
43

44
#include "InputFiles.h"
45
#include "Config.h"
46
#include "Driver.h"
47
#include "Dwarf.h"
48
#include "EhFrame.h"
49
#include "ExportTrie.h"
50
#include "InputSection.h"
51
#include "MachOStructs.h"
52
#include "ObjC.h"
53
#include "OutputSection.h"
54
#include "OutputSegment.h"
55
#include "SymbolTable.h"
56
#include "Symbols.h"
57
#include "SyntheticSections.h"
58
#include "Target.h"
59

60
#include "lld/Common/CommonLinkerContext.h"
61
#include "lld/Common/DWARF.h"
62
#include "lld/Common/Reproduce.h"
63
#include "llvm/ADT/iterator.h"
64
#include "llvm/BinaryFormat/MachO.h"
65
#include "llvm/LTO/LTO.h"
66
#include "llvm/Support/BinaryStreamReader.h"
67
#include "llvm/Support/Endian.h"
68
#include "llvm/Support/LEB128.h"
69
#include "llvm/Support/MemoryBuffer.h"
70
#include "llvm/Support/Path.h"
71
#include "llvm/Support/TarWriter.h"
72
#include "llvm/Support/TimeProfiler.h"
73
#include "llvm/TextAPI/Architecture.h"
74
#include "llvm/TextAPI/InterfaceFile.h"
75

76
#include <optional>
77
#include <type_traits>
78

79
using namespace llvm;
80
using namespace llvm::MachO;
81
using namespace llvm::support::endian;
82
using namespace llvm::sys;
83
using namespace lld;
84
using namespace lld::macho;
85

86
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
87
std::string lld::toString(const InputFile *f) {
88
  if (!f)
89
    return "<internal>";
90

91
  // Multiple dylibs can be defined in one .tbd file.
92
  if (const auto *dylibFile = dyn_cast<DylibFile>(f))
93
    if (f->getName().ends_with(".tbd"))
94
      return (f->getName() + "(" + dylibFile->installName + ")").str();
95

96
  if (f->archiveName.empty())
97
    return std::string(f->getName());
98
  return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99
}
100

101
std::string lld::toString(const Section &sec) {
102
  return (toString(sec.file) + ":(" + sec.name + ")").str();
103
}
104

105
SetVector<InputFile *> macho::inputFiles;
106
std::unique_ptr<TarWriter> macho::tar;
107
int InputFile::idCount = 0;
108

109
static VersionTuple decodeVersion(uint32_t version) {
110
  unsigned major = version >> 16;
111
  unsigned minor = (version >> 8) & 0xffu;
112
  unsigned subMinor = version & 0xffu;
113
  return VersionTuple(major, minor, subMinor);
114
}
115

116
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117
  if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118
    return {};
119

120
  const char *hdr = input->mb.getBufferStart();
121

122
  // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123
  std::vector<PlatformInfo> platformInfos;
124
  for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125
    PlatformInfo info;
126
    info.target.Platform = static_cast<PlatformType>(cmd->platform);
127
    info.target.MinDeployment = decodeVersion(cmd->minos);
128
    platformInfos.emplace_back(std::move(info));
129
  }
130
  for (auto *cmd : findCommands<version_min_command>(
131
           hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132
           LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133
    PlatformInfo info;
134
    switch (cmd->cmd) {
135
    case LC_VERSION_MIN_MACOSX:
136
      info.target.Platform = PLATFORM_MACOS;
137
      break;
138
    case LC_VERSION_MIN_IPHONEOS:
139
      info.target.Platform = PLATFORM_IOS;
140
      break;
141
    case LC_VERSION_MIN_TVOS:
142
      info.target.Platform = PLATFORM_TVOS;
143
      break;
144
    case LC_VERSION_MIN_WATCHOS:
145
      info.target.Platform = PLATFORM_WATCHOS;
146
      break;
147
    }
148
    info.target.MinDeployment = decodeVersion(cmd->version);
149
    platformInfos.emplace_back(std::move(info));
150
  }
151

152
  return platformInfos;
153
}
154

155
static bool checkCompatibility(const InputFile *input) {
156
  std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157
  if (platformInfos.empty())
158
    return true;
159

160
  auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161
    return removeSimulator(info.target.Platform) ==
162
           removeSimulator(config->platform());
163
  });
164
  if (it == platformInfos.end()) {
165
    std::string platformNames;
166
    raw_string_ostream os(platformNames);
167
    interleave(
168
        platformInfos, os,
169
        [&](const PlatformInfo &info) {
170
          os << getPlatformName(info.target.Platform);
171
        },
172
        "/");
173
    error(toString(input) + " has platform " + platformNames +
174
          Twine(", which is different from target platform ") +
175
          getPlatformName(config->platform()));
176
    return false;
177
  }
178

179
  if (it->target.MinDeployment > config->platformInfo.target.MinDeployment)
180
    warn(toString(input) + " has version " +
181
         it->target.MinDeployment.getAsString() +
182
         ", which is newer than target minimum of " +
183
         config->platformInfo.target.MinDeployment.getAsString());
184

185
  return true;
186
}
187

188
template <class Header>
189
static bool compatWithTargetArch(const InputFile *file, const Header *hdr) {
190
  uint32_t cpuType;
191
  std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
192

193
  if (hdr->cputype != cpuType) {
194
    Architecture arch =
195
        getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
196
    auto msg = config->errorForArchMismatch
197
                   ? static_cast<void (*)(const Twine &)>(error)
198
                   : warn;
199

200
    msg(toString(file) + " has architecture " + getArchitectureName(arch) +
201
        " which is incompatible with target architecture " +
202
        getArchitectureName(config->arch()));
203
    return false;
204
  }
205

206
  return checkCompatibility(file);
207
}
208

209
// This cache mostly exists to store system libraries (and .tbds) as they're
210
// loaded, rather than the input archives, which are already cached at a higher
211
// level, and other files like the filelist that are only read once.
212
// Theoretically this caching could be more efficient by hoisting it, but that
213
// would require altering many callers to track the state.
214
DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
215
// Open a given file path and return it as a memory-mapped file.
216
std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
217
  CachedHashStringRef key(path);
218
  auto entry = cachedReads.find(key);
219
  if (entry != cachedReads.end())
220
    return entry->second;
221

222
  ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
223
  if (std::error_code ec = mbOrErr.getError()) {
224
    error("cannot open " + path + ": " + ec.message());
225
    return std::nullopt;
226
  }
227

228
  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
229
  MemoryBufferRef mbref = mb->getMemBufferRef();
230
  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
231

232
  // If this is a regular non-fat file, return it.
233
  const char *buf = mbref.getBufferStart();
234
  const auto *hdr = reinterpret_cast<const fat_header *>(buf);
235
  if (mbref.getBufferSize() < sizeof(uint32_t) ||
236
      read32be(&hdr->magic) != FAT_MAGIC) {
237
    if (tar)
238
      tar->append(relativeToRoot(path), mbref.getBuffer());
239
    return cachedReads[key] = mbref;
240
  }
241

242
  llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
243

244
  // Object files and archive files may be fat files, which contain multiple
245
  // real files for different CPU ISAs. Here, we search for a file that matches
246
  // with the current link target and returns it as a MemoryBufferRef.
247
  const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
248
  auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
249
    return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
250
  };
251

252
  std::vector<StringRef> archs;
253
  for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
254
    if (reinterpret_cast<const char *>(arch + i + 1) >
255
        buf + mbref.getBufferSize()) {
256
      error(path + ": fat_arch struct extends beyond end of file");
257
      return std::nullopt;
258
    }
259

260
    uint32_t cpuType = read32be(&arch[i].cputype);
261
    uint32_t cpuSubtype =
262
        read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
263

264
    // FIXME: LD64 has a more complex fallback logic here.
265
    // Consider implementing that as well?
266
    if (cpuType != static_cast<uint32_t>(target->cpuType) ||
267
        cpuSubtype != target->cpuSubtype) {
268
      archs.emplace_back(getArchName(cpuType, cpuSubtype));
269
      continue;
270
    }
271

272
    uint32_t offset = read32be(&arch[i].offset);
273
    uint32_t size = read32be(&arch[i].size);
274
    if (offset + size > mbref.getBufferSize())
275
      error(path + ": slice extends beyond end of file");
276
    if (tar)
277
      tar->append(relativeToRoot(path), mbref.getBuffer());
278
    return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
279
                                              path.copy(bAlloc));
280
  }
281

282
  auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
283
  warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
284
       ") but does not contain the " + targetArchName + " architecture");
285
  return std::nullopt;
286
}
287

288
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
289
    : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
290

291
// Some sections comprise of fixed-size records, so instead of splitting them at
292
// symbol boundaries, we split them based on size. Records are distinct from
293
// literals in that they may contain references to other sections, instead of
294
// being leaf nodes in the InputSection graph.
295
//
296
// Note that "record" is a term I came up with. In contrast, "literal" is a term
297
// used by the Mach-O format.
298
static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
299
  if (name == section_names::compactUnwind) {
300
    if (segname == segment_names::ld)
301
      return target->wordSize == 8 ? 32 : 20;
302
  }
303
  if (!config->dedupStrings)
304
    return {};
305

306
  if (name == section_names::cfString && segname == segment_names::data)
307
    return target->wordSize == 8 ? 32 : 16;
308

309
  if (config->icfLevel == ICFLevel::none)
310
    return {};
311

312
  if (name == section_names::objcClassRefs && segname == segment_names::data)
313
    return target->wordSize;
314

315
  if (name == section_names::objcSelrefs && segname == segment_names::data)
316
    return target->wordSize;
317
  return {};
318
}
319

320
static Error parseCallGraph(ArrayRef<uint8_t> data,
321
                            std::vector<CallGraphEntry> &callGraph) {
322
  TimeTraceScope timeScope("Parsing call graph section");
323
  BinaryStreamReader reader(data, llvm::endianness::little);
324
  while (!reader.empty()) {
325
    uint32_t fromIndex, toIndex;
326
    uint64_t count;
327
    if (Error err = reader.readInteger(fromIndex))
328
      return err;
329
    if (Error err = reader.readInteger(toIndex))
330
      return err;
331
    if (Error err = reader.readInteger(count))
332
      return err;
333
    callGraph.emplace_back(fromIndex, toIndex, count);
334
  }
335
  return Error::success();
336
}
337

338
// Parse the sequence of sections within a single LC_SEGMENT(_64).
339
// Split each section into subsections.
340
template <class SectionHeader>
341
void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
342
  sections.reserve(sectionHeaders.size());
343
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
344

