llvm-project

Форк
0
1865 строк · 69.8 Кб
1
//===- PDB.cpp ------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8

9
#include "PDB.h"
10
#include "COFFLinkerContext.h"
11
#include "Chunks.h"
12
#include "Config.h"
13
#include "DebugTypes.h"
14
#include "Driver.h"
15
#include "SymbolTable.h"
16
#include "Symbols.h"
17
#include "TypeMerger.h"
18
#include "Writer.h"
19
#include "lld/Common/Timer.h"
20
#include "llvm/DebugInfo/CodeView/DebugFrameDataSubsection.h"
21
#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
22
#include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h"
23
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
24
#include "llvm/DebugInfo/CodeView/GlobalTypeTableBuilder.h"
25
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
26
#include "llvm/DebugInfo/CodeView/MergingTypeTableBuilder.h"
27
#include "llvm/DebugInfo/CodeView/RecordName.h"
28
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
29
#include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h"
30
#include "llvm/DebugInfo/CodeView/SymbolSerializer.h"
31
#include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h"
32
#include "llvm/DebugInfo/MSF/MSFBuilder.h"
33
#include "llvm/DebugInfo/MSF/MSFCommon.h"
34
#include "llvm/DebugInfo/MSF/MSFError.h"
35
#include "llvm/DebugInfo/PDB/GenericError.h"
36
#include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h"
37
#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
38
#include "llvm/DebugInfo/PDB/Native/DbiStreamBuilder.h"
39
#include "llvm/DebugInfo/PDB/Native/GSIStreamBuilder.h"
40
#include "llvm/DebugInfo/PDB/Native/InfoStream.h"
41
#include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h"
42
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
43
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
44
#include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h"
45
#include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h"
46
#include "llvm/DebugInfo/PDB/Native/TpiHashing.h"
47
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
48
#include "llvm/DebugInfo/PDB/Native/TpiStreamBuilder.h"
49
#include "llvm/DebugInfo/PDB/PDB.h"
50
#include "llvm/Object/COFF.h"
51
#include "llvm/Object/CVDebugRecord.h"
52
#include "llvm/Support/BinaryByteStream.h"
53
#include "llvm/Support/CRC.h"
54
#include "llvm/Support/Endian.h"
55
#include "llvm/Support/Errc.h"
56
#include "llvm/Support/FormatAdapters.h"
57
#include "llvm/Support/FormatVariadic.h"
58
#include "llvm/Support/Path.h"
59
#include "llvm/Support/ScopedPrinter.h"
60
#include "llvm/Support/TimeProfiler.h"
61
#include <memory>
62
#include <optional>
63

64
using namespace llvm;
65
using namespace llvm::codeview;
66
using namespace lld;
67
using namespace lld::coff;
68

69
using llvm::object::coff_section;
70
using llvm::pdb::StringTableFixup;
71

72
namespace {
73
class DebugSHandler;
74

75
class PDBLinker {
76
  friend DebugSHandler;
77

78
public:
79
  PDBLinker(COFFLinkerContext &ctx)
80
      : builder(bAlloc()), tMerger(ctx, bAlloc()), ctx(ctx) {
81
    // This isn't strictly necessary, but link.exe usually puts an empty string
82
    // as the first "valid" string in the string table, so we do the same in
83
    // order to maintain as much byte-for-byte compatibility as possible.
84
    pdbStrTab.insert("");
85
  }
86

87
  /// Emit the basic PDB structure: initial streams, headers, etc.
88
  void initialize(llvm::codeview::DebugInfo *buildId);
89

90
  /// Add natvis files specified on the command line.
91
  void addNatvisFiles();
92

93
  /// Add named streams specified on the command line.
94
  void addNamedStreams();
95

96
  /// Link CodeView from each object file in the symbol table into the PDB.
97
  void addObjectsToPDB();
98

99
  /// Add every live, defined public symbol to the PDB.
100
  void addPublicsToPDB();
101

102
  /// Link info for each import file in the symbol table into the PDB.
103
  void addImportFilesToPDB();
104

105
  void createModuleDBI(ObjFile *file);
106

107
  /// Link CodeView from a single object file into the target (output) PDB.
108
  /// When a precompiled headers object is linked, its TPI map might be provided
109
  /// externally.
110
  void addDebug(TpiSource *source);
111

112
  void addDebugSymbols(TpiSource *source);
113

114
  // Analyze the symbol records to separate module symbols from global symbols,
115
  // find string references, and calculate how large the symbol stream will be
116
  // in the PDB.
117
  void analyzeSymbolSubsection(SectionChunk *debugChunk,
118
                               uint32_t &moduleSymOffset,
119
                               uint32_t &nextRelocIndex,
120
                               std::vector<StringTableFixup> &stringTableFixups,
121
                               BinaryStreamRef symData);
122

123
  // Write all module symbols from all live debug symbol subsections of the
124
  // given object file into the given stream writer.
125
  Error writeAllModuleSymbolRecords(ObjFile *file, BinaryStreamWriter &writer);
126

127
  // Callback to copy and relocate debug symbols during PDB file writing.
128
  static Error commitSymbolsForObject(void *ctx, void *obj,
129
                                      BinaryStreamWriter &writer);
130

131
  // Copy the symbol record, relocate it, and fix the alignment if necessary.
132
  // Rewrite type indices in the record. Replace unrecognized symbol records
133
  // with S_SKIP records.
134
  void writeSymbolRecord(SectionChunk *debugChunk,
135
                         ArrayRef<uint8_t> sectionContents, CVSymbol sym,
136
                         size_t alignedSize, uint32_t &nextRelocIndex,
137
                         std::vector<uint8_t> &storage);
138

139
  /// Add the section map and section contributions to the PDB.
140
  void addSections(ArrayRef<uint8_t> sectionTable);
141

142
  /// Write the PDB to disk and store the Guid generated for it in *Guid.
143
  void commit(codeview::GUID *guid);
144

145
  // Print statistics regarding the final PDB
146
  void printStats();
147

148
private:
149
  void pdbMakeAbsolute(SmallVectorImpl<char> &fileName);
150
  void translateIdSymbols(MutableArrayRef<uint8_t> &recordData,
151
                          TpiSource *source);
152
  void addCommonLinkerModuleSymbols(StringRef path,
153
                                    pdb::DbiModuleDescriptorBuilder &mod);
154

155
  pdb::PDBFileBuilder builder;
156

157
  TypeMerger tMerger;
158

159
  COFFLinkerContext &ctx;
160

161
  /// PDBs use a single global string table for filenames in the file checksum
162
  /// table.
163
  DebugStringTableSubsection pdbStrTab;
164

165
  llvm::SmallString<128> nativePath;
166

167
  // For statistics
168
  uint64_t globalSymbols = 0;
169
  uint64_t moduleSymbols = 0;
170
  uint64_t publicSymbols = 0;
171
  uint64_t nbTypeRecords = 0;
172
  uint64_t nbTypeRecordsBytes = 0;
173
};
174

175
/// Represents an unrelocated DEBUG_S_FRAMEDATA subsection.
176
struct UnrelocatedFpoData {
177
  SectionChunk *debugChunk = nullptr;
178
  ArrayRef<uint8_t> subsecData;
179
  uint32_t relocIndex = 0;
180
};
181

182
/// The size of the magic bytes at the beginning of a symbol section or stream.
183
enum : uint32_t { kSymbolStreamMagicSize = 4 };
184

185
class DebugSHandler {
186
  PDBLinker &linker;
187

188
  /// The object file whose .debug$S sections we're processing.
189
  ObjFile &file;
190

191
  /// The DEBUG_S_STRINGTABLE subsection.  These strings are referred to by
192
  /// index from other records in the .debug$S section.  All of these strings
193
  /// need to be added to the global PDB string table, and all references to
194
  /// these strings need to have their indices re-written to refer to the
195
  /// global PDB string table.
196
  DebugStringTableSubsectionRef cvStrTab;
197

198
  /// The DEBUG_S_FILECHKSMS subsection.  As above, these are referred to
199
  /// by other records in the .debug$S section and need to be merged into the
200
  /// PDB.
201
  DebugChecksumsSubsectionRef checksums;
202

203
  /// The DEBUG_S_FRAMEDATA subsection(s).  There can be more than one of
204
  /// these and they need not appear in any specific order.  However, they
205
  /// contain string table references which need to be re-written, so we
206
  /// collect them all here and re-write them after all subsections have been
207
  /// discovered and processed.
208
  std::vector<UnrelocatedFpoData> frameDataSubsecs;
209

210
  /// List of string table references in symbol records. Later they will be
211
  /// applied to the symbols during PDB writing.
212
  std::vector<StringTableFixup> stringTableFixups;
213

214
  /// Sum of the size of all module symbol records across all .debug$S sections.
215
  /// Includes record realignment and the size of the symbol stream magic
216
  /// prefix.
217
  uint32_t moduleStreamSize = kSymbolStreamMagicSize;
218

219
  /// Next relocation index in the current .debug$S section. Resets every
220
  /// handleDebugS call.
221
  uint32_t nextRelocIndex = 0;
222

223
  void advanceRelocIndex(SectionChunk *debugChunk, ArrayRef<uint8_t> subsec);
224

225
  void addUnrelocatedSubsection(SectionChunk *debugChunk,
226
                                const DebugSubsectionRecord &ss);
227

228
  void addFrameDataSubsection(SectionChunk *debugChunk,
229
                              const DebugSubsectionRecord &ss);
230

231
public:
232
  DebugSHandler(PDBLinker &linker, ObjFile &file)
233
      : linker(linker), file(file) {}
234

235
  void handleDebugS(SectionChunk *debugChunk);
236

237
  void finish();
238
};
239
}
240

241
// Visual Studio's debugger requires absolute paths in various places in the
242
// PDB to work without additional configuration:
243
// https://docs.microsoft.com/en-us/visualstudio/debugger/debug-source-files-common-properties-solution-property-pages-dialog-box
244
void PDBLinker::pdbMakeAbsolute(SmallVectorImpl<char> &fileName) {
245
  // The default behavior is to produce paths that are valid within the context
246
  // of the machine that you perform the link on.  If the linker is running on
247
  // a POSIX system, we will output absolute POSIX paths.  If the linker is
248
  // running on a Windows system, we will output absolute Windows paths.  If the
249
  // user desires any other kind of behavior, they should explicitly pass
250
  // /pdbsourcepath, in which case we will treat the exact string the user
251
  // passed in as the gospel and not normalize, canonicalize it.
252
  if (sys::path::is_absolute(fileName, sys::path::Style::windows) ||
253
      sys::path::is_absolute(fileName, sys::path::Style::posix))
254
    return;
255

