llvm-project

Форк
0
/
InputFiles.cpp 
1253 строки · 45.2 Кб
1
//===- InputFiles.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8

9
#include "InputFiles.h"
10
#include "COFFLinkerContext.h"
11
#include "Chunks.h"
12
#include "Config.h"
13
#include "DebugTypes.h"
14
#include "Driver.h"
15
#include "SymbolTable.h"
16
#include "Symbols.h"
17
#include "lld/Common/DWARF.h"
18
#include "llvm-c/lto.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/Twine.h"
21
#include "llvm/BinaryFormat/COFF.h"
22
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28
#include "llvm/LTO/LTO.h"
29
#include "llvm/Object/Binary.h"
30
#include "llvm/Object/COFF.h"
31
#include "llvm/Support/Casting.h"
32
#include "llvm/Support/Endian.h"
33
#include "llvm/Support/Error.h"
34
#include "llvm/Support/ErrorOr.h"
35
#include "llvm/Support/FileSystem.h"
36
#include "llvm/Support/Path.h"
37
#include "llvm/Target/TargetOptions.h"
38
#include "llvm/TargetParser/Triple.h"
39
#include <cstring>
40
#include <optional>
41
#include <system_error>
42
#include <utility>
43

44
using namespace llvm;
45
using namespace llvm::COFF;
46
using namespace llvm::codeview;
47
using namespace llvm::object;
48
using namespace llvm::support::endian;
49
using namespace lld;
50
using namespace lld::coff;
51

52
using llvm::Triple;
53
using llvm::support::ulittle32_t;
54

55
// Returns the last element of a path, which is supposed to be a filename.
56
static StringRef getBasename(StringRef path) {
57
  return sys::path::filename(path, sys::path::Style::windows);
58
}
59

60
// Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
61
std::string lld::toString(const coff::InputFile *file) {
62
  if (!file)
63
    return "<internal>";
64
  if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
65
    return std::string(file->getName());
66

67
  return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
68
          ")")
69
      .str();
70
}
71

72
/// Checks that Source is compatible with being a weak alias to Target.
73
/// If Source is Undefined and has no weak alias set, makes it a weak
74
/// alias to Target.
75
static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f,
76
                                 Symbol *source, Symbol *target) {
77
  if (auto *u = dyn_cast<Undefined>(source)) {
78
    if (u->weakAlias && u->weakAlias != target) {
79
      // Weak aliases as produced by GCC are named in the form
80
      // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
81
      // of another symbol emitted near the weak symbol.
82
      // Just use the definition from the first object file that defined
83
      // this weak symbol.
84
      if (ctx.config.allowDuplicateWeak)
85
        return;
86
      ctx.symtab.reportDuplicate(source, f);
87
    }
88
    u->weakAlias = target;
89
  }
90
}
91

92
static bool ignoredSymbolName(StringRef name) {
93
  return name == "@feat.00" || name == "@comp.id";
94
}
95

96
ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
97
    : InputFile(ctx, ArchiveKind, m) {}
98

99
void ArchiveFile::parse() {
100
  // Parse a MemoryBufferRef as an archive file.
101
  file = CHECK(Archive::create(mb), this);
102

103
  // Read the symbol table to construct Lazy objects.
104
  for (const Archive::Symbol &sym : file->symbols())
105
    ctx.symtab.addLazyArchive(this, sym);
106
}
107

108
// Returns a buffer pointing to a member file containing a given symbol.
109
void ArchiveFile::addMember(const Archive::Symbol &sym) {
110
  const Archive::Child &c =
111
      CHECK(sym.getMember(),
112
            "could not get the member for symbol " + toCOFFString(ctx, sym));
113

114
  // Return an empty buffer if we have already returned the same buffer.
115
  if (!seen.insert(c.getChildOffset()).second)
116
    return;
117

118
  ctx.driver.enqueueArchiveMember(c, sym, getName());
119
}
120

121
std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
122
  std::vector<MemoryBufferRef> v;
123
  Error err = Error::success();
124
  for (const Archive::Child &c : file->children(err)) {
125
    MemoryBufferRef mbref =
126
        CHECK(c.getMemoryBufferRef(),
127
              file->getFileName() +
128
                  ": could not get the buffer for a child of the archive");
129
    v.push_back(mbref);
130
  }
131
  if (err)
132
    fatal(file->getFileName() +
133
          ": Archive::children failed: " + toString(std::move(err)));
134
  return v;
135
}
136

137
void ObjFile::parseLazy() {
138
  // Native object file.
139
  std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
140
  COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
141
  uint32_t numSymbols = coffObj->getNumberOfSymbols();
142
  for (uint32_t i = 0; i < numSymbols; ++i) {
143
    COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
144
    if (coffSym.isUndefined() || !coffSym.isExternal() ||
145
        coffSym.isWeakExternal())
146
      continue;
147
    StringRef name = check(coffObj->getSymbolName(coffSym));
148
    if (coffSym.isAbsolute() && ignoredSymbolName(name))
149
      continue;
150
    ctx.symtab.addLazyObject(this, name);
151
    i += coffSym.getNumberOfAuxSymbols();
152
  }
153
}
154