345
  for (const SectionHeader &sec : sectionHeaders) {
346
    StringRef name =
347
        StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
348
    StringRef segname =
349
        StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
350
    sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
351
    if (sec.align >= 32) {
352
      error("alignment " + std::to_string(sec.align) + " of section " + name +
353
            " is too large");
354
      continue;
355
    }
356
    Section &section = *sections.back();
357
    uint32_t align = 1 << sec.align;
358
    ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
359
                                                    : buf + sec.offset,
360
                              static_cast<size_t>(sec.size)};
361

362
    auto splitRecords = [&](size_t recordSize) -> void {
363
      if (data.empty())
364
        return;
365
      Subsections &subsections = section.subsections;
366
      subsections.reserve(data.size() / recordSize);
367
      for (uint64_t off = 0; off < data.size(); off += recordSize) {
368
        auto *isec = make<ConcatInputSection>(
369
            section, data.slice(off, std::min(data.size(), recordSize)), align);
370
        subsections.push_back({off, isec});
371
      }
372
      section.doneSplitting = true;
373
    };
374

375
    if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
376
      if (sec.nreloc)
377
        fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
378
              " contains relocations, which is unsupported");
379
      bool dedupLiterals =
380
          name == section_names::objcMethname || config->dedupStrings;
381
      InputSection *isec =
382
          make<CStringInputSection>(section, data, align, dedupLiterals);
383
      // FIXME: parallelize this?
384
      cast<CStringInputSection>(isec)->splitIntoPieces();
385
      section.subsections.push_back({0, isec});
386
    } else if (isWordLiteralSection(sec.flags)) {
387
      if (sec.nreloc)
388
        fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
389
              " contains relocations, which is unsupported");
390
      InputSection *isec = make<WordLiteralInputSection>(section, data, align);
391
      section.subsections.push_back({0, isec});
392
    } else if (auto recordSize = getRecordSize(segname, name)) {
393
      splitRecords(*recordSize);
394
    } else if (name == section_names::ehFrame &&
395
               segname == segment_names::text) {
396
      splitEhFrames(data, *sections.back());
397
    } else if (segname == segment_names::llvm) {
398
      if (config->callGraphProfileSort && name == section_names::cgProfile)
399
        checkError(parseCallGraph(data, callGraph));
400
      // ld64 does not appear to emit contents from sections within the __LLVM
401
      // segment. Symbols within those sections point to bitcode metadata
402
      // instead of actual symbols. Global symbols within those sections could
403
      // have the same name without causing duplicate symbol errors. To avoid
404
      // spurious duplicate symbol errors, we do not parse these sections.
405
      // TODO: Evaluate whether the bitcode metadata is needed.
406
    } else if (name == section_names::objCImageInfo &&
407
               segname == segment_names::data) {
408
      objCImageInfo = data;
409
    } else {
410
      if (name == section_names::addrSig)
411
        addrSigSection = sections.back();
412

413
      auto *isec = make<ConcatInputSection>(section, data, align);
414
      if (isDebugSection(isec->getFlags()) &&
415
          isec->getSegName() == segment_names::dwarf) {
416
        // Instead of emitting DWARF sections, we emit STABS symbols to the
417
        // object files that contain them. We filter them out early to avoid
418
        // parsing their relocations unnecessarily.
419
        debugSections.push_back(isec);
420
      } else {
421
        section.subsections.push_back({0, isec});
422
      }
423
    }
424
  }
425
}
426

427
void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
428
  EhReader reader(this, data, /*dataOff=*/0);
429
  size_t off = 0;
430
  while (off < reader.size()) {
431
    uint64_t frameOff = off;
432
    uint64_t length = reader.readLength(&off);
433
    if (length == 0)
434
      break;
435
    uint64_t fullLength = length + (off - frameOff);
436
    off += length;
437
    // We hard-code an alignment of 1 here because we don't actually want our
438
    // EH frames to be aligned to the section alignment. EH frame decoders don't
439
    // expect this alignment. Moreover, each EH frame must start where the
440
    // previous one ends, and where it ends is indicated by the length field.
441
    // Unless we update the length field (troublesome), we should keep the
442
    // alignment to 1.
443
    // Note that we still want to preserve the alignment of the overall section,
444
    // just not of the individual EH frames.
445
    ehFrameSection.subsections.push_back(
446
        {frameOff, make<ConcatInputSection>(ehFrameSection,
447
                                            data.slice(frameOff, fullLength),
448
                                            /*align=*/1)});
449
  }
450
  ehFrameSection.doneSplitting = true;
451
}
452

453
template <class T>
454
static Section *findContainingSection(const std::vector<Section *> &sections,
455
                                      T *offset) {
456
  static_assert(std::is_same<uint64_t, T>::value ||
457
                    std::is_same<uint32_t, T>::value,
458
                "unexpected type for offset");
459
  auto it = std::prev(llvm::upper_bound(
460
      sections, *offset,
461
      [](uint64_t value, const Section *sec) { return value < sec->addr; }));
462
  *offset -= (*it)->addr;
463
  return *it;
464
}
465

466
// Find the subsection corresponding to the greatest section offset that is <=
467
// that of the given offset.
468
//
469
// offset: an offset relative to the start of the original InputSection (before
470
// any subsection splitting has occurred). It will be updated to represent the
471
// same location as an offset relative to the start of the containing
472
// subsection.
473
template <class T>
474
static InputSection *findContainingSubsection(const Section &section,
475
                                              T *offset) {
476
  static_assert(std::is_same<uint64_t, T>::value ||
477
                    std::is_same<uint32_t, T>::value,
478
                "unexpected type for offset");
479
  auto it = std::prev(llvm::upper_bound(
480
      section.subsections, *offset,
481
      [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
482
  *offset -= it->offset;
483
  return it->isec;
484
}
485

486
// Find a symbol at offset `off` within `isec`.
487
static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
488
                                   uint64_t off) {
489
  auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
490
    return d->value < off;
491
  });
492
  // The offset should point at the exact address of a symbol (with no addend.)
493
  if (it == isec->symbols.end() || (*it)->value != off) {
494
    assert(isec->wasCoalesced);
495
    return nullptr;
496
  }
497
  return *it;
498
}
499

500
template <class SectionHeader>
501
static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
502
                                   relocation_info rel) {
503
  const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
504
  bool valid = true;
505
  auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
506
    valid = false;
507
    return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
508
            std::to_string(rel.r_address) + " of " + sec.segname + "," +
509
            sec.sectname + " in " + toString(file))
510
        .str();
511
  };
512

513
  if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
514
    error(message("must be extern"));
515
  if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
516
    error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
517
                  "be PC-relative"));
518
  if (isThreadLocalVariables(sec.flags) &&
519
      !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
520
    error(message("not allowed in thread-local section, must be UNSIGNED"));
521
  if (rel.r_length < 2 || rel.r_length > 3 ||
522
      !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
523
    static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
524
    error(message("has width " + std::to_string(1 << rel.r_length) +
525
                  " bytes, but must be " +
526
                  widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
527
                  " bytes"));
528
  }
529
  return valid;
530
}
531

532
template <class SectionHeader>
533
void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
534
                               const SectionHeader &sec, Section &section) {
535
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
536
  ArrayRef<relocation_info> relInfos(
537
      reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
538

539
  Subsections &subsections = section.subsections;
540
  auto subsecIt = subsections.rbegin();
541
  for (size_t i = 0; i < relInfos.size(); i++) {
542
    // Paired relocations serve as Mach-O's method for attaching a
543
    // supplemental datum to a primary relocation record. ELF does not
544
    // need them because the *_RELOC_RELA records contain the extra
545
    // addend field, vs. *_RELOC_REL which omit the addend.
546
    //
547
    // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
548
    // and the paired *_RELOC_UNSIGNED record holds the minuend. The
549
    // datum for each is a symbolic address. The result is the offset
550
    // between two addresses.
551
    //
552
    // The ARM64_RELOC_ADDEND record holds the addend, and the paired
553
    // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
554
    // base symbolic address.
555
    //
556
    // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
557
    // the instruction stream. On X86, a relocatable address field always
558
    // occupies an entire contiguous sequence of byte(s), so there is no need to
559
    // merge opcode bits with address bits. Therefore, it's easy and convenient
560
    // to store addends in the instruction-stream bytes that would otherwise
561
    // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
562
    // address bits so that bitwise arithmetic is necessary to extract and
563
    // insert them. Storing addends in the instruction stream is possible, but
564
    // inconvenient and more costly at link time.
565

566
    relocation_info relInfo = relInfos[i];
567
    bool isSubtrahend =
568
        target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
569
    int64_t pairedAddend = 0;
570
    if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
571
      pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
572
      relInfo = relInfos[++i];
573
    }
574
    assert(i < relInfos.size());
575
    if (!validateRelocationInfo(this, sec, relInfo))
576
      continue;
577
    if (relInfo.r_address & R_SCATTERED)
578
      fatal("TODO: Scattered relocations not supported");
579

580
    int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
581
    assert(!(embeddedAddend && pairedAddend));
582
    int64_t totalAddend = pairedAddend + embeddedAddend;
583
    Reloc r;
584
    r.type = relInfo.r_type;
585
    r.pcrel = relInfo.r_pcrel;
586
    r.length = relInfo.r_length;
587
    r.offset = relInfo.r_address;
588
    if (relInfo.r_extern) {
589
      r.referent = symbols[relInfo.r_symbolnum];
590
      r.addend = isSubtrahend ? 0 : totalAddend;
591
    } else {
592
      assert(!isSubtrahend);
593
      const SectionHeader &referentSecHead =
594
          sectionHeaders[relInfo.r_symbolnum - 1];
595
      uint64_t referentOffset;
596
      if (relInfo.r_pcrel) {
597
        // The implicit addend for pcrel section relocations is the pcrel offset
598
        // in terms of the addresses in the input file. Here we adjust it so
599
        // that it describes the offset from the start of the referent section.
600
        // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
601
        // have pcrel section relocations. We may want to factor this out into
602
        // the arch-specific .cpp file.
603
        assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
604
        referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
605
                         referentSecHead.addr;
606
      } else {
607
        // The addend for a non-pcrel relocation is its absolute address.
608
        referentOffset = totalAddend - referentSecHead.addr;
609
      }
610
      r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
611
                                            &referentOffset);
612
      r.addend = referentOffset;
613
    }
614