256
  // It's not absolute in any path syntax.  Relative paths necessarily refer to
257
  // the local file system, so we can make it native without ending up with a
258
  // nonsensical path.
259
  if (ctx.config.pdbSourcePath.empty()) {
260
    sys::path::native(fileName);
261
    sys::fs::make_absolute(fileName);
262
    sys::path::remove_dots(fileName, true);
263
    return;
264
  }
265

266
  // Try to guess whether /PDBSOURCEPATH is a unix path or a windows path.
267
  // Since PDB's are more of a Windows thing, we make this conservative and only
268
  // decide that it's a unix path if we're fairly certain.  Specifically, if
269
  // it starts with a forward slash.
270
  SmallString<128> absoluteFileName = ctx.config.pdbSourcePath;
271
  sys::path::Style guessedStyle = absoluteFileName.starts_with("/")
272
                                      ? sys::path::Style::posix
273
                                      : sys::path::Style::windows;
274
  sys::path::append(absoluteFileName, guessedStyle, fileName);
275
  sys::path::native(absoluteFileName, guessedStyle);
276
  sys::path::remove_dots(absoluteFileName, true, guessedStyle);
277

278
  fileName = std::move(absoluteFileName);
279
}
280

281
static void addTypeInfo(pdb::TpiStreamBuilder &tpiBuilder,
282
                        TypeCollection &typeTable) {
283
  // Start the TPI or IPI stream header.
284
  tpiBuilder.setVersionHeader(pdb::PdbTpiV80);
285

286
  // Flatten the in memory type table and hash each type.
287
  typeTable.ForEachRecord([&](TypeIndex ti, const CVType &type) {
288
    auto hash = pdb::hashTypeRecord(type);
289
    if (auto e = hash.takeError())
290
      fatal("type hashing error");
291
    tpiBuilder.addTypeRecord(type.RecordData, *hash);
292
  });
293
}
294

295
static void addGHashTypeInfo(COFFLinkerContext &ctx,
296
                             pdb::PDBFileBuilder &builder) {
297
  // Start the TPI or IPI stream header.
298
  builder.getTpiBuilder().setVersionHeader(pdb::PdbTpiV80);
299
  builder.getIpiBuilder().setVersionHeader(pdb::PdbTpiV80);
300
  for (TpiSource *source : ctx.tpiSourceList) {
301
    builder.getTpiBuilder().addTypeRecords(source->mergedTpi.recs,
302
                                           source->mergedTpi.recSizes,
303
                                           source->mergedTpi.recHashes);
304
    builder.getIpiBuilder().addTypeRecords(source->mergedIpi.recs,
305
                                           source->mergedIpi.recSizes,
306
                                           source->mergedIpi.recHashes);
307
  }
308
}
309

310
static void
311
recordStringTableReferences(CVSymbol sym, uint32_t symOffset,
312
                            std::vector<StringTableFixup> &stringTableFixups) {
313
  // For now we only handle S_FILESTATIC, but we may need the same logic for
314
  // S_DEFRANGE and S_DEFRANGE_SUBFIELD.  However, I cannot seem to generate any
315
  // PDBs that contain these types of records, so because of the uncertainty
316
  // they are omitted here until we can prove that it's necessary.
317
  switch (sym.kind()) {
318
  case SymbolKind::S_FILESTATIC: {
319
    // FileStaticSym::ModFileOffset
320
    uint32_t ref = *reinterpret_cast<const ulittle32_t *>(&sym.data()[8]);
321
    stringTableFixups.push_back({ref, symOffset + 8});
322
    break;
323
  }
324
  case SymbolKind::S_DEFRANGE:
325
  case SymbolKind::S_DEFRANGE_SUBFIELD:
326
    log("Not fixing up string table reference in S_DEFRANGE / "
327
        "S_DEFRANGE_SUBFIELD record");
328
    break;
329
  default:
330
    break;
331
  }
332
}
333

334
static SymbolKind symbolKind(ArrayRef<uint8_t> recordData) {
335
  const RecordPrefix *prefix =
336
      reinterpret_cast<const RecordPrefix *>(recordData.data());
337
  return static_cast<SymbolKind>(uint16_t(prefix->RecordKind));
338
}
339

340
/// MSVC translates S_PROC_ID_END to S_END, and S_[LG]PROC32_ID to S_[LG]PROC32
341
void PDBLinker::translateIdSymbols(MutableArrayRef<uint8_t> &recordData,
342
                                   TpiSource *source) {
343
  RecordPrefix *prefix = reinterpret_cast<RecordPrefix *>(recordData.data());
344

345
  SymbolKind kind = symbolKind(recordData);
346

347
  if (kind == SymbolKind::S_PROC_ID_END) {
348
    prefix->RecordKind = SymbolKind::S_END;
349
    return;
350
  }
351

352
  // In an object file, GPROC32_ID has an embedded reference which refers to the
353
  // single object file type index namespace.  This has already been translated
354
  // to the PDB file's ID stream index space, but we need to convert this to a
355
  // symbol that refers to the type stream index space.  So we remap again from
356
  // ID index space to type index space.
357
  if (kind == SymbolKind::S_GPROC32_ID || kind == SymbolKind::S_LPROC32_ID) {
358
    SmallVector<TiReference, 1> refs;
359
    auto content = recordData.drop_front(sizeof(RecordPrefix));
360
    CVSymbol sym(recordData);
361
    discoverTypeIndicesInSymbol(sym, refs);
362
    assert(refs.size() == 1);
363
    assert(refs.front().Count == 1);
364

365
    TypeIndex *ti =
366
        reinterpret_cast<TypeIndex *>(content.data() + refs[0].Offset);
367
    // `ti` is the index of a FuncIdRecord or MemberFuncIdRecord which lives in
368
    // the IPI stream, whose `FunctionType` member refers to the TPI stream.
369
    // Note that LF_FUNC_ID and LF_MFUNC_ID have the same record layout, and
370
    // in both cases we just need the second type index.
371
    if (!ti->isSimple() && !ti->isNoneType()) {
372
      TypeIndex newType = TypeIndex(SimpleTypeKind::NotTranslated);
373
      if (ctx.config.debugGHashes) {
374
        auto idToType = tMerger.funcIdToType.find(*ti);
375
        if (idToType != tMerger.funcIdToType.end())
376
          newType = idToType->second;
377
      } else {
378
        if (tMerger.getIDTable().contains(*ti)) {
379
          CVType funcIdData = tMerger.getIDTable().getType(*ti);
380
          if (funcIdData.length() >= 8 && (funcIdData.kind() == LF_FUNC_ID ||
381
                                           funcIdData.kind() == LF_MFUNC_ID)) {
382
            newType = *reinterpret_cast<const TypeIndex *>(&funcIdData.data()[8]);
383
          }
384
        }
385
      }
386
      if (newType == TypeIndex(SimpleTypeKind::NotTranslated)) {
387
        warn(formatv("procedure symbol record for `{0}` in {1} refers to PDB "
388
                     "item index {2:X} which is not a valid function ID record",
389
                     getSymbolName(CVSymbol(recordData)),
390
                     source->file->getName(), ti->getIndex()));
391
      }
392
      *ti = newType;
393
    }
394

395
    kind = (kind == SymbolKind::S_GPROC32_ID) ? SymbolKind::S_GPROC32
396
                                              : SymbolKind::S_LPROC32;
397
    prefix->RecordKind = uint16_t(kind);
398
  }
399
}
400

401
namespace {
402
struct ScopeRecord {
403
  ulittle32_t ptrParent;
404
  ulittle32_t ptrEnd;
405
};
406
} // namespace
407

408
/// Given a pointer to a symbol record that opens a scope, return a pointer to
409
/// the scope fields.
410
static ScopeRecord *getSymbolScopeFields(void *sym) {
411
  return reinterpret_cast<ScopeRecord *>(reinterpret_cast<char *>(sym) +
412
                                         sizeof(RecordPrefix));
413
}
414

415
// To open a scope, push the offset of the current symbol record onto the
416
// stack.
417
static void scopeStackOpen(SmallVectorImpl<uint32_t> &stack,
418
                           std::vector<uint8_t> &storage) {
419
  stack.push_back(storage.size());
420
}
421

422
// To close a scope, update the record that opened the scope.
423
static void scopeStackClose(SmallVectorImpl<uint32_t> &stack,
424
                            std::vector<uint8_t> &storage,
425
                            uint32_t storageBaseOffset, ObjFile *file) {
426
  if (stack.empty()) {
427
    warn("symbol scopes are not balanced in " + file->getName());
428
    return;
429
  }
430

431
  // Update ptrEnd of the record that opened the scope to point to the
432
  // current record, if we are writing into the module symbol stream.
433
  uint32_t offOpen = stack.pop_back_val();
434
  uint32_t offEnd = storageBaseOffset + storage.size();
435
  uint32_t offParent = stack.empty() ? 0 : (stack.back() + storageBaseOffset);
436
  ScopeRecord *scopeRec = getSymbolScopeFields(&(storage)[offOpen]);
437
  scopeRec->ptrParent = offParent;
438
  scopeRec->ptrEnd = offEnd;
439
}
440

441
static bool symbolGoesInModuleStream(const CVSymbol &sym,
442
                                     unsigned symbolScopeDepth) {
443
  switch (sym.kind()) {
444
  case SymbolKind::S_GDATA32:
445
  case SymbolKind::S_GTHREAD32:
446
  // We really should not be seeing S_PROCREF and S_LPROCREF in the first place
447
  // since they are synthesized by the linker in response to S_GPROC32 and
448
  // S_LPROC32, but if we do see them, don't put them in the module stream I
449
  // guess.
450
  case SymbolKind::S_PROCREF:
451
  case SymbolKind::S_LPROCREF:
452
    return false;
453
  // S_UDT and S_CONSTANT records go in the module stream if it is not a global record.
454
  case SymbolKind::S_UDT:
455
  case SymbolKind::S_CONSTANT:
456
    return symbolScopeDepth > 0;
457
  // S_GDATA32 does not go in the module stream, but S_LDATA32 does.
458
  case SymbolKind::S_LDATA32:
459
  case SymbolKind::S_LTHREAD32:
460
  default:
461
    return true;
462
  }
463
}
464

465
static bool symbolGoesInGlobalsStream(const CVSymbol &sym,
466
                                      unsigned symbolScopeDepth) {
467
  switch (sym.kind()) {
468
  case SymbolKind::S_GDATA32:
469
  case SymbolKind::S_GTHREAD32:
470
  case SymbolKind::S_GPROC32:
471
  case SymbolKind::S_LPROC32:
472
  case SymbolKind::S_GPROC32_ID:
473
  case SymbolKind::S_LPROC32_ID:
474
  // We really should not be seeing S_PROCREF and S_LPROCREF in the first place
475
  // since they are synthesized by the linker in response to S_GPROC32 and
476
  // S_LPROC32, but if we do see them, copy them straight through.
477
  case SymbolKind::S_PROCREF:
478
  case SymbolKind::S_LPROCREF:
479
    return true;
480
  // Records that go in the globals stream, unless they are function-local.
481
  case SymbolKind::S_UDT:
482
  case SymbolKind::S_LDATA32:
483
  case SymbolKind::S_LTHREAD32:
484
  case SymbolKind::S_CONSTANT:
485
    return symbolScopeDepth == 0;
486
  default:
487
    return false;
488
  }
489
}
490