615
    // Find the subsection that this relocation belongs to.
616
    // Though not required by the Mach-O format, clang and gcc seem to emit
617
    // relocations in order, so let's take advantage of it. However, ld64 emits
618
    // unsorted relocations (in `-r` mode), so we have a fallback for that
619
    // uncommon case.
620
    InputSection *subsec;
621
    while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
622
      ++subsecIt;
623
    if (subsecIt == subsections.rend() ||
624
        subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
625
      subsec = findContainingSubsection(section, &r.offset);
626
      // Now that we know the relocs are unsorted, avoid trying the 'fast path'
627
      // for the other relocations.
628
      subsecIt = subsections.rend();
629
    } else {
630
      subsec = subsecIt->isec;
631
      r.offset -= subsecIt->offset;
632
    }
633
    subsec->relocs.push_back(r);
634

635
    if (isSubtrahend) {
636
      relocation_info minuendInfo = relInfos[++i];
637
      // SUBTRACTOR relocations should always be followed by an UNSIGNED one
638
      // attached to the same address.
639
      assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
640
             relInfo.r_address == minuendInfo.r_address);
641
      Reloc p;
642
      p.type = minuendInfo.r_type;
643
      if (minuendInfo.r_extern) {
644
        p.referent = symbols[minuendInfo.r_symbolnum];
645
        p.addend = totalAddend;
646
      } else {
647
        uint64_t referentOffset =
648
            totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
649
        p.referent = findContainingSubsection(
650
            *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
651
        p.addend = referentOffset;
652
      }
653
      subsec->relocs.push_back(p);
654
    }
655
  }
656
}
657

658
template <class NList>
659
static macho::Symbol *createDefined(const NList &sym, StringRef name,
660
                                    InputSection *isec, uint64_t value,
661
                                    uint64_t size, bool forceHidden) {
662
  // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
663
  // N_EXT: Global symbols. These go in the symbol table during the link,
664
  //        and also in the export table of the output so that the dynamic
665
  //        linker sees them.
666
  // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
667
  //                 symbol table during the link so that duplicates are
668
  //                 either reported (for non-weak symbols) or merged
669
  //                 (for weak symbols), but they do not go in the export
670
  //                 table of the output.
671
  // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
672
  //         object files) may produce them. LLD does not yet support -r.
673
  //         These are translation-unit scoped, identical to the `0` case.
674
  // 0: Translation-unit scoped. These are not in the symbol table during
675
  //    link, and not in the export table of the output either.
676
  bool isWeakDefCanBeHidden =
677
      (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
678

679
  assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
680

681
  if (sym.n_type & N_EXT) {
682
    // -load_hidden makes us treat global symbols as linkage unit scoped.
683
    // Duplicates are reported but the symbol does not go in the export trie.
684
    bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
685

686
    // lld's behavior for merging symbols is slightly different from ld64:
687
    // ld64 picks the winning symbol based on several criteria (see
688
    // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
689
    // just merges metadata and keeps the contents of the first symbol
690
    // with that name (see SymbolTable::addDefined). For:
691
    // * inline function F in a TU built with -fvisibility-inlines-hidden
692
    // * and inline function F in another TU built without that flag
693
    // ld64 will pick the one from the file built without
694
    // -fvisibility-inlines-hidden.
695
    // lld will instead pick the one listed first on the link command line and
696
    // give it visibility as if the function was built without
697
    // -fvisibility-inlines-hidden.
698
    // If both functions have the same contents, this will have the same
699
    // behavior. If not, it won't, but the input had an ODR violation in
700
    // that case.
701
    //
702
    // Similarly, merging a symbol
703
    // that's isPrivateExtern and not isWeakDefCanBeHidden with one
704
    // that's not isPrivateExtern but isWeakDefCanBeHidden technically
705
    // should produce one
706
    // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
707
    // with ld64's semantics, because it means the non-private-extern
708
    // definition will continue to take priority if more private extern
709
    // definitions are encountered. With lld's semantics there's no observable
710
    // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
711
    // that's privateExtern -- neither makes it into the dynamic symbol table,
712
    // unless the autohide symbol is explicitly exported.
713
    // But if a symbol is both privateExtern and autohide then it can't
714
    // be exported.
715
    // So we nullify the autohide flag when privateExtern is present
716
    // and promote the symbol to privateExtern when it is not already.
717
    if (isWeakDefCanBeHidden && isPrivateExtern)
718
      isWeakDefCanBeHidden = false;
719
    else if (isWeakDefCanBeHidden)
720
      isPrivateExtern = true;
721
    return symtab->addDefined(
722
        name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
723
        isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY,
724
        sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden);
725
  }
726
  bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
727
  return make<Defined>(
728
      name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
729
      /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
730
      sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
731
}
732

733
// Absolute symbols are defined symbols that do not have an associated
734
// InputSection. They cannot be weak.
735
template <class NList>
736
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
737
                                     StringRef name, bool forceHidden) {
738
  assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
739

740
  if (sym.n_type & N_EXT) {
741
    bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
742
    return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
743
                              /*isWeakDef=*/false, isPrivateExtern,
744
                              /*isReferencedDynamically=*/false,
745
                              sym.n_desc & N_NO_DEAD_STRIP,
746
                              /*isWeakDefCanBeHidden=*/false);
747
  }
748
  return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
749
                       /*isWeakDef=*/false,
750
                       /*isExternal=*/false, /*isPrivateExtern=*/false,
751
                       /*includeInSymtab=*/true,
752
                       /*isReferencedDynamically=*/false,
753
                       sym.n_desc & N_NO_DEAD_STRIP);
754
}
755

756
template <class NList>
757
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
758
                                              const char *strtab) {
759
  StringRef name = StringRef(strtab + sym.n_strx);
760
  uint8_t type = sym.n_type & N_TYPE;
761
  bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
762
  switch (type) {
763
  case N_UNDF:
764
    return sym.n_value == 0
765
               ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
766
               : symtab->addCommon(name, this, sym.n_value,
767
                                   1 << GET_COMM_ALIGN(sym.n_desc),
768
                                   isPrivateExtern);
769
  case N_ABS:
770
    return createAbsolute(sym, this, name, forceHidden);
771
  case N_INDR: {
772
    // Not much point in making local aliases -- relocs in the current file can
773
    // just refer to the actual symbol itself. ld64 ignores these symbols too.
774
    if (!(sym.n_type & N_EXT))
775
      return nullptr;
776
    StringRef aliasedName = StringRef(strtab + sym.n_value);
777
    // isPrivateExtern is the only symbol flag that has an impact on the final
778
    // aliased symbol.
779
    auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
780
    aliases.push_back(alias);
781
    return alias;
782
  }
783
  case N_PBUD:
784
    error("TODO: support symbols of type N_PBUD");
785
    return nullptr;
786
  case N_SECT:
787
    llvm_unreachable(
788
        "N_SECT symbols should not be passed to parseNonSectionSymbol");
789
  default:
790
    llvm_unreachable("invalid symbol type");
791
  }
792
}
793

794
template <class NList> static bool isUndef(const NList &sym) {
795
  return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
796
}
797

798
template <class LP>
799
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
800
                           ArrayRef<typename LP::nlist> nList,
801
                           const char *strtab, bool subsectionsViaSymbols) {
802
  using NList = typename LP::nlist;
803

804
  // Groups indices of the symbols by the sections that contain them.
805
  std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
806
  symbols.resize(nList.size());
807
  SmallVector<unsigned, 32> undefineds;
808
  for (uint32_t i = 0; i < nList.size(); ++i) {
809
    const NList &sym = nList[i];
810

811
    // Ignore debug symbols for now.
812
    // FIXME: may need special handling.
813
    if (sym.n_type & N_STAB)
814
      continue;
815

816
    if ((sym.n_type & N_TYPE) == N_SECT) {
817
      Subsections &subsections = sections[sym.n_sect - 1]->subsections;
818
      // parseSections() may have chosen not to parse this section.
819
      if (subsections.empty())
820
        continue;
821
      symbolsBySection[sym.n_sect - 1].push_back(i);
822
    } else if (isUndef(sym)) {
823
      undefineds.push_back(i);
824
    } else {
825
      symbols[i] = parseNonSectionSymbol(sym, strtab);
826
    }
827
  }
828

829
  for (size_t i = 0; i < sections.size(); ++i) {
830
    Subsections &subsections = sections[i]->subsections;
831
    if (subsections.empty())
832
      continue;
833
    std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
834
    uint64_t sectionAddr = sectionHeaders[i].addr;
835
    uint32_t sectionAlign = 1u << sectionHeaders[i].align;
836

837
    // Some sections have already been split into subsections during
838
    // parseSections(), so we simply need to match Symbols to the corresponding
839
    // subsection here.
840
    if (sections[i]->doneSplitting) {
841
      for (size_t j = 0; j < symbolIndices.size(); ++j) {
842
        const uint32_t symIndex = symbolIndices[j];
843
        const NList &sym = nList[symIndex];
844
        StringRef name = strtab + sym.n_strx;
845
        uint64_t symbolOffset = sym.n_value - sectionAddr;
846
        InputSection *isec =
847
            findContainingSubsection(*sections[i], &symbolOffset);
848
        if (symbolOffset != 0) {
849
          error(toString(*sections[i]) + ":  symbol " + name +
850
                " at misaligned offset");
851
          continue;
852
        }
853
        symbols[symIndex] =
854
            createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
855
      }
856
      continue;
857
    }
858
    sections[i]->doneSplitting = true;
859

860
    auto getSymName = [strtab](const NList& sym) -> StringRef {
861
      return StringRef(strtab + sym.n_strx);
862
    };
863

864
    // Calculate symbol sizes and create subsections by splitting the sections
865
    // along symbol boundaries.
866
    // We populate subsections by repeatedly splitting the last (highest
867
    // address) subsection.
868
    llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
869
      // Put extern weak symbols after other symbols at the same address so
870
      // that weak symbol coalescing works correctly. See
871
      // SymbolTable::addDefined() for details.
872
      if (nList[lhs].n_value == nList[rhs].n_value &&
873
          nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT)
874
        return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF);
875
      return nList[lhs].n_value < nList[rhs].n_value;
876
    });
877
    for (size_t j = 0; j < symbolIndices.size(); ++j) {
878
      const uint32_t symIndex = symbolIndices[j];
879
      const NList &sym = nList[symIndex];
880
      StringRef name = getSymName(sym);
881
      Subsection &subsec = subsections.back();
882
      InputSection *isec = subsec.isec;
883

884
      uint64_t subsecAddr = sectionAddr + subsec.offset;
885
      size_t symbolOffset = sym.n_value - subsecAddr;
886
      uint64_t symbolSize =
887
          j + 1 < symbolIndices.size()
888
              ? nList[symbolIndices[j + 1]].n_value - sym.n_value
889
              : isec->data.size() - symbolOffset;
890
      // There are 4 cases where we do not need to create a new subsection:
891
      //   1. If the input file does not use subsections-via-symbols.
892
      //   2. Multiple symbols at the same address only induce one subsection.
893
      //      (The symbolOffset == 0 check covers both this case as well as
894
      //      the first loop iteration.)
895
      //   3. Alternative entry points do not induce new subsections.
896
      //   4. If we have a literal section (e.g. __cstring and __literal4).
897
      if (!subsectionsViaSymbols || symbolOffset == 0 ||
898
          sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
899
        isec->hasAltEntry = symbolOffset != 0;
900
        symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
901
                                          symbolSize, forceHidden);
902
        continue;
903
      }
904
      auto *concatIsec = cast<ConcatInputSection>(isec);
905

906
      auto *nextIsec = make<ConcatInputSection>(*concatIsec);
907
      nextIsec->wasCoalesced = false;
908
      if (isZeroFill(isec->getFlags())) {
909
        // Zero-fill sections have NULL data.data() non-zero data.size()
910
        nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
911
        isec->data = {nullptr, symbolOffset};
912
      } else {
913
        nextIsec->data = isec->data.slice(symbolOffset);
914
        isec->data = isec->data.slice(0, symbolOffset);
915
      }
916

917
      // By construction, the symbol will be at offset zero in the new
918
      // subsection.
919
      symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
920
                                        symbolSize, forceHidden);
921
      // TODO: ld64 appears to preserve the original alignment as well as each
922
      // subsection's offset from the last aligned address. We should consider
923
      // emulating that behavior.
924
      nextIsec->align = MinAlign(sectionAlign, sym.n_value);
925
      subsections.push_back({sym.n_value - sectionAddr, nextIsec});
926
    }
927
  }
928

929
  // Undefined symbols can trigger recursive fetch from Archives due to
930
  // LazySymbols. Process defined symbols first so that the relative order
931
  // between a defined symbol and an undefined symbol does not change the
932
  // symbol resolution behavior. In addition, a set of interconnected symbols
933
  // will all be resolved to the same file, instead of being resolved to
934
  // different files.
935
  for (unsigned i : undefineds)
936
    symbols[i] = parseNonSectionSymbol(nList[i], strtab);
937
}
938

939
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
940
                       StringRef sectName)
941
    : InputFile(OpaqueKind, mb) {
942
  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
943
  ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
944
  sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
945
                                   sectName.take_front(16),
946
                                   /*flags=*/0, /*addr=*/0));
947
  Section &section = *sections.back();
948
  ConcatInputSection *isec = make<ConcatInputSection>(section, data);
949
  isec->live = true;
950
  section.subsections.push_back({0, isec});
951
}
952

953
template <class LP>
954
void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) {
955
  using Header = typename LP::mach_header;
956
  auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
957

958
  for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
959
    StringRef data{reinterpret_cast<const char *>(cmd + 1),
960
                   cmd->cmdsize - sizeof(linker_option_command)};
961
    parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data);
962
  }
963
}
964

965
SmallVector<StringRef> macho::unprocessedLCLinkerOptions;
966
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
967
                 bool lazy, bool forceHidden, bool compatArch,
968
                 bool builtFromBitcode)
969
    : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden),
970
      builtFromBitcode(builtFromBitcode) {
971
  this->archiveName = std::string(archiveName);
972
  this->compatArch = compatArch;
973
  if (lazy) {
974
    if (target->wordSize == 8)
975
      parseLazy<LP64>();
976
    else
977
      parseLazy<ILP32>();
978
  } else {
979
    if (target->wordSize == 8)
980
      parse<LP64>();
981
    else
982
      parse<ILP32>();
983
  }
984
}
985

986
template <class LP> void ObjFile::parse() {
987
  using Header = typename LP::mach_header;
988
  using SegmentCommand = typename LP::segment_command;
989
  using SectionHeader = typename LP::section;
990
  using NList = typename LP::nlist;
991

992
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
993
  auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
994

995
  // If we've already checked the arch, then don't need to check again.
996
  if (!compatArch)
997
    return;
998
  if (!(compatArch = compatWithTargetArch(this, hdr)))
999
    return;
1000

1001
  // We will resolve LC linker options once all native objects are loaded after
1002
  // LTO is finished.
1003
  SmallVector<StringRef, 4> LCLinkerOptions;
1004
  parseLinkerOptions<LP>(LCLinkerOptions);
1005
  unprocessedLCLinkerOptions.append(LCLinkerOptions);
1006

1007
  ArrayRef<SectionHeader> sectionHeaders;
1008
  if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1009
    auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1010
    sectionHeaders = ArrayRef<SectionHeader>{
1011
        reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1012
    parseSections(sectionHeaders);
1013
  }
1014

1015
  // TODO: Error on missing LC_SYMTAB?
1016
  if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1017
    auto *c = reinterpret_cast<const symtab_command *>(cmd);
1018
    ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1019
                          c->nsyms);
1020
    const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1021
    bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1022
    parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1023
  }
1024

1025
  // The relocations may refer to the symbols, so we parse them after we have
1026
  // parsed all the symbols.
1027
  for (size_t i = 0, n = sections.size(); i < n; ++i)
1028
    if (!sections[i]->subsections.empty())
1029
      parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1030

1031
  parseDebugInfo();
1032

1033
  Section *ehFrameSection = nullptr;
1034
  Section *compactUnwindSection = nullptr;
1035
  for (Section *sec : sections) {
1036
    Section **s = StringSwitch<Section **>(sec->name)
1037
                      .Case(section_names::compactUnwind, &compactUnwindSection)
1038
                      .Case(section_names::ehFrame, &ehFrameSection)
1039
                      .Default(nullptr);
1040
    if (s)
1041
      *s = sec;
1042
  }
1043
  if (compactUnwindSection)
1044
    registerCompactUnwind(*compactUnwindSection);
1045
  if (ehFrameSection)
1046
    registerEhFrames(*ehFrameSection);
1047
}
1048

1049
template <class LP> void ObjFile::parseLazy() {
1050
  using Header = typename LP::mach_header;
1051
  using NList = typename LP::nlist;
1052

1053
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1054
  auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1055

1056
  if (!compatArch)
1057
    return;
1058
  if (!(compatArch = compatWithTargetArch(this, hdr)))
1059
    return;
1060

1061
  const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1062
  if (!cmd)
1063
    return;
1064
  auto *c = reinterpret_cast<const symtab_command *>(cmd);
1065
  ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1066
                        c->nsyms);
1067
  const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1068
  symbols.resize(nList.size());
1069
  for (const auto &[i, sym] : llvm::enumerate(nList)) {
1070
    if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1071
      // TODO: Bound checking
1072
      StringRef name = strtab + sym.n_strx;
1073
      symbols[i] = symtab->addLazyObject(name, *this);
1074
      if (!lazy)
1075
        break;
1076
    }
1077
  }
1078
}
1079

1080
void ObjFile::parseDebugInfo() {
1081
  std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1082
  if (!dObj)
1083
    return;
1084

1085
  // We do not re-use the context from getDwarf() here as that function
1086
  // constructs an expensive DWARFCache object.
1087
  auto *ctx = make<DWARFContext>(
1088
      std::move(dObj), "",
1089
      [&](Error err) {
1090
        warn(toString(this) + ": " + toString(std::move(err)));
1091
      },
1092
      [&](Error warning) {
1093
        warn(toString(this) + ": " + toString(std::move(warning)));
1094
      });
1095

1096
  // TODO: Since object files can contain a lot of DWARF info, we should verify
1097
  // that we are parsing just the info we need
1098
  const DWARFContext::compile_unit_range &units = ctx->compile_units();
1099
  // FIXME: There can be more than one compile unit per object file. See
1100
  // PR48637.
1101
  auto it = units.begin();
1102
  compileUnit = it != units.end() ? it->get() : nullptr;
1103
}
1104

1105
ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1106
  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1107
  const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1108
  if (!cmd)
1109
    return {};
1110
  const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1111
  return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1112
          c->datasize / sizeof(data_in_code_entry)};
1113
}
1114

1115
ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1116
  const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1117
  if (auto *cmd =
1118
          findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1119
    return {buf + cmd->dataoff, cmd->datasize};
1120
  return {};
1121
}
1122

1123
// Create pointers from symbols to their associated compact unwind entries.
1124
void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1125
  for (const Subsection &subsection : compactUnwindSection.subsections) {
1126
    ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1127
    // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1128
    // their addends in its data. Thus if ICF operated naively and compared the
1129
    // entire contents of each CUE, entries with identical unwind info but e.g.
1130
    // belonging to different functions would never be considered equivalent. To
1131
    // work around this problem, we remove some parts of the data containing the
1132
    // embedded addends. In particular, we remove the function address and LSDA
1133
    // pointers.  Since these locations are at the start and end of the entry,
1134
    // we can do this using a simple, efficient slice rather than performing a
1135
    // copy.  We are not losing any information here because the embedded
1136
    // addends have already been parsed in the corresponding Reloc structs.
1137
    //
1138
    // Removing these pointers would not be safe if they were pointers to
1139
    // absolute symbols. In that case, there would be no corresponding
1140
    // relocation. However, (AFAIK) MC cannot emit references to absolute
1141
    // symbols for either the function address or the LSDA. However, it *can* do
1142
    // so for the personality pointer, so we are not slicing that field away.
1143
    //
1144
    // Note that we do not adjust the offsets of the corresponding relocations;
1145
    // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1146
    // truncated input sections.
1147
    isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1148
    uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1149
    // llvm-mc omits CU entries for functions that need DWARF encoding, but
1150
    // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1151
    // CU entries from the DWARF info during the output phase.
1152
    if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1153
        target->modeDwarfEncoding)
1154
      continue;
1155