491
static void addGlobalSymbol(pdb::GSIStreamBuilder &builder, uint16_t modIndex,
492
                            unsigned symOffset,
493
                            std::vector<uint8_t> &symStorage) {
494
  CVSymbol sym{ArrayRef(symStorage)};
495
  switch (sym.kind()) {
496
  case SymbolKind::S_CONSTANT:
497
  case SymbolKind::S_UDT:
498
  case SymbolKind::S_GDATA32:
499
  case SymbolKind::S_GTHREAD32:
500
  case SymbolKind::S_LTHREAD32:
501
  case SymbolKind::S_LDATA32:
502
  case SymbolKind::S_PROCREF:
503
  case SymbolKind::S_LPROCREF: {
504
    // sym is a temporary object, so we have to copy and reallocate the record
505
    // to stabilize it.
506
    uint8_t *mem = bAlloc().Allocate<uint8_t>(sym.length());
507
    memcpy(mem, sym.data().data(), sym.length());
508
    builder.addGlobalSymbol(CVSymbol(ArrayRef(mem, sym.length())));
509
    break;
510
  }
511
  case SymbolKind::S_GPROC32:
512
  case SymbolKind::S_LPROC32: {
513
    SymbolRecordKind k = SymbolRecordKind::ProcRefSym;
514
    if (sym.kind() == SymbolKind::S_LPROC32)
515
      k = SymbolRecordKind::LocalProcRef;
516
    ProcRefSym ps(k);
517
    ps.Module = modIndex;
518
    // For some reason, MSVC seems to add one to this value.
519
    ++ps.Module;
520
    ps.Name = getSymbolName(sym);
521
    ps.SumName = 0;
522
    ps.SymOffset = symOffset;
523
    builder.addGlobalSymbol(ps);
524
    break;
525
  }
526
  default:
527
    llvm_unreachable("Invalid symbol kind!");
528
  }
529
}
530

531
// Check if the given symbol record was padded for alignment. If so, zero out
532
// the padding bytes and update the record prefix with the new size.
533
static void fixRecordAlignment(MutableArrayRef<uint8_t> recordBytes,
534
                               size_t oldSize) {
535
  size_t alignedSize = recordBytes.size();
536
  if (oldSize == alignedSize)
537
    return;
538
  reinterpret_cast<RecordPrefix *>(recordBytes.data())->RecordLen =
539
      alignedSize - 2;
540
  memset(recordBytes.data() + oldSize, 0, alignedSize - oldSize);
541
}
542

543
// Replace any record with a skip record of the same size. This is useful when
544
// we have reserved size for a symbol record, but type index remapping fails.
545
static void replaceWithSkipRecord(MutableArrayRef<uint8_t> recordBytes) {
546
  memset(recordBytes.data(), 0, recordBytes.size());
547
  auto *prefix = reinterpret_cast<RecordPrefix *>(recordBytes.data());
548
  prefix->RecordKind = SymbolKind::S_SKIP;
549
  prefix->RecordLen = recordBytes.size() - 2;
550
}
551

552
// Copy the symbol record, relocate it, and fix the alignment if necessary.
553
// Rewrite type indices in the record. Replace unrecognized symbol records with
554
// S_SKIP records.
555
void PDBLinker::writeSymbolRecord(SectionChunk *debugChunk,
556
                                  ArrayRef<uint8_t> sectionContents,
557
                                  CVSymbol sym, size_t alignedSize,
558
                                  uint32_t &nextRelocIndex,
559
                                  std::vector<uint8_t> &storage) {
560
  // Allocate space for the new record at the end of the storage.
561
  storage.resize(storage.size() + alignedSize);
562
  auto recordBytes = MutableArrayRef<uint8_t>(storage).take_back(alignedSize);
563

564
  // Copy the symbol record and relocate it.
565
  debugChunk->writeAndRelocateSubsection(sectionContents, sym.data(),
566
                                         nextRelocIndex, recordBytes.data());
567
  fixRecordAlignment(recordBytes, sym.length());
568

569
  // Re-map all the type index references.
570
  TpiSource *source = debugChunk->file->debugTypesObj;
571
  if (!source->remapTypesInSymbolRecord(recordBytes)) {
572
    log("ignoring unknown symbol record with kind 0x" + utohexstr(sym.kind()));
573
    replaceWithSkipRecord(recordBytes);
574
  }
575

576
  // An object file may have S_xxx_ID symbols, but these get converted to
577
  // "real" symbols in a PDB.
578
  translateIdSymbols(recordBytes, source);
579
}
580

581
void PDBLinker::analyzeSymbolSubsection(
582
    SectionChunk *debugChunk, uint32_t &moduleSymOffset,
583
    uint32_t &nextRelocIndex, std::vector<StringTableFixup> &stringTableFixups,
584
    BinaryStreamRef symData) {
585
  ObjFile *file = debugChunk->file;
586
  uint32_t moduleSymStart = moduleSymOffset;
587

588
  uint32_t scopeLevel = 0;
589
  std::vector<uint8_t> storage;
590
  ArrayRef<uint8_t> sectionContents = debugChunk->getContents();
591

592
  ArrayRef<uint8_t> symsBuffer;
593
  cantFail(symData.readBytes(0, symData.getLength(), symsBuffer));
594

595
  if (symsBuffer.empty())
596
    warn("empty symbols subsection in " + file->getName());
597

598
  Error ec = forEachCodeViewRecord<CVSymbol>(
599
      symsBuffer, [&](CVSymbol sym) -> llvm::Error {
600
        // Track the current scope.
601
        if (symbolOpensScope(sym.kind()))
602
          ++scopeLevel;
603
        else if (symbolEndsScope(sym.kind()))
604
          --scopeLevel;
605

606
        uint32_t alignedSize =
607
            alignTo(sym.length(), alignOf(CodeViewContainer::Pdb));
608

609
        // Copy global records. Some global records (mainly procedures)
610
        // reference the current offset into the module stream.
611
        if (symbolGoesInGlobalsStream(sym, scopeLevel)) {
612
          storage.clear();
613
          writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize,
614
                            nextRelocIndex, storage);
615
          addGlobalSymbol(builder.getGsiBuilder(),
616
                          file->moduleDBI->getModuleIndex(), moduleSymOffset,
617
                          storage);
618
          ++globalSymbols;
619
        }
620

621
        // Update the module stream offset and record any string table index
622
        // references. There are very few of these and they will be rewritten
623
        // later during PDB writing.
624
        if (symbolGoesInModuleStream(sym, scopeLevel)) {
625
          recordStringTableReferences(sym, moduleSymOffset, stringTableFixups);
626
          moduleSymOffset += alignedSize;
627
          ++moduleSymbols;
628
        }
629

630
        return Error::success();
631
      });
632

633
  // If we encountered corrupt records, ignore the whole subsection. If we wrote
634
  // any partial records, undo that. For globals, we just keep what we have and
635
  // continue.
636
  if (ec) {
637
    warn("corrupt symbol records in " + file->getName());
638
    moduleSymOffset = moduleSymStart;
639
    consumeError(std::move(ec));
640
  }
641
}
642

643
Error PDBLinker::writeAllModuleSymbolRecords(ObjFile *file,
644
                                             BinaryStreamWriter &writer) {
645
  ExitOnError exitOnErr;
646
  std::vector<uint8_t> storage;
647
  SmallVector<uint32_t, 4> scopes;
648

649
  // Visit all live .debug$S sections a second time, and write them to the PDB.
650
  for (SectionChunk *debugChunk : file->getDebugChunks()) {
651
    if (!debugChunk->live || debugChunk->getSize() == 0 ||
652
        debugChunk->getSectionName() != ".debug$S")
653
      continue;
654

655
    ArrayRef<uint8_t> sectionContents = debugChunk->getContents();
656
    auto contents =
657
        SectionChunk::consumeDebugMagic(sectionContents, ".debug$S");
658
    DebugSubsectionArray subsections;
659
    BinaryStreamReader reader(contents, llvm::endianness::little);
660
    exitOnErr(reader.readArray(subsections, contents.size()));
661

662
    uint32_t nextRelocIndex = 0;
663
    for (const DebugSubsectionRecord &ss : subsections) {
664
      if (ss.kind() != DebugSubsectionKind::Symbols)
665
        continue;
666

667
      uint32_t moduleSymStart = writer.getOffset();
668
      scopes.clear();
669
      storage.clear();
670
      ArrayRef<uint8_t> symsBuffer;
671
      BinaryStreamRef sr = ss.getRecordData();
672
      cantFail(sr.readBytes(0, sr.getLength(), symsBuffer));
673
      auto ec = forEachCodeViewRecord<CVSymbol>(
674
          symsBuffer, [&](CVSymbol sym) -> llvm::Error {
675
            // Track the current scope. Only update records in the postmerge
676
            // pass.
677
            if (symbolOpensScope(sym.kind()))
678
              scopeStackOpen(scopes, storage);
679
            else if (symbolEndsScope(sym.kind()))
680
              scopeStackClose(scopes, storage, moduleSymStart, file);
681

682
            // Copy, relocate, and rewrite each module symbol.
683
            if (symbolGoesInModuleStream(sym, scopes.size())) {
684
              uint32_t alignedSize =
685
                  alignTo(sym.length(), alignOf(CodeViewContainer::Pdb));
686
              writeSymbolRecord(debugChunk, sectionContents, sym, alignedSize,
687
                                nextRelocIndex, storage);
688
            }
689
            return Error::success();
690
          });
691

692
      // If we encounter corrupt records in the second pass, ignore them. We
693
      // already warned about them in the first analysis pass.
694
      if (ec) {
695
        consumeError(std::move(ec));
696
        storage.clear();
697
      }
698

699
      // Writing bytes has a very high overhead, so write the entire subsection
700
      // at once.
701
      // TODO: Consider buffering symbols for the entire object file to reduce
702
      // overhead even further.
703
      if (Error e = writer.writeBytes(storage))
704
        return e;
705
    }
706
  }
707

708
  return Error::success();
709
}
710

711
Error PDBLinker::commitSymbolsForObject(void *ctx, void *obj,
712
                                        BinaryStreamWriter &writer) {
713
  return static_cast<PDBLinker *>(ctx)->writeAllModuleSymbolRecords(
714
      static_cast<ObjFile *>(obj), writer);
715
}
716