1156
    ConcatInputSection *referentIsec;
1157
    for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1158
      Reloc &r = *it;
1159
      // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1160
      if (r.offset != 0) {
1161
        ++it;
1162
        continue;
1163
      }
1164
      uint64_t add = r.addend;
1165
      if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1166
        // Check whether the symbol defined in this file is the prevailing one.
1167
        // Skip if it is e.g. a weak def that didn't prevail.
1168
        if (sym->getFile() != this) {
1169
          ++it;
1170
          continue;
1171
        }
1172
        add += sym->value;
1173
        referentIsec = cast<ConcatInputSection>(sym->isec());
1174
      } else {
1175
        referentIsec =
1176
            cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1177
      }
1178
      // Unwind info lives in __DATA, and finalization of __TEXT will occur
1179
      // before finalization of __DATA. Moreover, the finalization of unwind
1180
      // info depends on the exact addresses that it references. So it is safe
1181
      // for compact unwind to reference addresses in __TEXT, but not addresses
1182
      // in any other segment.
1183
      if (referentIsec->getSegName() != segment_names::text)
1184
        error(isec->getLocation(r.offset) + " references section " +
1185
              referentIsec->getName() + " which is not in segment __TEXT");
1186
      // The functionAddress relocations are typically section relocations.
1187
      // However, unwind info operates on a per-symbol basis, so we search for
1188
      // the function symbol here.
1189
      Defined *d = findSymbolAtOffset(referentIsec, add);
1190
      if (!d) {
1191
        ++it;
1192
        continue;
1193
      }
1194
      d->originalUnwindEntry = isec;
1195
      // Now that the symbol points to the unwind entry, we can remove the reloc
1196
      // that points from the unwind entry back to the symbol.
1197
      //
1198
      // First, the symbol keeps the unwind entry alive (and not vice versa), so
1199
      // this keeps dead-stripping simple.
1200
      //
1201
      // Moreover, it reduces the work that ICF needs to do to figure out if
1202
      // functions with unwind info are foldable.
1203
      //
1204
      // However, this does make it possible for ICF to fold CUEs that point to
1205
      // distinct functions (if the CUEs are otherwise identical).
1206
      // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1207
      // each one can hold a distinct functionAddress value.
1208
      //
1209
      // Given that clang emits relocations in reverse order of address, this
1210
      // relocation should be at the end of the vector for most of our input
1211
      // object files, so this erase() is typically an O(1) operation.
1212
      it = isec->relocs.erase(it);
1213
    }
1214
  }
1215
}
1216

1217
struct CIE {
1218
  macho::Symbol *personalitySymbol = nullptr;
1219
  bool fdesHaveAug = false;
1220
  uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1221
  uint8_t funcPtrSize = 0;
1222
};
1223

1224
static uint8_t pointerEncodingToSize(uint8_t enc) {
1225
  switch (enc & 0xf) {
1226
  case dwarf::DW_EH_PE_absptr:
1227
    return target->wordSize;
1228
  case dwarf::DW_EH_PE_sdata4:
1229
    return 4;
1230
  case dwarf::DW_EH_PE_sdata8:
1231
    // ld64 doesn't actually support sdata8, but this seems simple enough...
1232
    return 8;
1233
  default:
1234
    return 0;
1235
  };
1236
}
1237

1238
static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1239
                    size_t off) {
1240
  // Handling the full generality of possible DWARF encodings would be a major
1241
  // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1242
  // DWARF and handle just that.
1243
  constexpr uint8_t expectedPersonalityEnc =
1244
      dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1245

1246
  CIE cie;
1247
  uint8_t version = reader.readByte(&off);
1248
  if (version != 1 && version != 3)
1249
    fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1250
  StringRef aug = reader.readString(&off);
1251
  reader.skipLeb128(&off); // skip code alignment
1252
  reader.skipLeb128(&off); // skip data alignment
1253
  reader.skipLeb128(&off); // skip return address register
1254
  reader.skipLeb128(&off); // skip aug data length
1255
  uint64_t personalityAddrOff = 0;
1256
  for (char c : aug) {
1257
    switch (c) {
1258
    case 'z':
1259
      cie.fdesHaveAug = true;
1260
      break;
1261
    case 'P': {
1262
      uint8_t personalityEnc = reader.readByte(&off);
1263
      if (personalityEnc != expectedPersonalityEnc)
1264
        reader.failOn(off, "unexpected personality encoding 0x" +
1265
                               Twine::utohexstr(personalityEnc));
1266
      personalityAddrOff = off;
1267
      off += 4;
1268
      break;
1269
    }
1270
    case 'L': {
1271
      uint8_t lsdaEnc = reader.readByte(&off);
1272
      cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1273
      if (cie.lsdaPtrSize == 0)
1274
        reader.failOn(off, "unexpected LSDA encoding 0x" +
1275
                               Twine::utohexstr(lsdaEnc));
1276
      break;
1277
    }
1278
    case 'R': {
1279
      uint8_t pointerEnc = reader.readByte(&off);
1280
      cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1281
      if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1282
        reader.failOn(off, "unexpected pointer encoding 0x" +
1283
                               Twine::utohexstr(pointerEnc));
1284
      break;
1285
    }
1286
    default:
1287
      break;
1288
    }
1289
  }
1290
  if (personalityAddrOff != 0) {
1291
    const auto *personalityReloc = isec->getRelocAt(personalityAddrOff);
1292
    if (!personalityReloc)
1293
      reader.failOn(off, "Failed to locate relocation for personality symbol");
1294
    cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>();
1295
  }
1296
  return cie;
1297
}
1298

1299
// EH frame target addresses may be encoded as pcrel offsets. However, instead
1300
// of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1301
// This function recovers the target address from the subtractors, essentially
1302
// performing the inverse operation of EhRelocator.
1303
//
1304
// Concretely, we expect our relocations to write the value of `PC -
1305
// target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1306
// points to a symbol plus an addend.
1307
//
1308
// It is important that the minuend relocation point to a symbol within the
1309
// same section as the fixup value, since sections may get moved around.
1310
//
1311
// For example, for arm64, llvm-mc emits relocations for the target function
1312
// address like so:
1313
//
1314
//   ltmp:
1315
//     <CIE start>
1316
//     ...
1317
//     <CIE end>
1318
//     ... multiple FDEs ...
1319
//     <FDE start>
1320
//     <target function address - (ltmp + pcrel offset)>
1321
//     ...
1322
//
1323
// If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1324
// will move to an earlier address, and `ltmp + pcrel offset` will no longer
1325
// reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1326
// our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1327
// the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1328
//
1329
// If `Invert` is set, then we instead expect `target_addr - PC` to be written
1330
// to `PC`.
1331
template <bool Invert = false>
1332
Defined *
1333
targetSymFromCanonicalSubtractor(const InputSection *isec,
1334
                                 std::vector<macho::Reloc>::iterator relocIt) {
1335
  macho::Reloc &subtrahend = *relocIt;
1336
  macho::Reloc &minuend = *std::next(relocIt);
1337
  assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1338
  assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1339
  // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1340
  // addend.
1341
  auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1342
  Defined *target =
1343
      cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1344
  if (!pcSym) {
1345
    auto *targetIsec =
1346
        cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1347
    target = findSymbolAtOffset(targetIsec, minuend.addend);
1348
  }
1349
  if (Invert)
1350
    std::swap(pcSym, target);
1351
  if (pcSym->isec() == isec) {
1352
    if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1353
      fatal("invalid FDE relocation in __eh_frame");
1354
  } else {
1355
    // Ensure the pcReloc points to a symbol within the current EH frame.
1356
    // HACK: we should really verify that the original relocation's semantics
1357
    // are preserved. In particular, we should have
1358
    // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1359
    // have an easy way to access the offsets from this point in the code; some
1360
    // refactoring is needed for that.
1361
    macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1362
    pcReloc.referent = isec->symbols[0];
1363
    assert(isec->symbols[0]->value == 0);
1364
    minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1365
  }
1366
  return target;
1367
}
1368

1369
Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1370
                             uint64_t addr) {
1371
  Section *sec = findContainingSection(sections, &addr);
1372
  auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1373
  return findSymbolAtOffset(isec, addr);
1374
}
1375

1376
// For symbols that don't have compact unwind info, associate them with the more
1377
// general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1378
//
1379
// This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1380
// description of its format.
1381
//
1382
// While parsing, we also look for what MC calls "abs-ified" relocations -- they
1383
// are relocations which are implicitly encoded as offsets in the section data.
1384
// We convert them into explicit Reloc structs so that the EH frames can be
1385
// handled just like a regular ConcatInputSection later in our output phase.
1386
//
1387
// We also need to handle the case where our input object file has explicit
1388
// relocations. This is the case when e.g. it's the output of `ld -r`. We only
1389
// look for the "abs-ified" relocation if an explicit relocation is absent.
1390
void ObjFile::registerEhFrames(Section &ehFrameSection) {
1391
  DenseMap<const InputSection *, CIE> cieMap;
1392
  for (const Subsection &subsec : ehFrameSection.subsections) {
1393
    auto *isec = cast<ConcatInputSection>(subsec.isec);
1394
    uint64_t isecOff = subsec.offset;
1395

1396
    // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1397
    // that all EH frames have an associated symbol so that we can generate
1398
    // subtractor relocs that reference them.
1399
    if (isec->symbols.size() == 0)
1400
      make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1401
                    isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1402
                    /*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1403
                    /*isReferencedDynamically=*/false,
1404
                    /*noDeadStrip=*/false);
1405
    else if (isec->symbols[0]->value != 0)
1406
      fatal("found symbol at unexpected offset in __eh_frame");
1407

1408
    EhReader reader(this, isec->data, subsec.offset);
1409
    size_t dataOff = 0; // Offset from the start of the EH frame.
1410
    reader.skipValidLength(&dataOff); // readLength() already validated this.
1411
    // cieOffOff is the offset from the start of the EH frame to the cieOff
1412
    // value, which is itself an offset from the current PC to a CIE.
1413
    const size_t cieOffOff = dataOff;
1414

1415
    EhRelocator ehRelocator(isec);
1416
    auto cieOffRelocIt = llvm::find_if(
1417
        isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1418
    InputSection *cieIsec = nullptr;
1419
    if (cieOffRelocIt != isec->relocs.end()) {
1420
      // We already have an explicit relocation for the CIE offset.
1421
      cieIsec =
1422
          targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1423
              ->isec();
1424
      dataOff += sizeof(uint32_t);
1425
    } else {
1426
      // If we haven't found a relocation, then the CIE offset is most likely
1427
      // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1428
      // and generate a Reloc struct.
1429
      uint32_t cieMinuend = reader.readU32(&dataOff);
1430
      if (cieMinuend == 0) {
1431
        cieIsec = isec;
1432
      } else {
1433
        uint32_t cieOff = isecOff + dataOff - cieMinuend;
1434
        cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1435
        if (cieIsec == nullptr)
1436
          fatal("failed to find CIE");
1437
      }
1438
      if (cieIsec != isec)
1439
        ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1440
                                      /*length=*/2);
1441
    }
1442
    if (cieIsec == isec) {
1443
      cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1444
      continue;
1445
    }
1446

1447
    assert(cieMap.count(cieIsec));
1448
    const CIE &cie = cieMap[cieIsec];
1449
    // Offset of the function address within the EH frame.
1450
    const size_t funcAddrOff = dataOff;
1451
    uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1452
                        ehFrameSection.addr + isecOff + funcAddrOff;
1453
    uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1454
    size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1455
    std::optional<uint64_t> lsdaAddrOpt;
1456
    if (cie.fdesHaveAug) {
1457
      reader.skipLeb128(&dataOff);
1458
      lsdaAddrOff = dataOff;
1459
      if (cie.lsdaPtrSize != 0) {
1460
        uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1461
        if (lsdaOff != 0) // FIXME possible to test this?
1462
          lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1463
      }
1464
    }
1465

1466
    auto funcAddrRelocIt = isec->relocs.end();
1467
    auto lsdaAddrRelocIt = isec->relocs.end();
1468
    for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1469
      if (it->offset == funcAddrOff)
1470
        funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1471
      else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1472
        lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1473
    }
1474

1475
    Defined *funcSym;
1476
    if (funcAddrRelocIt != isec->relocs.end()) {
1477
      funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1478
      // Canonicalize the symbol. If there are multiple symbols at the same
1479
      // address, we want both `registerEhFrame` and `registerCompactUnwind`
1480
      // to register the unwind entry under same symbol.
1481
      // This is not particularly efficient, but we should run into this case
1482
      // infrequently (only when handling the output of `ld -r`).
1483
      if (funcSym->isec())
1484
        funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec()),
1485
                                     funcSym->value);
1486
    } else {
1487
      funcSym = findSymbolAtAddress(sections, funcAddr);
1488
      ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1489
    }
1490
    // The symbol has been coalesced, or already has a compact unwind entry.
1491
    if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry()) {
1492
      // We must prune unused FDEs for correctness, so we cannot rely on
1493
      // -dead_strip being enabled.
1494
      isec->live = false;
1495
      continue;
1496
    }
1497

1498
    InputSection *lsdaIsec = nullptr;
1499
    if (lsdaAddrRelocIt != isec->relocs.end()) {
1500
      lsdaIsec =
1501
          targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec();
1502
    } else if (lsdaAddrOpt) {
1503
      uint64_t lsdaAddr = *lsdaAddrOpt;
1504
      Section *sec = findContainingSection(sections, &lsdaAddr);
1505
      lsdaIsec =
1506
          cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1507
      ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1508
    }
1509

1510
    fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1511
    funcSym->originalUnwindEntry = isec;
1512
    ehRelocator.commit();
1513
  }
1514

1515
  // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1516
  // are normally required to be kept alive if they reference a live symbol.
1517
  // However, we've explicitly created a dependency from a symbol to its FDE, so
1518
  // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1519
  // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1520
  // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1521
  // let dead-stripping proceed correctly.
1522
  ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1523
}
1524

1525
std::string ObjFile::sourceFile() const {
1526
  const char *unitName = compileUnit->getUnitDIE().getShortName();
1527
  // DWARF allows DW_AT_name to be absolute, in which case nothing should be
1528
  // prepended. As for the styles, debug info can contain paths from any OS, not
1529
  // necessarily an OS we're currently running on. Moreover different
1530
  // compilation units can be compiled on different operating systems and linked
1531
  // together later.
1532
  if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) ||
1533
      sys::path::is_absolute(unitName, llvm::sys::path::Style::windows))
1534
    return unitName;
1535
  SmallString<261> dir(compileUnit->getCompilationDir());
1536
  StringRef sep = sys::path::get_separator();
1537
  // We don't use `path::append` here because we want an empty `dir` to result
1538
  // in an absolute path. `append` would give us a relative path for that case.
1539
  if (!dir.ends_with(sep))
1540
    dir += sep;
1541
  return (dir + unitName).str();
1542
}
1543

1544
lld::DWARFCache *ObjFile::getDwarf() {
1545
  llvm::call_once(initDwarf, [this]() {
1546
    auto dwObj = DwarfObject::create(this);
1547
    if (!dwObj)
1548
      return;
1549
    dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1550
        std::move(dwObj), "",
1551
        [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1552
        [&](Error warning) {
1553
          warn(getName() + ": " + toString(std::move(warning)));
1554
        }));
1555
  });
1556

1557
  return dwarfCache.get();
1558
}
1559
// The path can point to either a dylib or a .tbd file.
1560
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1561
  std::optional<MemoryBufferRef> mbref = readFile(path);
1562
  if (!mbref) {
1563
    error("could not read dylib file at " + path);
1564
    return nullptr;
1565
  }
1566
  return loadDylib(*mbref, umbrella);
1567
}
1568

1569
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1570
// the first document storing child pointers to the rest of them. When we are
1571
// processing a given TBD file, we store that top-level document in
1572
// currentTopLevelTapi. When processing re-exports, we search its children for
1573
// potentially matching documents in the same TBD file. Note that the children
1574
// themselves don't point to further documents, i.e. this is a two-level tree.
1575
//
1576
// Re-exports can either refer to on-disk files, or to documents within .tbd
1577
// files.
1578
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1579
                            const InterfaceFile *currentTopLevelTapi) {
1580
  // Search order:
1581
  // 1. Install name basename in -F / -L directories.
1582
  {
1583
    StringRef stem = path::stem(path);
1584
    SmallString<128> frameworkName;
1585
    path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1586
    bool isFramework = path.ends_with(frameworkName);
1587
    if (isFramework) {
1588
      for (StringRef dir : config->frameworkSearchPaths) {
1589
        SmallString<128> candidate = dir;
1590
        path::append(candidate, frameworkName);
1591
        if (std::optional<StringRef> dylibPath =
1592
                resolveDylibPath(candidate.str()))
1593
          return loadDylib(*dylibPath, umbrella);
1594
      }
1595
    } else if (std::optional<StringRef> dylibPath = findPathCombination(
1596
                   stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"}))
1597
      return loadDylib(*dylibPath, umbrella);
1598
  }
1599

1600
  // 2. As absolute path.
1601
  if (path::is_absolute(path, path::Style::posix))
1602
    for (StringRef root : config->systemLibraryRoots)
1603
      if (std::optional<StringRef> dylibPath =
1604
              resolveDylibPath((root + path).str()))
1605
        return loadDylib(*dylibPath, umbrella);
1606

1607
  // 3. As relative path.
1608

1609
  // TODO: Handle -dylib_file
1610

1611
  // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1612
  SmallString<128> newPath;
1613
  if (config->outputType == MH_EXECUTE &&
1614
      path.consume_front("@executable_path/")) {
1615
    // ld64 allows overriding this with the undocumented flag -executable_path.
1616
    // lld doesn't currently implement that flag.
1617
    // FIXME: Consider using finalOutput instead of outputFile.
1618
    path::append(newPath, path::parent_path(config->outputFile), path);
1619
    path = newPath;
1620
  } else if (path.consume_front("@loader_path/")) {
1621
    fs::real_path(umbrella->getName(), newPath);
1622
    path::remove_filename(newPath);
1623
    path::append(newPath, path);
1624
    path = newPath;
1625
  } else if (path.starts_with("@rpath/")) {
1626
    for (StringRef rpath : umbrella->rpaths) {
1627
      newPath.clear();
1628
      if (rpath.consume_front("@loader_path/")) {
1629
        fs::real_path(umbrella->getName(), newPath);
1630
        path::remove_filename(newPath);
1631
      }
1632
      path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1633
      if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1634
        return loadDylib(*dylibPath, umbrella);
1635
    }
1636
  }
1637

1638
  // FIXME: Should this be further up?
1639
  if (currentTopLevelTapi) {
1640
    for (InterfaceFile &child :
1641
         make_pointee_range(currentTopLevelTapi->documents())) {
1642
      assert(child.documents().empty());
1643
      if (path == child.getInstallName()) {
1644
        auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1645
                                     /*explicitlyLinked=*/false);
1646
        file->parseReexports(child);
1647
        return file;
1648
      }
1649
    }
1650
  }
1651

1652
  if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1653
    return loadDylib(*dylibPath, umbrella);
1654

1655
  return nullptr;
1656
}
1657

1658
// If a re-exported dylib is public (lives in /usr/lib or
1659
// /System/Library/Frameworks), then it is considered implicitly linked: we
1660
// should bind to its symbols directly instead of via the re-exporting umbrella
1661
// library.
1662
static bool isImplicitlyLinked(StringRef path) {
1663
  if (!config->implicitDylibs)
1664
    return false;
1665

1666
  if (path::parent_path(path) == "/usr/lib")
1667
    return true;
1668

1669
  // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1670
  if (path.consume_front("/System/Library/Frameworks/")) {
1671
    StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1672
    return path::filename(path) == frameworkName;
1673
  }
1674

1675
  return false;
1676
}
1677

1678
void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1679
                         const InterfaceFile *currentTopLevelTapi) {
1680
  DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1681
  if (!reexport)
1682
    error(toString(this) + ": unable to locate re-export with install name " +
1683
          path);
1684
}
1685

1686
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1687
                     bool isBundleLoader, bool explicitlyLinked)
1688
    : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1689
      explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1690
  assert(!isBundleLoader || !umbrella);
1691
  if (umbrella == nullptr)
1692
    umbrella = this;
1693
  this->umbrella = umbrella;
1694

1695
  auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1696

1697
  // Initialize installName.
1698
  if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1699
    auto *c = reinterpret_cast<const dylib_command *>(cmd);
1700
    currentVersion = read32le(&c->dylib.current_version);
1701
    compatibilityVersion = read32le(&c->dylib.compatibility_version);
1702
    installName =
1703
        reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1704
  } else if (!isBundleLoader) {
1705
    // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1706
    // so it's OK.
1707
    error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1708
    return;
1709
  }
1710

1711
  if (config->printEachFile)
1712
    message(toString(this));
1713
  inputFiles.insert(this);
1714

1715
  deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1716

1717
  if (!checkCompatibility(this))
1718
    return;
1719

1720
  checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1721

1722
  for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1723
    StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1724
    rpaths.push_back(rpath);
1725
  }
1726

1727
  // Initialize symbols.
1728
  bool canBeImplicitlyLinked = findCommand(hdr, LC_SUB_CLIENT) == nullptr;
1729
  exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1730
                      ? this
1731
                      : this->umbrella;
1732

1733
  const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1734
  const auto *exportsTrie =
1735
      findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1736
  if (dyldInfo && exportsTrie) {
1737
    // It's unclear what should happen in this case. Maybe we should only error
1738
    // out if the two load commands refer to different data?
1739
    error(toString(this) +
1740
          ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1741
    return;
1742
  }
1743

1744
  if (dyldInfo) {
1745
    parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1746
  } else if (exportsTrie) {
1747
    parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1748
  } else {
1749
    error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1750
          toString(this));
1751
  }
1752
}
1753

1754
void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1755
  struct TrieEntry {
1756
    StringRef name;
1757
    uint64_t flags;
1758
  };
1759