717
static pdb::SectionContrib createSectionContrib(COFFLinkerContext &ctx,
718
                                                const Chunk *c, uint32_t modi) {
719
  OutputSection *os = c ? ctx.getOutputSection(c) : nullptr;
720
  pdb::SectionContrib sc;
721
  memset(&sc, 0, sizeof(sc));
722
  sc.ISect = os ? os->sectionIndex : llvm::pdb::kInvalidStreamIndex;
723
  sc.Off = c && os ? c->getRVA() - os->getRVA() : 0;
724
  sc.Size = c ? c->getSize() : -1;
725
  if (auto *secChunk = dyn_cast_or_null<SectionChunk>(c)) {
726
    sc.Characteristics = secChunk->header->Characteristics;
727
    sc.Imod = secChunk->file->moduleDBI->getModuleIndex();
728
    ArrayRef<uint8_t> contents = secChunk->getContents();
729
    JamCRC crc(0);
730
    crc.update(contents);
731
    sc.DataCrc = crc.getCRC();
732
  } else {
733
    sc.Characteristics = os ? os->header.Characteristics : 0;
734
    sc.Imod = modi;
735
  }
736
  sc.RelocCrc = 0; // FIXME
737

738
  return sc;
739
}
740

741
static uint32_t
742
translateStringTableIndex(uint32_t objIndex,
743
                          const DebugStringTableSubsectionRef &objStrTable,
744
                          DebugStringTableSubsection &pdbStrTable) {
745
  auto expectedString = objStrTable.getString(objIndex);
746
  if (!expectedString) {
747
    warn("Invalid string table reference");
748
    consumeError(expectedString.takeError());
749
    return 0;
750
  }
751

752
  return pdbStrTable.insert(*expectedString);
753
}
754

755
void DebugSHandler::handleDebugS(SectionChunk *debugChunk) {
756
  // Note that we are processing the *unrelocated* section contents. They will
757
  // be relocated later during PDB writing.
758
  ArrayRef<uint8_t> contents = debugChunk->getContents();
759
  contents = SectionChunk::consumeDebugMagic(contents, ".debug$S");
760
  DebugSubsectionArray subsections;
761
  BinaryStreamReader reader(contents, llvm::endianness::little);
762
  ExitOnError exitOnErr;
763
  exitOnErr(reader.readArray(subsections, contents.size()));
764
  debugChunk->sortRelocations();
765

766
  // Reset the relocation index, since this is a new section.
767
  nextRelocIndex = 0;
768

769
  for (const DebugSubsectionRecord &ss : subsections) {
770
    // Ignore subsections with the 'ignore' bit. Some versions of the Visual C++
771
    // runtime have subsections with this bit set.
772
    if (uint32_t(ss.kind()) & codeview::SubsectionIgnoreFlag)
773
      continue;
774

775
    switch (ss.kind()) {
776
    case DebugSubsectionKind::StringTable: {
777
      assert(!cvStrTab.valid() &&
778
             "Encountered multiple string table subsections!");
779
      exitOnErr(cvStrTab.initialize(ss.getRecordData()));
780
      break;
781
    }
782
    case DebugSubsectionKind::FileChecksums:
783
      assert(!checksums.valid() &&
784
             "Encountered multiple checksum subsections!");
785
      exitOnErr(checksums.initialize(ss.getRecordData()));
786
      break;
787
    case DebugSubsectionKind::Lines:
788
    case DebugSubsectionKind::InlineeLines:
789
      addUnrelocatedSubsection(debugChunk, ss);
790
      break;
791
    case DebugSubsectionKind::FrameData:
792
      addFrameDataSubsection(debugChunk, ss);
793
      break;
794
    case DebugSubsectionKind::Symbols:
795
      linker.analyzeSymbolSubsection(debugChunk, moduleStreamSize,
796
                                     nextRelocIndex, stringTableFixups,
797
                                     ss.getRecordData());
798
      break;
799

800
    case DebugSubsectionKind::CrossScopeImports:
801
    case DebugSubsectionKind::CrossScopeExports:
802
      // These appear to relate to cross-module optimization, so we might use
803
      // these for ThinLTO.
804
      break;
805

806
    case DebugSubsectionKind::ILLines:
807
    case DebugSubsectionKind::FuncMDTokenMap:
808
    case DebugSubsectionKind::TypeMDTokenMap:
809
    case DebugSubsectionKind::MergedAssemblyInput:
810
      // These appear to relate to .Net assembly info.
811
      break;
812

813
    case DebugSubsectionKind::CoffSymbolRVA:
814
      // Unclear what this is for.
815
      break;
816

817
    case DebugSubsectionKind::XfgHashType:
818
    case DebugSubsectionKind::XfgHashVirtual:
819
      break;
820

821
    default:
822
      warn("ignoring unknown debug$S subsection kind 0x" +
823
           utohexstr(uint32_t(ss.kind())) + " in file " + toString(&file));
824
      break;
825
    }
826
  }
827
}
828

829
void DebugSHandler::advanceRelocIndex(SectionChunk *sc,
830
                                      ArrayRef<uint8_t> subsec) {
831
  ptrdiff_t vaBegin = subsec.data() - sc->getContents().data();
832
  assert(vaBegin > 0);
833
  auto relocs = sc->getRelocs();
834
  for (; nextRelocIndex < relocs.size(); ++nextRelocIndex) {
835
    if (relocs[nextRelocIndex].VirtualAddress >= (uint32_t)vaBegin)
836
      break;
837
  }
838
}
839

840
namespace {
841
/// Wrapper class for unrelocated line and inlinee line subsections, which
842
/// require only relocation and type index remapping to add to the PDB.
843
class UnrelocatedDebugSubsection : public DebugSubsection {
844
public:
845
  UnrelocatedDebugSubsection(DebugSubsectionKind k, SectionChunk *debugChunk,
846
                             ArrayRef<uint8_t> subsec, uint32_t relocIndex)
847
      : DebugSubsection(k), debugChunk(debugChunk), subsec(subsec),
848
        relocIndex(relocIndex) {}
849

850
  Error commit(BinaryStreamWriter &writer) const override;
851
  uint32_t calculateSerializedSize() const override { return subsec.size(); }
852

853
  SectionChunk *debugChunk;
854
  ArrayRef<uint8_t> subsec;
855
  uint32_t relocIndex;
856
};
857
} // namespace
858

859
Error UnrelocatedDebugSubsection::commit(BinaryStreamWriter &writer) const {
860
  std::vector<uint8_t> relocatedBytes(subsec.size());
861
  uint32_t tmpRelocIndex = relocIndex;
862
  debugChunk->writeAndRelocateSubsection(debugChunk->getContents(), subsec,
863
                                         tmpRelocIndex, relocatedBytes.data());
864

865
  // Remap type indices in inlinee line records in place. Skip the remapping if
866
  // there is no type source info.
867
  if (kind() == DebugSubsectionKind::InlineeLines &&
868
      debugChunk->file->debugTypesObj) {
869
    TpiSource *source = debugChunk->file->debugTypesObj;
870
    DebugInlineeLinesSubsectionRef inlineeLines;
871
    BinaryStreamReader storageReader(relocatedBytes, llvm::endianness::little);
872
    ExitOnError exitOnErr;
873
    exitOnErr(inlineeLines.initialize(storageReader));
874
    for (const InlineeSourceLine &line : inlineeLines) {
875
      TypeIndex &inlinee = *const_cast<TypeIndex *>(&line.Header->Inlinee);
876
      if (!source->remapTypeIndex(inlinee, TiRefKind::IndexRef)) {
877
        log("bad inlinee line record in " + debugChunk->file->getName() +
878
            " with bad inlinee index 0x" + utohexstr(inlinee.getIndex()));
879
      }
880
    }
881
  }
882

883
  return writer.writeBytes(relocatedBytes);
884
}
885

886
void DebugSHandler::addUnrelocatedSubsection(SectionChunk *debugChunk,
887
                                             const DebugSubsectionRecord &ss) {
888
  ArrayRef<uint8_t> subsec;
889
  BinaryStreamRef sr = ss.getRecordData();
890
  cantFail(sr.readBytes(0, sr.getLength(), subsec));
891
  advanceRelocIndex(debugChunk, subsec);
892
  file.moduleDBI->addDebugSubsection(
893
      std::make_shared<UnrelocatedDebugSubsection>(ss.kind(), debugChunk,
894
                                                   subsec, nextRelocIndex));
895
}
896

897
void DebugSHandler::addFrameDataSubsection(SectionChunk *debugChunk,
898
                                           const DebugSubsectionRecord &ss) {
899
  // We need to re-write string table indices here, so save off all
900
  // frame data subsections until we've processed the entire list of
901
  // subsections so that we can be sure we have the string table.
902
  ArrayRef<uint8_t> subsec;
903
  BinaryStreamRef sr = ss.getRecordData();
904
  cantFail(sr.readBytes(0, sr.getLength(), subsec));
905
  advanceRelocIndex(debugChunk, subsec);
906
  frameDataSubsecs.push_back({debugChunk, subsec, nextRelocIndex});
907
}
908

909
static Expected<StringRef>
910
getFileName(const DebugStringTableSubsectionRef &strings,
911
            const DebugChecksumsSubsectionRef &checksums, uint32_t fileID) {
912
  auto iter = checksums.getArray().at(fileID);
913
  if (iter == checksums.getArray().end())
914
    return make_error<CodeViewError>(cv_error_code::no_records);
915
  uint32_t offset = iter->FileNameOffset;
916
  return strings.getString(offset);
917
}
918

919
void DebugSHandler::finish() {
920
  pdb::DbiStreamBuilder &dbiBuilder = linker.builder.getDbiBuilder();
921

922
  // If we found any symbol records for the module symbol stream, defer them.
923
  if (moduleStreamSize > kSymbolStreamMagicSize)
924
    file.moduleDBI->addUnmergedSymbols(&file, moduleStreamSize -
925
                                                  kSymbolStreamMagicSize);
926

927
  // We should have seen all debug subsections across the entire object file now
928
  // which means that if a StringTable subsection and Checksums subsection were
929
  // present, now is the time to handle them.
930
  if (!cvStrTab.valid()) {
931
    if (checksums.valid())
932
      fatal(".debug$S sections with a checksums subsection must also contain a "
933
            "string table subsection");
934

935
    if (!stringTableFixups.empty())
936
      warn("No StringTable subsection was encountered, but there are string "
937
           "table references");
938
    return;
939
  }
940