1760
  auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1761
  std::vector<TrieEntry> entries;
1762
  // Find all the $ld$* symbols to process first.
1763
  parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1764
    StringRef savedName = saver().save(name);
1765
    if (handleLDSymbol(savedName))
1766
      return;
1767
    entries.push_back({savedName, flags});
1768
  });
1769

1770
  // Process the "normal" symbols.
1771
  for (TrieEntry &entry : entries) {
1772
    if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1773
      continue;
1774

1775
    bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1776
    bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1777

1778
    symbols.push_back(
1779
        symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1780
  }
1781
}
1782

1783
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1784
  auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1785
  const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1786
                     target->headerSize;
1787
  for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1788
    auto *cmd = reinterpret_cast<const load_command *>(p);
1789
    p += cmd->cmdsize;
1790

1791
    if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1792
        cmd->cmd == LC_REEXPORT_DYLIB) {
1793
      const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1794
      StringRef reexportPath =
1795
          reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1796
      loadReexport(reexportPath, exportingFile, nullptr);
1797
    }
1798

1799
    // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1800
    // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1801
    // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1802
    if (config->namespaceKind == NamespaceKind::flat &&
1803
        cmd->cmd == LC_LOAD_DYLIB) {
1804
      const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1805
      StringRef dylibPath =
1806
          reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1807
      DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1808
      if (!dylib)
1809
        error(Twine("unable to locate library '") + dylibPath +
1810
              "' loaded from '" + toString(this) + "' for -flat_namespace");
1811
    }
1812
  }
1813
}
1814

1815
// Some versions of Xcode ship with .tbd files that don't have the right
1816
// platform settings.
1817
constexpr std::array<StringRef, 3> skipPlatformChecks{
1818
    "/usr/lib/system/libsystem_kernel.dylib",
1819
    "/usr/lib/system/libsystem_platform.dylib",
1820
    "/usr/lib/system/libsystem_pthread.dylib"};
1821

1822
static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1823
                                         bool explicitlyLinked) {
1824
  // Catalyst outputs can link against implicitly linked macOS-only libraries.
1825
  if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1826
    return false;
1827
  return is_contained(interface.targets(),
1828
                      MachO::Target(config->arch(), PLATFORM_MACOS));
1829
}
1830

1831
static bool isArchABICompatible(ArchitectureSet archSet,
1832
                                Architecture targetArch) {
1833
  uint32_t cpuType;
1834
  uint32_t targetCpuType;
1835
  std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1836

1837
  return llvm::any_of(archSet, [&](const auto &p) {
1838
    std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1839
    return cpuType == targetCpuType;
1840
  });
1841
}
1842

1843
static bool isTargetPlatformArchCompatible(
1844
    InterfaceFile::const_target_range interfaceTargets, Target target) {
1845
  if (is_contained(interfaceTargets, target))
1846
    return true;
1847

1848
  if (config->forceExactCpuSubtypeMatch)
1849
    return false;
1850

1851
  ArchitectureSet archSet;
1852
  for (const auto &p : interfaceTargets)
1853
    if (p.Platform == target.Platform)
1854
      archSet.set(p.Arch);
1855
  if (archSet.empty())
1856
    return false;
1857

1858
  return isArchABICompatible(archSet, target.Arch);
1859
}
1860

1861
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1862
                     bool isBundleLoader, bool explicitlyLinked)
1863
    : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1864
      explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1865
  // FIXME: Add test for the missing TBD code path.
1866

1867
  if (umbrella == nullptr)
1868
    umbrella = this;
1869
  this->umbrella = umbrella;
1870

1871
  installName = saver().save(interface.getInstallName());
1872
  compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1873
  currentVersion = interface.getCurrentVersion().rawValue();
1874

1875
  if (config->printEachFile)
1876
    message(toString(this));
1877
  inputFiles.insert(this);
1878

1879
  if (!is_contained(skipPlatformChecks, installName) &&
1880
      !isTargetPlatformArchCompatible(interface.targets(),
1881
                                      config->platformInfo.target) &&
1882
      !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1883
    error(toString(this) + " is incompatible with " +
1884
          std::string(config->platformInfo.target));
1885
    return;
1886
  }
1887

1888
  checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1889

1890
  bool canBeImplicitlyLinked = interface.allowableClients().size() == 0;
1891
  exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1892
                      ? this
1893
                      : umbrella;
1894
  auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1895
                       const Twine &name) -> void {
1896
    StringRef savedName = saver().save(name);
1897
    if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1898
      return;
1899

1900
    symbols.push_back(symtab->addDylib(savedName, exportingFile,
1901
                                       symbol.isWeakDefined(),
1902
                                       symbol.isThreadLocalValue()));
1903
  };
1904

1905
  std::vector<const llvm::MachO::Symbol *> normalSymbols;
1906
  normalSymbols.reserve(interface.symbolsCount());
1907
  for (const auto *symbol : interface.symbols()) {
1908
    if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1909
      continue;
1910
    if (handleLDSymbol(symbol->getName()))
1911
      continue;
1912

1913
    switch (symbol->getKind()) {
1914
    case EncodeKind::GlobalSymbol:
1915
    case EncodeKind::ObjectiveCClass:
1916
    case EncodeKind::ObjectiveCClassEHType:
1917
    case EncodeKind::ObjectiveCInstanceVariable:
1918
      normalSymbols.push_back(symbol);
1919
    }
1920
  }
1921
  // interface.symbols() order is non-deterministic.
1922
  llvm::sort(normalSymbols,
1923
             [](auto *l, auto *r) { return l->getName() < r->getName(); });
1924

1925
  // TODO(compnerd) filter out symbols based on the target platform
1926
  for (const auto *symbol : normalSymbols) {
1927
    switch (symbol->getKind()) {
1928
    case EncodeKind::GlobalSymbol:
1929
      addSymbol(*symbol, symbol->getName());
1930
      break;
1931
    case EncodeKind::ObjectiveCClass:
1932
      // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1933
      // want to emulate that.
1934
      addSymbol(*symbol, objc::symbol_names::klass + symbol->getName());
1935
      addSymbol(*symbol, objc::symbol_names::metaclass + symbol->getName());
1936
      break;
1937
    case EncodeKind::ObjectiveCClassEHType:
1938
      addSymbol(*symbol, objc::symbol_names::ehtype + symbol->getName());
1939
      break;
1940
    case EncodeKind::ObjectiveCInstanceVariable:
1941
      addSymbol(*symbol, objc::symbol_names::ivar + symbol->getName());
1942
      break;
1943
    }
1944
  }
1945
}
1946

1947
DylibFile::DylibFile(DylibFile *umbrella)
1948
    : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1949
      explicitlyLinked(false), isBundleLoader(false) {
1950
  if (umbrella == nullptr)
1951
    umbrella = this;
1952
  this->umbrella = umbrella;
1953
}
1954

1955
void DylibFile::parseReexports(const InterfaceFile &interface) {
1956
  const InterfaceFile *topLevel =
1957
      interface.getParent() == nullptr ? &interface : interface.getParent();
1958
  for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1959
    InterfaceFile::const_target_range targets = intfRef.targets();
1960
    if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1961
        isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1962
      loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1963
  }
1964
}
1965

1966
bool DylibFile::isExplicitlyLinked() const {
1967
  if (!explicitlyLinked)
1968
    return false;
1969

1970
  // If this dylib was explicitly linked, but at least one of the symbols
1971
  // of the synthetic dylibs it created via $ld$previous symbols is
1972
  // referenced, then that synthetic dylib fulfils the explicit linkedness
1973
  // and we can deadstrip this dylib if it's unreferenced.
1974
  for (const auto *dylib : extraDylibs)
1975
    if (dylib->isReferenced())
1976
      return false;
1977

1978
  return true;
1979
}
1980

1981
DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1982
                                        uint32_t currentVersion,
1983
                                        uint32_t compatVersion) {
1984
  for (DylibFile *dylib : extraDylibs)
1985
    if (dylib->installName == installName) {
1986
      // FIXME: Check what to do if different $ld$previous symbols
1987
      // request the same dylib, but with different versions.
1988
      return dylib;
1989
    }
1990

1991
  auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1992
  dylib->installName = saver().save(installName);
1993
  dylib->currentVersion = currentVersion;
1994
  dylib->compatibilityVersion = compatVersion;
1995
  extraDylibs.push_back(dylib);
1996
  return dylib;
1997
}
1998

1999
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
2000
// name, compatibility version or hide/add symbols) for specific target
2001
// versions.
2002
bool DylibFile::handleLDSymbol(StringRef originalName) {
2003
  if (!originalName.starts_with("$ld$"))
2004
    return false;
2005

2006
  StringRef action;
2007
  StringRef name;
2008
  std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
2009
  if (action == "previous")
2010
    handleLDPreviousSymbol(name, originalName);
2011
  else if (action == "install_name")
2012
    handleLDInstallNameSymbol(name, originalName);
2013
  else if (action == "hide")
2014
    handleLDHideSymbol(name, originalName);
2015
  return true;
2016
}
2017

2018
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
2019
  // originalName: $ld$ previous $ <installname> $ <compatversion> $
2020
  // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
2021
  StringRef installName;
2022
  StringRef compatVersion;
2023
  StringRef platformStr;
2024
  StringRef startVersion;
2025
  StringRef endVersion;
2026
  StringRef symbolName;
2027
  StringRef rest;
2028

2029
  std::tie(installName, name) = name.split('$');
2030
  std::tie(compatVersion, name) = name.split('$');
2031
  std::tie(platformStr, name) = name.split('$');
2032
  std::tie(startVersion, name) = name.split('$');
2033
  std::tie(endVersion, name) = name.split('$');
2034
  std::tie(symbolName, rest) = name.rsplit('$');
2035

2036
  // FIXME: Does this do the right thing for zippered files?
2037
  unsigned platform;
2038
  if (platformStr.getAsInteger(10, platform) ||
2039
      platform != static_cast<unsigned>(config->platform()))
2040
    return;
2041

2042
  VersionTuple start;
2043
  if (start.tryParse(startVersion)) {
2044
    warn(toString(this) + ": failed to parse start version, symbol '" +
2045
         originalName + "' ignored");
2046
    return;
2047
  }
2048
  VersionTuple end;
2049
  if (end.tryParse(endVersion)) {
2050
    warn(toString(this) + ": failed to parse end version, symbol '" +
2051
         originalName + "' ignored");
2052
    return;
2053
  }
2054
  if (config->platformInfo.target.MinDeployment < start ||
2055
      config->platformInfo.target.MinDeployment >= end)
2056
    return;
2057