941
  ExitOnError exitOnErr;
942

943
  // Handle FPO data. Each subsection begins with a single image base
944
  // relocation, which is then added to the RvaStart of each frame data record
945
  // when it is added to the PDB. The string table indices for the FPO program
946
  // must also be rewritten to use the PDB string table.
947
  for (const UnrelocatedFpoData &subsec : frameDataSubsecs) {
948
    // Relocate the first four bytes of the subection and reinterpret them as a
949
    // 32 bit little-endian integer.
950
    SectionChunk *debugChunk = subsec.debugChunk;
951
    ArrayRef<uint8_t> subsecData = subsec.subsecData;
952
    uint32_t relocIndex = subsec.relocIndex;
953
    auto unrelocatedRvaStart = subsecData.take_front(sizeof(uint32_t));
954
    uint8_t relocatedRvaStart[sizeof(uint32_t)];
955
    debugChunk->writeAndRelocateSubsection(debugChunk->getContents(),
956
                                           unrelocatedRvaStart, relocIndex,
957
                                           &relocatedRvaStart[0]);
958
    // Use of memcpy here avoids violating type-based aliasing rules.
959
    support::ulittle32_t rvaStart;
960
    memcpy(&rvaStart, &relocatedRvaStart[0], sizeof(support::ulittle32_t));
961

962
    // Copy each frame data record, add in rvaStart, translate string table
963
    // indices, and add the record to the PDB.
964
    DebugFrameDataSubsectionRef fds;
965
    BinaryStreamReader reader(subsecData, llvm::endianness::little);
966
    exitOnErr(fds.initialize(reader));
967
    for (codeview::FrameData fd : fds) {
968
      fd.RvaStart += rvaStart;
969
      fd.FrameFunc =
970
          translateStringTableIndex(fd.FrameFunc, cvStrTab, linker.pdbStrTab);
971
      dbiBuilder.addNewFpoData(fd);
972
    }
973
  }
974

975
  // Translate the fixups and pass them off to the module builder so they will
976
  // be applied during writing.
977
  for (StringTableFixup &ref : stringTableFixups) {
978
    ref.StrTabOffset =
979
        translateStringTableIndex(ref.StrTabOffset, cvStrTab, linker.pdbStrTab);
980
  }
981
  file.moduleDBI->setStringTableFixups(std::move(stringTableFixups));
982

983
  // Make a new file checksum table that refers to offsets in the PDB-wide
984
  // string table. Generally the string table subsection appears after the
985
  // checksum table, so we have to do this after looping over all the
986
  // subsections. The new checksum table must have the exact same layout and
987
  // size as the original. Otherwise, the file references in the line and
988
  // inlinee line tables will be incorrect.
989
  auto newChecksums = std::make_unique<DebugChecksumsSubsection>(linker.pdbStrTab);
990
  for (const FileChecksumEntry &fc : checksums) {
991
    SmallString<128> filename =
992
        exitOnErr(cvStrTab.getString(fc.FileNameOffset));
993
    linker.pdbMakeAbsolute(filename);
994
    exitOnErr(dbiBuilder.addModuleSourceFile(*file.moduleDBI, filename));
995
    newChecksums->addChecksum(filename, fc.Kind, fc.Checksum);
996
  }
997
  assert(checksums.getArray().getUnderlyingStream().getLength() ==
998
             newChecksums->calculateSerializedSize() &&
999
         "file checksum table must have same layout");
1000

1001
  file.moduleDBI->addDebugSubsection(std::move(newChecksums));
1002
}
1003

1004
static void warnUnusable(InputFile *f, Error e, bool shouldWarn) {
1005
  if (!shouldWarn) {
1006
    consumeError(std::move(e));
1007
    return;
1008
  }
1009
  auto msg = "Cannot use debug info for '" + toString(f) + "' [LNK4099]";
1010
  if (e)
1011
    warn(msg + "\n>>> failed to load reference " + toString(std::move(e)));
1012
  else
1013
    warn(msg);
1014
}
1015

1016
// Allocate memory for a .debug$S / .debug$F section and relocate it.
1017
static ArrayRef<uint8_t> relocateDebugChunk(SectionChunk &debugChunk) {
1018
  uint8_t *buffer = bAlloc().Allocate<uint8_t>(debugChunk.getSize());
1019
  assert(debugChunk.getOutputSectionIdx() == 0 &&
1020
         "debug sections should not be in output sections");
1021
  debugChunk.writeTo(buffer);
1022
  return ArrayRef(buffer, debugChunk.getSize());
1023
}
1024

1025
void PDBLinker::addDebugSymbols(TpiSource *source) {
1026
  // If this TpiSource doesn't have an object file, it must be from a type
1027
  // server PDB. Type server PDBs do not contain symbols, so stop here.
1028
  if (!source->file)
1029
    return;
1030

1031
  llvm::TimeTraceScope timeScope("Merge symbols");
1032
  ScopedTimer t(ctx.symbolMergingTimer);
1033
  ExitOnError exitOnErr;
1034
  pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1035
  DebugSHandler dsh(*this, *source->file);
1036
  // Now do all live .debug$S and .debug$F sections.
1037
  for (SectionChunk *debugChunk : source->file->getDebugChunks()) {
1038
    if (!debugChunk->live || debugChunk->getSize() == 0)
1039
      continue;
1040

1041
    bool isDebugS = debugChunk->getSectionName() == ".debug$S";
1042
    bool isDebugF = debugChunk->getSectionName() == ".debug$F";
1043
    if (!isDebugS && !isDebugF)
1044
      continue;
1045

1046
    if (isDebugS) {
1047
      dsh.handleDebugS(debugChunk);
1048
    } else if (isDebugF) {
1049
      // Handle old FPO data .debug$F sections. These are relatively rare.
1050
      ArrayRef<uint8_t> relocatedDebugContents =
1051
          relocateDebugChunk(*debugChunk);
1052
      FixedStreamArray<object::FpoData> fpoRecords;
1053
      BinaryStreamReader reader(relocatedDebugContents,
1054
                                llvm::endianness::little);
1055
      uint32_t count = relocatedDebugContents.size() / sizeof(object::FpoData);
1056
      exitOnErr(reader.readArray(fpoRecords, count));
1057

1058
      // These are already relocated and don't refer to the string table, so we
1059
      // can just copy it.
1060
      for (const object::FpoData &fd : fpoRecords)
1061
        dbiBuilder.addOldFpoData(fd);
1062
    }
1063
  }
1064

1065
  // Do any post-processing now that all .debug$S sections have been processed.
1066
  dsh.finish();
1067
}
1068

1069
// Add a module descriptor for every object file. We need to put an absolute
1070
// path to the object into the PDB. If this is a plain object, we make its
1071
// path absolute. If it's an object in an archive, we make the archive path
1072
// absolute.
1073
void PDBLinker::createModuleDBI(ObjFile *file) {
1074
  pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1075
  SmallString<128> objName;
1076
  ExitOnError exitOnErr;
1077

1078
  bool inArchive = !file->parentName.empty();
1079
  objName = inArchive ? file->parentName : file->getName();
1080
  pdbMakeAbsolute(objName);
1081
  StringRef modName = inArchive ? file->getName() : objName.str();
1082

1083
  file->moduleDBI = &exitOnErr(dbiBuilder.addModuleInfo(modName));
1084
  file->moduleDBI->setObjFileName(objName);
1085
  file->moduleDBI->setMergeSymbolsCallback(this, &commitSymbolsForObject);
1086

1087
  ArrayRef<Chunk *> chunks = file->getChunks();
1088
  uint32_t modi = file->moduleDBI->getModuleIndex();
1089

1090
  for (Chunk *c : chunks) {
1091
    auto *secChunk = dyn_cast<SectionChunk>(c);
1092
    if (!secChunk || !secChunk->live)
1093
      continue;
1094
    pdb::SectionContrib sc = createSectionContrib(ctx, secChunk, modi);
1095
    file->moduleDBI->setFirstSectionContrib(sc);
1096
    break;
1097
  }
1098
}
1099

1100
void PDBLinker::addDebug(TpiSource *source) {
1101
  // Before we can process symbol substreams from .debug$S, we need to process
1102
  // type information, file checksums, and the string table. Add type info to
1103
  // the PDB first, so that we can get the map from object file type and item
1104
  // indices to PDB type and item indices.  If we are using ghashes, types have
1105
  // already been merged.
1106
  if (!ctx.config.debugGHashes) {
1107
    llvm::TimeTraceScope timeScope("Merge types (Non-GHASH)");
1108
    ScopedTimer t(ctx.typeMergingTimer);
1109
    if (Error e = source->mergeDebugT(&tMerger)) {
1110
      // If type merging failed, ignore the symbols.
1111
      warnUnusable(source->file, std::move(e),
1112
                   ctx.config.warnDebugInfoUnusable);
1113
      return;
1114
    }
1115
  }
1116

1117
  // If type merging failed, ignore the symbols.
1118
  Error typeError = std::move(source->typeMergingError);
1119
  if (typeError) {
1120
    warnUnusable(source->file, std::move(typeError),
1121
                 ctx.config.warnDebugInfoUnusable);
1122
    return;
1123
  }
1124

1125
  addDebugSymbols(source);
1126
}
1127

1128
static pdb::BulkPublic createPublic(COFFLinkerContext &ctx, Defined *def) {
1129
  pdb::BulkPublic pub;
1130
  pub.Name = def->getName().data();
1131
  pub.NameLen = def->getName().size();
1132

1133
  PublicSymFlags flags = PublicSymFlags::None;
1134
  if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1135
    if (d->getCOFFSymbol().isFunctionDefinition())
1136
      flags = PublicSymFlags::Function;
1137
  } else if (isa<DefinedImportThunk>(def)) {
1138
    flags = PublicSymFlags::Function;
1139
  }
1140
  pub.setFlags(flags);
1141

1142
  OutputSection *os = ctx.getOutputSection(def->getChunk());
1143
  assert(os && "all publics should be in final image");
1144
  pub.Offset = def->getRVA() - os->getRVA();
1145
  pub.Segment = os->sectionIndex;
1146
  return pub;
1147
}
1148

1149
// Add all object files to the PDB. Merge .debug$T sections into IpiData and
1150
// TpiData.
1151
void PDBLinker::addObjectsToPDB() {
1152
  {
1153
    llvm::TimeTraceScope timeScope("Add objects to PDB");
1154
    ScopedTimer t1(ctx.addObjectsTimer);
1155

1156
    // Create module descriptors
1157
    for (ObjFile *obj : ctx.objFileInstances)
1158
      createModuleDBI(obj);
1159

1160
    // Reorder dependency type sources to come first.
1161
    tMerger.sortDependencies();
1162

1163
    // Merge type information from input files using global type hashing.
1164
    if (ctx.config.debugGHashes)
1165
      tMerger.mergeTypesWithGHash();
1166

1167
    // Merge dependencies and then regular objects.
1168
    {
1169
      llvm::TimeTraceScope timeScope("Merge debug info (dependencies)");
1170
      for (TpiSource *source : tMerger.dependencySources)
1171
        addDebug(source);
1172
    }
1173
    {
1174
      llvm::TimeTraceScope timeScope("Merge debug info (objects)");
1175
      for (TpiSource *source : tMerger.objectSources)
1176
        addDebug(source);
1177
    }
1178