2058
  // Initialized to compatibilityVersion for the symbolName branch below.
2059
  uint32_t newCompatibilityVersion = compatibilityVersion;
2060
  uint32_t newCurrentVersionForSymbol = currentVersion;
2061
  if (!compatVersion.empty()) {
2062
    VersionTuple cVersion;
2063
    if (cVersion.tryParse(compatVersion)) {
2064
      warn(toString(this) +
2065
           ": failed to parse compatibility version, symbol '" + originalName +
2066
           "' ignored");
2067
      return;
2068
    }
2069
    newCompatibilityVersion = encodeVersion(cVersion);
2070
    newCurrentVersionForSymbol = newCompatibilityVersion;
2071
  }
2072

2073
  if (!symbolName.empty()) {
2074
    // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2075
    // a dylib with given name and version.
2076
    auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2077
                                    newCompatibilityVersion);
2078

2079
    // The tbd file usually contains the $ld$previous symbol for an old version,
2080
    // and then the symbol itself later, for newer deployment targets, like so:
2081
    //    symbols: [
2082
    //      '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2083
    //      _zzz,
2084
    //    ]
2085
    // Since the symbols are sorted, adding them to the symtab in the given
2086
    // order means the $ld$previous version of _zzz will prevail, as desired.
2087
    dylib->symbols.push_back(symtab->addDylib(
2088
        saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2089
    return;
2090
  }
2091

2092
  // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2093
  this->installName = saver().save(installName);
2094
  this->compatibilityVersion = newCompatibilityVersion;
2095
}
2096

2097
void DylibFile::handleLDInstallNameSymbol(StringRef name,
2098
                                          StringRef originalName) {
2099
  // originalName: $ld$ install_name $ os<version> $ install_name
2100
  StringRef condition, installName;
2101
  std::tie(condition, installName) = name.split('$');
2102
  VersionTuple version;
2103
  if (!condition.consume_front("os") || version.tryParse(condition))
2104
    warn(toString(this) + ": failed to parse os version, symbol '" +
2105
         originalName + "' ignored");
2106
  else if (version == config->platformInfo.target.MinDeployment)
2107
    this->installName = saver().save(installName);
2108
}
2109

2110
void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2111
  StringRef symbolName;
2112
  bool shouldHide = true;
2113
  if (name.starts_with("os")) {
2114
    // If it's hidden based on versions.
2115
    name = name.drop_front(2);
2116
    StringRef minVersion;
2117
    std::tie(minVersion, symbolName) = name.split('$');
2118
    VersionTuple versionTup;
2119
    if (versionTup.tryParse(minVersion)) {
2120
      warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2121
           "` ignored.");
2122
      return;
2123
    }
2124
    shouldHide = versionTup == config->platformInfo.target.MinDeployment;
2125
  } else {
2126
    symbolName = name;
2127
  }
2128

2129
  if (shouldHide)
2130
    exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2131
}
2132

2133
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2134
  if (config->applicationExtension && !dylibIsAppExtensionSafe)
2135
    warn("using '-application_extension' with unsafe dylib: " + toString(this));
2136
}
2137

2138
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2139
    : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2140
      forceHidden(forceHidden) {}
2141

2142
void ArchiveFile::addLazySymbols() {
2143
  // Avoid calling getMemoryBufferRef() on zero-symbol archive
2144
  // since that crashes.
2145
  if (file->isEmpty() || file->getNumberOfSymbols() == 0)
2146
    return;
2147

2148
  Error err = Error::success();
2149
  auto child = file->child_begin(err);
2150
  // Ignore the I/O error here - will be reported later.
2151
  if (!err) {
2152
    Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef();
2153
    if (!mbOrErr) {
2154
      llvm::consumeError(mbOrErr.takeError());
2155
    } else {
2156
      if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) {
2157
        if (target->wordSize == 8)
2158
          compatArch = compatWithTargetArch(
2159
              this, reinterpret_cast<const LP64::mach_header *>(
2160
                        mbOrErr->getBufferStart()));
2161
        else
2162
          compatArch = compatWithTargetArch(
2163
              this, reinterpret_cast<const ILP32::mach_header *>(
2164
                        mbOrErr->getBufferStart()));
2165
        if (!compatArch)
2166
          return;
2167
      }
2168
    }
2169
  }
2170

2171
  for (const object::Archive::Symbol &sym : file->symbols())
2172
    symtab->addLazyArchive(sym.getName(), this, sym);
2173
}
2174

2175
static Expected<InputFile *>
2176
loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2177
                  uint64_t offsetInArchive, bool forceHidden, bool compatArch) {
2178
  if (config->zeroModTime)
2179
    modTime = 0;
2180

2181
  switch (identify_magic(mb.getBuffer())) {
2182
  case file_magic::macho_object:
2183
    return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden,
2184
                         compatArch);
2185
  case file_magic::bitcode:
2186
    return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2187
                             forceHidden, compatArch);
2188
  default:
2189
    return createStringError(inconvertibleErrorCode(),
2190
                             mb.getBufferIdentifier() +
2191
                                 " has unhandled file type");
2192
  }
2193
}
2194

2195
Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2196
  if (!seen.insert(c.getChildOffset()).second)
2197
    return Error::success();
2198

2199
  Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2200
  if (!mb)
2201
    return mb.takeError();
2202

2203
  // Thin archives refer to .o files, so --reproduce needs the .o files too.
2204
  if (tar && c.getParent()->isThin())
2205
    tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2206

2207
  Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2208
  if (!modTime)
2209
    return modTime.takeError();
2210

2211
  Expected<InputFile *> file =
2212
      loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(),
2213
                        forceHidden, compatArch);
2214

2215
  if (!file)
2216
    return file.takeError();
2217

2218
  inputFiles.insert(*file);
2219
  printArchiveMemberLoad(reason, *file);
2220
  return Error::success();
2221
}
2222

2223
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2224
  object::Archive::Child c =
2225
      CHECK(sym.getMember(), toString(this) +
2226
                                 ": could not get the member defining symbol " +
2227
                                 toMachOString(sym));
2228

2229
  // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2230
  // and become invalid after that call. Copy it to the stack so we can refer
2231
  // to it later.
2232
  const object::Archive::Symbol symCopy = sym;
2233

2234
  // ld64 doesn't demangle sym here even with -demangle.
2235
  // Match that: intentionally don't call toMachOString().
2236
  if (Error e = fetch(c, symCopy.getName()))
2237
    error(toString(this) + ": could not get the member defining symbol " +
2238
          toMachOString(symCopy) + ": " + toString(std::move(e)));
2239
}
2240

2241
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2242
                                          BitcodeFile &file) {
2243
  StringRef name = saver().save(objSym.getName());
2244

2245
  if (objSym.isUndefined())
2246
    return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2247

2248
  // TODO: Write a test demonstrating why computing isPrivateExtern before
2249
  // LTO compilation is important.
2250
  bool isPrivateExtern = false;
2251
  switch (objSym.getVisibility()) {
2252
  case GlobalValue::HiddenVisibility:
2253
    isPrivateExtern = true;
2254
    break;
2255
  case GlobalValue::ProtectedVisibility:
2256
    error(name + " has protected visibility, which is not supported by Mach-O");
2257
    break;
2258
  case GlobalValue::DefaultVisibility:
2259
    break;
2260
  }
2261
  isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2262
                    file.forceHidden;
2263

2264
  if (objSym.isCommon())
2265
    return symtab->addCommon(name, &file, objSym.getCommonSize(),
2266
                             objSym.getCommonAlignment(), isPrivateExtern);
2267

2268
  return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2269
                            /*size=*/0, objSym.isWeak(), isPrivateExtern,
2270
                            /*isReferencedDynamically=*/false,
2271
                            /*noDeadStrip=*/false,
2272
                            /*isWeakDefCanBeHidden=*/false);
2273
}
2274

2275
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2276
                         uint64_t offsetInArchive, bool lazy, bool forceHidden,
2277
                         bool compatArch)
2278
    : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2279
  this->archiveName = std::string(archiveName);
2280
  this->compatArch = compatArch;
2281
  std::string path = mb.getBufferIdentifier().str();
2282
  if (config->thinLTOIndexOnly)
2283
    path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2284

2285
  // If the parent archive already determines that the arch is not compat with
2286
  // target, then just return.
2287
  if (!compatArch)
2288
    return;
2289

2290
  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2291
  // name. If two members with the same name are provided, this causes a
2292
  // collision and ThinLTO can't proceed.
2293
  // So, we append the archive name to disambiguate two members with the same
2294
  // name from multiple different archives, and offset within the archive to
2295
  // disambiguate two members of the same name from a single archive.
2296
  MemoryBufferRef mbref(mb.getBuffer(),
2297
                        saver().save(archiveName.empty()
2298
                                         ? path
2299
                                         : archiveName + "(" +
2300
                                               sys::path::filename(path) + ")" +
2301
                                               utostr(offsetInArchive)));
2302
  obj = check(lto::InputFile::create(mbref));
2303
  if (lazy)
2304
    parseLazy();
2305
  else
2306
    parse();
2307
}
2308

2309
void BitcodeFile::parse() {
2310
  // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2311
  // "winning" symbol will then be marked as Prevailing at LTO compilation
2312
  // time.
2313
  symbols.resize(obj->symbols().size());
2314

2315
  // Process defined symbols first. See the comment at the end of
2316
  // ObjFile<>::parseSymbols.
2317
  for (auto it : llvm::enumerate(obj->symbols()))
2318
    if (!it.value().isUndefined())
2319
      symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2320
  for (auto it : llvm::enumerate(obj->symbols()))
2321
    if (it.value().isUndefined())
2322
      symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2323
}
2324

2325
void BitcodeFile::parseLazy() {
2326
  symbols.resize(obj->symbols().size());
2327
  for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2328
    if (!objSym.isUndefined()) {
2329
      symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2330
      if (!lazy)
2331
        break;
2332
    }
2333
  }
2334
}
2335

2336
std::string macho::replaceThinLTOSuffix(StringRef path) {
2337
  auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2338
  if (path.consume_back(suffix))
2339
    return (path + repl).str();
2340
  return std::string(path);
2341
}
2342

2343
void macho::extract(InputFile &file, StringRef reason) {
2344
  if (!file.lazy)
2345
    return;
2346
  file.lazy = false;
2347

2348
  printArchiveMemberLoad(reason, &file);
2349
  if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2350
    bitcode->parse();
2351
  } else {
2352
    auto &f = cast<ObjFile>(file);
2353
    if (target->wordSize == 8)
2354
      f.parse<LP64>();
2355
    else
2356
      f.parse<ILP32>();
2357
  }
2358
}
2359

2360
template void ObjFile::parse<LP64>();
2361

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.