1179
    builder.getStringTableBuilder().setStrings(pdbStrTab);
1180
  }
1181

1182
  // Construct TPI and IPI stream contents.
1183
  {
1184
    llvm::TimeTraceScope timeScope("TPI/IPI stream layout");
1185
    ScopedTimer t2(ctx.tpiStreamLayoutTimer);
1186

1187
    // Collect all the merged types.
1188
    if (ctx.config.debugGHashes) {
1189
      addGHashTypeInfo(ctx, builder);
1190
    } else {
1191
      addTypeInfo(builder.getTpiBuilder(), tMerger.getTypeTable());
1192
      addTypeInfo(builder.getIpiBuilder(), tMerger.getIDTable());
1193
    }
1194
  }
1195

1196
  if (ctx.config.showSummary) {
1197
    for (TpiSource *source : ctx.tpiSourceList) {
1198
      nbTypeRecords += source->nbTypeRecords;
1199
      nbTypeRecordsBytes += source->nbTypeRecordsBytes;
1200
    }
1201
  }
1202
}
1203

1204
void PDBLinker::addPublicsToPDB() {
1205
  llvm::TimeTraceScope timeScope("Publics layout");
1206
  ScopedTimer t3(ctx.publicsLayoutTimer);
1207
  // Compute the public symbols.
1208
  auto &gsiBuilder = builder.getGsiBuilder();
1209
  std::vector<pdb::BulkPublic> publics;
1210
  ctx.symtab.forEachSymbol([&publics, this](Symbol *s) {
1211
    // Only emit external, defined, live symbols that have a chunk. Static,
1212
    // non-external symbols do not appear in the symbol table.
1213
    auto *def = dyn_cast<Defined>(s);
1214
    if (def && def->isLive() && def->getChunk()) {
1215
      // Don't emit a public symbol for coverage data symbols. LLVM code
1216
      // coverage (and PGO) create a __profd_ and __profc_ symbol for every
1217
      // function. C++ mangled names are long, and tend to dominate symbol size.
1218
      // Including these names triples the size of the public stream, which
1219
      // results in bloated PDB files. These symbols generally are not helpful
1220
      // for debugging, so suppress them.
1221
      StringRef name = def->getName();
1222
      if (name.data()[0] == '_' && name.data()[1] == '_') {
1223
        // Drop the '_' prefix for x86.
1224
        if (ctx.config.machine == I386)
1225
          name = name.drop_front(1);
1226
        if (name.starts_with("__profd_") || name.starts_with("__profc_") ||
1227
            name.starts_with("__covrec_")) {
1228
          return;
1229
        }
1230
      }
1231
      publics.push_back(createPublic(ctx, def));
1232
    }
1233
  });
1234

1235
  if (!publics.empty()) {
1236
    publicSymbols = publics.size();
1237
    gsiBuilder.addPublicSymbols(std::move(publics));
1238
  }
1239
}
1240

1241
void PDBLinker::printStats() {
1242
  if (!ctx.config.showSummary)
1243
    return;
1244

1245
  SmallString<256> buffer;
1246
  raw_svector_ostream stream(buffer);
1247

1248
  stream << center_justify("Summary", 80) << '\n'
1249
         << std::string(80, '-') << '\n';
1250

1251
  auto print = [&](uint64_t v, StringRef s) {
1252
    stream << format_decimal(v, 15) << " " << s << '\n';
1253
  };
1254

1255
  print(ctx.objFileInstances.size(),
1256
        "Input OBJ files (expanded from all cmd-line inputs)");
1257
  print(ctx.typeServerSourceMappings.size(), "PDB type server dependencies");
1258
  print(ctx.precompSourceMappings.size(), "Precomp OBJ dependencies");
1259
  print(nbTypeRecords, "Input type records");
1260
  print(nbTypeRecordsBytes, "Input type records bytes");
1261
  print(builder.getTpiBuilder().getRecordCount(), "Merged TPI records");
1262
  print(builder.getIpiBuilder().getRecordCount(), "Merged IPI records");
1263
  print(pdbStrTab.size(), "Output PDB strings");
1264
  print(globalSymbols, "Global symbol records");
1265
  print(moduleSymbols, "Module symbol records");
1266
  print(publicSymbols, "Public symbol records");
1267

1268
  auto printLargeInputTypeRecs = [&](StringRef name,
1269
                                     ArrayRef<uint32_t> recCounts,
1270
                                     TypeCollection &records) {
1271
    // Figure out which type indices were responsible for the most duplicate
1272
    // bytes in the input files. These should be frequently emitted LF_CLASS and
1273
    // LF_FIELDLIST records.
1274
    struct TypeSizeInfo {
1275
      uint32_t typeSize;
1276
      uint32_t dupCount;
1277
      TypeIndex typeIndex;
1278
      uint64_t totalInputSize() const { return uint64_t(dupCount) * typeSize; }
1279
      bool operator<(const TypeSizeInfo &rhs) const {
1280
        if (totalInputSize() == rhs.totalInputSize())
1281
          return typeIndex < rhs.typeIndex;
1282
        return totalInputSize() < rhs.totalInputSize();
1283
      }
1284
    };
1285
    SmallVector<TypeSizeInfo, 0> tsis;
1286
    for (auto e : enumerate(recCounts)) {
1287
      TypeIndex typeIndex = TypeIndex::fromArrayIndex(e.index());
1288
      uint32_t typeSize = records.getType(typeIndex).length();
1289
      uint32_t dupCount = e.value();
1290
      tsis.push_back({typeSize, dupCount, typeIndex});
1291
    }
1292

1293
    if (!tsis.empty()) {
1294
      stream << "\nTop 10 types responsible for the most " << name
1295
             << " input:\n";
1296
      stream << "       index     total bytes   count     size\n";
1297
      llvm::sort(tsis);
1298
      unsigned i = 0;
1299
      for (const auto &tsi : reverse(tsis)) {
1300
        stream << formatv("  {0,10:X}: {1,14:N} = {2,5:N} * {3,6:N}\n",
1301
                          tsi.typeIndex.getIndex(), tsi.totalInputSize(),
1302
                          tsi.dupCount, tsi.typeSize);
1303
        if (++i >= 10)
1304
          break;
1305
      }
1306
      stream
1307
          << "Run llvm-pdbutil to print details about a particular record:\n";
1308
      stream << formatv("llvm-pdbutil dump -{0}s -{0}-index {1:X} {2}\n",
1309
                        (name == "TPI" ? "type" : "id"),
1310
                        tsis.back().typeIndex.getIndex(), ctx.config.pdbPath);
1311
    }
1312
  };
1313

1314
  if (!ctx.config.debugGHashes) {
1315
    // FIXME: Reimplement for ghash.
1316
    printLargeInputTypeRecs("TPI", tMerger.tpiCounts, tMerger.getTypeTable());
1317
    printLargeInputTypeRecs("IPI", tMerger.ipiCounts, tMerger.getIDTable());
1318
  }
1319

1320
  message(buffer);
1321
}
1322

1323
void PDBLinker::addNatvisFiles() {
1324
  llvm::TimeTraceScope timeScope("Natvis files");
1325
  for (StringRef file : ctx.config.natvisFiles) {
1326
    ErrorOr<std::unique_ptr<MemoryBuffer>> dataOrErr =
1327
        MemoryBuffer::getFile(file);
1328
    if (!dataOrErr) {
1329
      warn("Cannot open input file: " + file);
1330
      continue;
1331
    }
1332
    std::unique_ptr<MemoryBuffer> data = std::move(*dataOrErr);
1333

1334
    // Can't use takeBuffer() here since addInjectedSource() takes ownership.
1335
    if (ctx.driver.tar)
1336
      ctx.driver.tar->append(relativeToRoot(data->getBufferIdentifier()),
1337
                             data->getBuffer());
1338

1339
    builder.addInjectedSource(file, std::move(data));
1340
  }
1341
}
1342

1343
void PDBLinker::addNamedStreams() {
1344
  llvm::TimeTraceScope timeScope("Named streams");
1345
  ExitOnError exitOnErr;
1346
  for (const auto &streamFile : ctx.config.namedStreams) {
1347
    const StringRef stream = streamFile.getKey(), file = streamFile.getValue();
1348
    ErrorOr<std::unique_ptr<MemoryBuffer>> dataOrErr =
1349
        MemoryBuffer::getFile(file);
1350
    if (!dataOrErr) {
1351
      warn("Cannot open input file: " + file);
1352
      continue;
1353
    }
1354
    std::unique_ptr<MemoryBuffer> data = std::move(*dataOrErr);
1355
    exitOnErr(builder.addNamedStream(stream, data->getBuffer()));
1356
    ctx.driver.takeBuffer(std::move(data));
1357
  }
1358
}
1359

1360
static codeview::CPUType toCodeViewMachine(COFF::MachineTypes machine) {
1361
  switch (machine) {
1362
  case COFF::IMAGE_FILE_MACHINE_AMD64:
1363
    return codeview::CPUType::X64;
1364
  case COFF::IMAGE_FILE_MACHINE_ARM:
1365
    return codeview::CPUType::ARM7;
1366
  case COFF::IMAGE_FILE_MACHINE_ARM64:
1367
    return codeview::CPUType::ARM64;
1368
  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1369
    return codeview::CPUType::ARMNT;
1370
  case COFF::IMAGE_FILE_MACHINE_I386:
1371
    return codeview::CPUType::Intel80386;
1372
  default:
1373
    llvm_unreachable("Unsupported CPU Type");
1374
  }
1375
}
1376

1377
// Mimic MSVC which surrounds arguments containing whitespace with quotes.
1378
// Double double-quotes are handled, so that the resulting string can be
1379
// executed again on the cmd-line.
1380
static std::string quote(ArrayRef<StringRef> args) {
1381
  std::string r;
1382
  r.reserve(256);
1383
  for (StringRef a : args) {
1384
    if (!r.empty())
1385
      r.push_back(' ');
1386
    bool hasWS = a.contains(' ');
1387
    bool hasQ = a.contains('"');
1388
    if (hasWS || hasQ)
1389
      r.push_back('"');
1390
    if (hasQ) {
1391
      SmallVector<StringRef, 4> s;
1392
      a.split(s, '"');
1393
      r.append(join(s, "\"\""));
1394
    } else {
1395
      r.append(std::string(a));
1396
    }
1397
    if (hasWS || hasQ)
1398
      r.push_back('"');
1399
  }
1400
  return r;
1401
}
1402

1403
static void fillLinkerVerRecord(Compile3Sym &cs, MachineTypes machine) {
1404
  cs.Machine = toCodeViewMachine(machine);
1405
  // Interestingly, if we set the string to 0.0.0.0, then when trying to view
1406
  // local variables WinDbg emits an error that private symbols are not present.
1407
  // By setting this to a valid MSVC linker version string, local variables are
1408
  // displayed properly.   As such, even though it is not representative of
1409
  // LLVM's version information, we need this for compatibility.
1410
  cs.Flags = CompileSym3Flags::None;
1411
  cs.VersionBackendBuild = 25019;
1412
  cs.VersionBackendMajor = 14;
1413
  cs.VersionBackendMinor = 10;
1414
  cs.VersionBackendQFE = 0;
1415

1416
  // MSVC also sets the frontend to 0.0.0.0 since this is specifically for the
1417
  // linker module (which is by definition a backend), so we don't need to do
1418
  // anything here.  Also, it seems we can use "LLVM Linker" for the linker name
1419
  // without any problems.  Only the backend version has to be hardcoded to a
1420
  // magic number.
1421
  cs.VersionFrontendBuild = 0;
1422
  cs.VersionFrontendMajor = 0;
1423
  cs.VersionFrontendMinor = 0;
1424
  cs.VersionFrontendQFE = 0;
1425
  cs.Version = "LLVM Linker";
1426
  cs.setLanguage(SourceLanguage::Link);
1427
}
1428

1429
void PDBLinker::addCommonLinkerModuleSymbols(
1430
    StringRef path, pdb::DbiModuleDescriptorBuilder &mod) {
1431
  ObjNameSym ons(SymbolRecordKind::ObjNameSym);
1432
  EnvBlockSym ebs(SymbolRecordKind::EnvBlockSym);
1433
  Compile3Sym cs(SymbolRecordKind::Compile3Sym);
1434
  fillLinkerVerRecord(cs, ctx.config.machine);
1435

1436
  ons.Name = "* Linker *";
1437
  ons.Signature = 0;
1438

1439
  ArrayRef<StringRef> args = ArrayRef(ctx.config.argv).drop_front();
1440
  std::string argStr = quote(args);
1441
  ebs.Fields.push_back("cwd");
1442
  SmallString<64> cwd;
1443
  if (ctx.config.pdbSourcePath.empty())
1444
    sys::fs::current_path(cwd);
1445
  else
1446
    cwd = ctx.config.pdbSourcePath;
1447
  ebs.Fields.push_back(cwd);
1448
  ebs.Fields.push_back("exe");
1449
  SmallString<64> exe = ctx.config.argv[0];
1450
  pdbMakeAbsolute(exe);
1451
  ebs.Fields.push_back(exe);
1452
  ebs.Fields.push_back("pdb");
1453
  ebs.Fields.push_back(path);
1454
  ebs.Fields.push_back("cmd");
1455
  ebs.Fields.push_back(argStr);
1456
  llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
1457
  mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1458
      ons, bAlloc, CodeViewContainer::Pdb));
1459
  mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1460
      cs, bAlloc, CodeViewContainer::Pdb));
1461
  mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1462
      ebs, bAlloc, CodeViewContainer::Pdb));
1463
}
1464

1465
static void addLinkerModuleCoffGroup(PartialSection *sec,
1466
                                     pdb::DbiModuleDescriptorBuilder &mod,
1467
                                     OutputSection &os) {
1468
  // If there's a section, there's at least one chunk
1469
  assert(!sec->chunks.empty());
1470
  const Chunk *firstChunk = *sec->chunks.begin();
1471
  const Chunk *lastChunk = *sec->chunks.rbegin();
1472

1473
  // Emit COFF group
1474
  CoffGroupSym cgs(SymbolRecordKind::CoffGroupSym);
1475
  cgs.Name = sec->name;
1476
  cgs.Segment = os.sectionIndex;
1477
  cgs.Offset = firstChunk->getRVA() - os.getRVA();
1478
  cgs.Size = lastChunk->getRVA() + lastChunk->getSize() - firstChunk->getRVA();
1479
  cgs.Characteristics = sec->characteristics;
1480

1481
  // Somehow .idata sections & sections groups in the debug symbol stream have
1482
  // the "write" flag set. However the section header for the corresponding
1483
  // .idata section doesn't have it.
1484
  if (cgs.Name.starts_with(".idata"))
1485
    cgs.Characteristics |= llvm::COFF::IMAGE_SCN_MEM_WRITE;
1486

1487
  mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1488
      cgs, bAlloc(), CodeViewContainer::Pdb));
1489
}
1490

1491
static void addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder &mod,
1492
                                         OutputSection &os, bool isMinGW) {
1493
  SectionSym sym(SymbolRecordKind::SectionSym);
1494
  sym.Alignment = 12; // 2^12 = 4KB
1495
  sym.Characteristics = os.header.Characteristics;
1496
  sym.Length = os.getVirtualSize();
1497
  sym.Name = os.name;
1498
  sym.Rva = os.getRVA();
1499
  sym.SectionNumber = os.sectionIndex;
1500
  mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1501
      sym, bAlloc(), CodeViewContainer::Pdb));
1502

1503
  // Skip COFF groups in MinGW because it adds a significant footprint to the
1504
  // PDB, due to each function being in its own section
1505
  if (isMinGW)
1506
    return;
1507

1508
  // Output COFF groups for individual chunks of this section.
1509
  for (PartialSection *sec : os.contribSections) {
1510
    addLinkerModuleCoffGroup(sec, mod, os);
1511
  }
1512
}
1513

1514
// Add all import files as modules to the PDB.
1515
void PDBLinker::addImportFilesToPDB() {
1516
  if (ctx.importFileInstances.empty())
1517
    return;
1518

1519
  llvm::TimeTraceScope timeScope("Import files");
1520
  ExitOnError exitOnErr;
1521
  std::map<std::string, llvm::pdb::DbiModuleDescriptorBuilder *> dllToModuleDbi;
1522

1523
  for (ImportFile *file : ctx.importFileInstances) {
1524
    if (!file->live)
1525
      continue;
1526

1527
    if (!file->thunkSym)
1528
      continue;
1529

1530
    if (!file->thunkLive)
1531
        continue;
1532

1533
    std::string dll = StringRef(file->dllName).lower();
1534
    llvm::pdb::DbiModuleDescriptorBuilder *&mod = dllToModuleDbi[dll];
1535
    if (!mod) {
1536
      pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1537
      SmallString<128> libPath = file->parentName;
1538
      pdbMakeAbsolute(libPath);
1539
      sys::path::native(libPath);
1540

1541
      // Name modules similar to MSVC's link.exe.
1542
      // The first module is the simple dll filename
1543
      llvm::pdb::DbiModuleDescriptorBuilder &firstMod =
1544
          exitOnErr(dbiBuilder.addModuleInfo(file->dllName));
1545
      firstMod.setObjFileName(libPath);
1546
      pdb::SectionContrib sc =
1547
          createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex);
1548
      firstMod.setFirstSectionContrib(sc);
1549

1550
      // The second module is where the import stream goes.
1551
      mod = &exitOnErr(dbiBuilder.addModuleInfo("Import:" + file->dllName));
1552
      mod->setObjFileName(libPath);
1553
    }
1554

1555
    DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1556
    Chunk *thunkChunk = thunk->getChunk();
1557
    OutputSection *thunkOS = ctx.getOutputSection(thunkChunk);
1558

1559
    ObjNameSym ons(SymbolRecordKind::ObjNameSym);
1560
    Compile3Sym cs(SymbolRecordKind::Compile3Sym);
1561
    Thunk32Sym ts(SymbolRecordKind::Thunk32Sym);
1562
    ScopeEndSym es(SymbolRecordKind::ScopeEndSym);
1563

1564
    ons.Name = file->dllName;
1565
    ons.Signature = 0;
1566

1567
    fillLinkerVerRecord(cs, ctx.config.machine);
1568

1569
    ts.Name = thunk->getName();
1570
    ts.Parent = 0;
1571
    ts.End = 0;
1572
    ts.Next = 0;
1573
    ts.Thunk = ThunkOrdinal::Standard;
1574
    ts.Length = thunkChunk->getSize();
1575
    ts.Segment = thunkOS->sectionIndex;
1576
    ts.Offset = thunkChunk->getRVA() - thunkOS->getRVA();
1577

1578
    llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
1579
    mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1580
        ons, bAlloc, CodeViewContainer::Pdb));
1581
    mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol(
1582
        cs, bAlloc, CodeViewContainer::Pdb));
1583

1584
    CVSymbol newSym = codeview::SymbolSerializer::writeOneSymbol(
1585
        ts, bAlloc, CodeViewContainer::Pdb);
1586

1587
    // Write ptrEnd for the S_THUNK32.
1588
    ScopeRecord *thunkSymScope =
1589
        getSymbolScopeFields(const_cast<uint8_t *>(newSym.data().data()));
1590

1591
    mod->addSymbol(newSym);
1592

1593
    newSym = codeview::SymbolSerializer::writeOneSymbol(es, bAlloc,
1594
                                                        CodeViewContainer::Pdb);
1595
    thunkSymScope->ptrEnd = mod->getNextSymbolOffset();
1596

1597
    mod->addSymbol(newSym);
1598

1599
    pdb::SectionContrib sc =
1600
        createSectionContrib(ctx, thunk->getChunk(), mod->getModuleIndex());
1601
    mod->setFirstSectionContrib(sc);
1602
  }
1603
}
1604

1605
// Creates a PDB file.
1606
void lld::coff::createPDB(COFFLinkerContext &ctx,
1607
                          ArrayRef<uint8_t> sectionTable,
1608
                          llvm::codeview::DebugInfo *buildId) {
1609
  llvm::TimeTraceScope timeScope("PDB file");
1610
  ScopedTimer t1(ctx.totalPdbLinkTimer);
1611
  {
1612
    PDBLinker pdb(ctx);
1613

1614
    pdb.initialize(buildId);
1615
    pdb.addObjectsToPDB();
1616
    pdb.addImportFilesToPDB();
1617
    pdb.addSections(sectionTable);
1618
    pdb.addNatvisFiles();
1619
    pdb.addNamedStreams();
1620
    pdb.addPublicsToPDB();
1621

1622
    {
1623
      llvm::TimeTraceScope timeScope("Commit PDB file to disk");
1624
      ScopedTimer t2(ctx.diskCommitTimer);
1625
      codeview::GUID guid;
1626
      pdb.commit(&guid);
1627
      memcpy(&buildId->PDB70.Signature, &guid, 16);
1628
    }
1629

1630
    t1.stop();
1631
    pdb.printStats();
1632

1633
    // Manually start this profile point to measure ~PDBLinker().
1634
    if (getTimeTraceProfilerInstance() != nullptr)
1635
      timeTraceProfilerBegin("PDBLinker destructor", StringRef(""));
1636
  }
1637
  // Manually end this profile point to measure ~PDBLinker().
1638
  if (getTimeTraceProfilerInstance() != nullptr)
1639
    timeTraceProfilerEnd();
1640
}
1641

1642
void PDBLinker::initialize(llvm::codeview::DebugInfo *buildId) {
1643
  ExitOnError exitOnErr;
1644
  exitOnErr(builder.initialize(ctx.config.pdbPageSize));
1645

1646
  buildId->Signature.CVSignature = OMF::Signature::PDB70;
1647
  // Signature is set to a hash of the PDB contents when the PDB is done.
1648
  memset(buildId->PDB70.Signature, 0, 16);
1649
  buildId->PDB70.Age = 1;
1650

1651
  // Create streams in MSF for predefined streams, namely
1652
  // PDB, TPI, DBI and IPI.
1653
  for (int i = 0; i < (int)pdb::kSpecialStreamCount; ++i)
1654
    exitOnErr(builder.getMsfBuilder().addStream(0));
1655

1656
  // Add an Info stream.
1657
  auto &infoBuilder = builder.getInfoBuilder();
1658
  infoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70);
1659
  infoBuilder.setHashPDBContentsToGUID(true);
1660

1661
  // Add an empty DBI stream.
1662
  pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1663
  dbiBuilder.setAge(buildId->PDB70.Age);
1664
  dbiBuilder.setVersionHeader(pdb::PdbDbiV70);
1665
  dbiBuilder.setMachineType(ctx.config.machine);
1666
  // Technically we are not link.exe 14.11, but there are known cases where
1667
  // debugging tools on Windows expect Microsoft-specific version numbers or
1668
  // they fail to work at all.  Since we know we produce PDBs that are
1669
  // compatible with LINK 14.11, we set that version number here.
1670
  dbiBuilder.setBuildNumber(14, 11);
1671
}
1672

1673
void PDBLinker::addSections(ArrayRef<uint8_t> sectionTable) {
1674
  llvm::TimeTraceScope timeScope("PDB output sections");
1675
  ExitOnError exitOnErr;
1676
  // It's not entirely clear what this is, but the * Linker * module uses it.
1677
  pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder();
1678
  nativePath = ctx.config.pdbPath;
1679
  pdbMakeAbsolute(nativePath);
1680
  uint32_t pdbFilePathNI = dbiBuilder.addECName(nativePath);
1681
  auto &linkerModule = exitOnErr(dbiBuilder.addModuleInfo("* Linker *"));
1682
  linkerModule.setPdbFilePathNI(pdbFilePathNI);
1683
  addCommonLinkerModuleSymbols(nativePath, linkerModule);
1684

1685
  // Add section contributions. They must be ordered by ascending RVA.
1686
  for (OutputSection *os : ctx.outputSections) {
1687
    addLinkerModuleSectionSymbol(linkerModule, *os, ctx.config.mingw);
1688
    for (Chunk *c : os->chunks) {
1689
      pdb::SectionContrib sc =
1690
          createSectionContrib(ctx, c, linkerModule.getModuleIndex());
1691
      builder.getDbiBuilder().addSectionContrib(sc);
1692
    }
1693
  }
1694

1695
  // The * Linker * first section contrib is only used along with /INCREMENTAL,
1696
  // to provide trampolines thunks for incremental function patching. Set this
1697
  // as "unused" because LLD doesn't support /INCREMENTAL link.
1698
  pdb::SectionContrib sc =
1699
      createSectionContrib(ctx, nullptr, llvm::pdb::kInvalidStreamIndex);
1700
  linkerModule.setFirstSectionContrib(sc);
1701

1702
  // Add Section Map stream.
1703
  ArrayRef<object::coff_section> sections = {
1704
      (const object::coff_section *)sectionTable.data(),
1705
      sectionTable.size() / sizeof(object::coff_section)};
1706
  dbiBuilder.createSectionMap(sections);
1707

1708
  // Add COFF section header stream.
1709
  exitOnErr(
1710
      dbiBuilder.addDbgStream(pdb::DbgHeaderType::SectionHdr, sectionTable));
1711
}
1712

1713
void PDBLinker::commit(codeview::GUID *guid) {
1714
  // Print an error and continue if PDB writing fails. This is done mainly so
1715
  // the user can see the output of /time and /summary, which is very helpful
1716
  // when trying to figure out why a PDB file is too large.
1717
  if (Error e = builder.commit(ctx.config.pdbPath, guid)) {
1718
    e = handleErrors(std::move(e),
1719
        [](const llvm::msf::MSFError &me) {
1720
          error(me.message());
1721
          if (me.isPageOverflow())
1722
            error("try setting a larger /pdbpagesize");
1723
        });
1724
    checkError(std::move(e));
1725
    error("failed to write PDB file " + Twine(ctx.config.pdbPath));
1726
  }
1727
}
1728

1729
static uint32_t getSecrelReloc(Triple::ArchType arch) {
1730
  switch (arch) {
1731
  case Triple::x86_64:
1732
    return COFF::IMAGE_REL_AMD64_SECREL;
1733
  case Triple::x86:
1734
    return COFF::IMAGE_REL_I386_SECREL;
1735
  case Triple::thumb:
1736
    return COFF::IMAGE_REL_ARM_SECREL;
1737
  case Triple::aarch64:
1738
    return COFF::IMAGE_REL_ARM64_SECREL;
1739
  default:
1740
    llvm_unreachable("unknown machine type");
1741
  }
1742
}
1743

1744
// Try to find a line table for the given offset Addr into the given chunk C.
1745
// If a line table was found, the line table, the string and checksum tables
1746
// that are used to interpret the line table, and the offset of Addr in the line
1747
// table are stored in the output arguments. Returns whether a line table was
1748
// found.
1749
static bool findLineTable(const SectionChunk *c, uint32_t addr,
1750
                          DebugStringTableSubsectionRef &cvStrTab,
1751
                          DebugChecksumsSubsectionRef &checksums,
1752
                          DebugLinesSubsectionRef &lines,
1753
                          uint32_t &offsetInLinetable) {
1754
  ExitOnError exitOnErr;
1755
  const uint32_t secrelReloc = getSecrelReloc(c->getArch());
1756

1757
  for (SectionChunk *dbgC : c->file->getDebugChunks()) {
1758
    if (dbgC->getSectionName() != ".debug$S")
1759
      continue;
1760

1761
    // Build a mapping of SECREL relocations in dbgC that refer to `c`.
1762
    DenseMap<uint32_t, uint32_t> secrels;
1763
    for (const coff_relocation &r : dbgC->getRelocs()) {
1764
      if (r.Type != secrelReloc)
1765
        continue;
1766

1767
      if (auto *s = dyn_cast_or_null<DefinedRegular>(
1768
              c->file->getSymbols()[r.SymbolTableIndex]))
1769
        if (s->getChunk() == c)
1770
          secrels[r.VirtualAddress] = s->getValue();
1771
    }
1772

1773
    ArrayRef<uint8_t> contents =
1774
        SectionChunk::consumeDebugMagic(dbgC->getContents(), ".debug$S");
1775
    DebugSubsectionArray subsections;
1776
    BinaryStreamReader reader(contents, llvm::endianness::little);
1777
    exitOnErr(reader.readArray(subsections, contents.size()));
1778

1779
    for (const DebugSubsectionRecord &ss : subsections) {
1780
      switch (ss.kind()) {
1781
      case DebugSubsectionKind::StringTable: {
1782
        assert(!cvStrTab.valid() &&
1783
               "Encountered multiple string table subsections!");
1784
        exitOnErr(cvStrTab.initialize(ss.getRecordData()));
1785
        break;
1786
      }
1787
      case DebugSubsectionKind::FileChecksums:
1788
        assert(!checksums.valid() &&
1789
               "Encountered multiple checksum subsections!");
1790
        exitOnErr(checksums.initialize(ss.getRecordData()));
1791
        break;
1792
      case DebugSubsectionKind::Lines: {
1793
        ArrayRef<uint8_t> bytes;
1794
        auto ref = ss.getRecordData();
1795
        exitOnErr(ref.readLongestContiguousChunk(0, bytes));
1796
        size_t offsetInDbgC = bytes.data() - dbgC->getContents().data();
1797

1798
        // Check whether this line table refers to C.
1799
        auto i = secrels.find(offsetInDbgC);
1800
        if (i == secrels.end())
1801
          break;
1802

1803
        // Check whether this line table covers Addr in C.
1804
        DebugLinesSubsectionRef linesTmp;
1805
        exitOnErr(linesTmp.initialize(BinaryStreamReader(ref)));
1806
        uint32_t offsetInC = i->second + linesTmp.header()->RelocOffset;
1807
        if (addr < offsetInC || addr >= offsetInC + linesTmp.header()->CodeSize)
1808
          break;
1809

1810
        assert(!lines.header() &&
1811
               "Encountered multiple line tables for function!");
1812
        exitOnErr(lines.initialize(BinaryStreamReader(ref)));
1813
        offsetInLinetable = addr - offsetInC;
1814
        break;
1815
      }
1816
      default:
1817
        break;
1818
      }
1819

1820
      if (cvStrTab.valid() && checksums.valid() && lines.header())
1821
        return true;
1822
    }
1823
  }
1824

1825
  return false;
1826
}
1827

1828
// Use CodeView line tables to resolve a file and line number for the given
1829
// offset into the given chunk and return them, or std::nullopt if a line table
1830
// was not found.
1831
std::optional<std::pair<StringRef, uint32_t>>
1832
lld::coff::getFileLineCodeView(const SectionChunk *c, uint32_t addr) {
1833
  ExitOnError exitOnErr;
1834

1835
  DebugStringTableSubsectionRef cvStrTab;
1836
  DebugChecksumsSubsectionRef checksums;
1837
  DebugLinesSubsectionRef lines;
1838
  uint32_t offsetInLinetable;
1839

1840
  if (!findLineTable(c, addr, cvStrTab, checksums, lines, offsetInLinetable))
1841
    return std::nullopt;
1842

1843
  std::optional<uint32_t> nameIndex;
1844
  std::optional<uint32_t> lineNumber;
1845
  for (const LineColumnEntry &entry : lines) {
1846
    for (const LineNumberEntry &ln : entry.LineNumbers) {
1847
      LineInfo li(ln.Flags);
1848
      if (ln.Offset > offsetInLinetable) {
1849
        if (!nameIndex) {
1850
          nameIndex = entry.NameIndex;
1851
          lineNumber = li.getStartLine();
1852
        }
1853
        StringRef filename =
1854
            exitOnErr(getFileName(cvStrTab, checksums, *nameIndex));
1855
        return std::make_pair(filename, *lineNumber);
1856
      }
1857
      nameIndex = entry.NameIndex;
1858
      lineNumber = li.getStartLine();
1859
    }
1860
  }
1861
  if (!nameIndex)
1862
    return std::nullopt;
1863
  StringRef filename = exitOnErr(getFileName(cvStrTab, checksums, *nameIndex));
1864
  return std::make_pair(filename, *lineNumber);
1865
}
1866

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.