155
struct ECMapEntry {
156
  ulittle32_t src;
157
  ulittle32_t dst;
158
  ulittle32_t type;
159
};
160

161
void ObjFile::initializeECThunks() {
162
  for (SectionChunk *chunk : hybmpChunks) {
163
    if (chunk->getContents().size() % sizeof(ECMapEntry)) {
164
      error("Invalid .hybmp chunk size " + Twine(chunk->getContents().size()));
165
      continue;
166
    }
167

168
    const uint8_t *end =
169
        chunk->getContents().data() + chunk->getContents().size();
170
    for (const uint8_t *iter = chunk->getContents().data(); iter != end;
171
         iter += sizeof(ECMapEntry)) {
172
      auto entry = reinterpret_cast<const ECMapEntry *>(iter);
173
      switch (entry->type) {
174
      case Arm64ECThunkType::Entry:
175
        ctx.symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst));
176
        break;
177
      case Arm64ECThunkType::Exit:
178
      case Arm64ECThunkType::GuestExit:
179
        break;
180
      default:
181
        warn("Ignoring unknown EC thunk type " + Twine(entry->type));
182
      }
183
    }
184
  }
185
}
186

187
void ObjFile::parse() {
188
  // Parse a memory buffer as a COFF file.
189
  std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
190

191
  if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
192
    bin.release();
193
    coffObj.reset(obj);
194
  } else {
195
    fatal(toString(this) + " is not a COFF file");
196
  }
197

198
  // Read section and symbol tables.
199
  initializeChunks();
200
  initializeSymbols();
201
  initializeFlags();
202
  initializeDependencies();
203
  initializeECThunks();
204
}
205

206
const coff_section *ObjFile::getSection(uint32_t i) {
207
  auto sec = coffObj->getSection(i);
208
  if (!sec)
209
    fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
210
  return *sec;
211
}
212

213
// We set SectionChunk pointers in the SparseChunks vector to this value
214
// temporarily to mark comdat sections as having an unknown resolution. As we
215
// walk the object file's symbol table, once we visit either a leader symbol or
216
// an associative section definition together with the parent comdat's leader,
217
// we set the pointer to either nullptr (to mark the section as discarded) or a
218
// valid SectionChunk for that section.
219
static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
220

221
void ObjFile::initializeChunks() {
222
  uint32_t numSections = coffObj->getNumberOfSections();
223
  sparseChunks.resize(numSections + 1);
224
  for (uint32_t i = 1; i < numSections + 1; ++i) {
225
    const coff_section *sec = getSection(i);
226
    if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
227
      sparseChunks[i] = pendingComdat;
228
    else
229
      sparseChunks[i] = readSection(i, nullptr, "");
230
  }
231
}
232

233
SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
234
                                   const coff_aux_section_definition *def,
235
                                   StringRef leaderName) {
236
  const coff_section *sec = getSection(sectionNumber);
237

238
  StringRef name;
239
  if (Expected<StringRef> e = coffObj->getSectionName(sec))
240
    name = *e;
241
  else
242
    fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
243
          toString(e.takeError()));
244

245
  if (name == ".drectve") {
246
    ArrayRef<uint8_t> data;
247
    cantFail(coffObj->getSectionContents(sec, data));
248
    directives = StringRef((const char *)data.data(), data.size());
249
    return nullptr;
250
  }
251

252
  if (name == ".llvm_addrsig") {
253
    addrsigSec = sec;
254
    return nullptr;
255
  }
256

257
  if (name == ".llvm.call-graph-profile") {
258
    callgraphSec = sec;
259
    return nullptr;
260
  }
261

262
  // Object files may have DWARF debug info or MS CodeView debug info
263
  // (or both).
264
  //
265
  // DWARF sections don't need any special handling from the perspective
266
  // of the linker; they are just a data section containing relocations.
267
  // We can just link them to complete debug info.
268
  //
269
  // CodeView needs linker support. We need to interpret debug info,
270
  // and then write it to a separate .pdb file.
271

272
  // Ignore DWARF debug info unless requested to be included.
273
  if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_"))
274
    return nullptr;
275

276
  if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
277
    return nullptr;
278
  SectionChunk *c;
279
  if (isArm64EC(getMachineType()))
280
    c = make<SectionChunkEC>(this, sec);
281
  else
282
    c = make<SectionChunk>(this, sec);
283
  if (def)
284
    c->checksum = def->CheckSum;
285

286
  // CodeView sections are stored to a different vector because they are not
287
  // linked in the regular manner.
288
  if (c->isCodeView())
289
    debugChunks.push_back(c);
290
  else if (name == ".gfids$y")
291
    guardFidChunks.push_back(c);
292
  else if (name == ".giats$y")
293
    guardIATChunks.push_back(c);
294
  else if (name == ".gljmp$y")
295
    guardLJmpChunks.push_back(c);
296
  else if (name == ".gehcont$y")
297
    guardEHContChunks.push_back(c);
298
  else if (name == ".sxdata")
299
    sxDataChunks.push_back(c);
300
  else if (isArm64EC(getMachineType()) && name == ".hybmp$x")
301
    hybmpChunks.push_back(c);
302
  else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
303
           name == ".rdata" && leaderName.starts_with("??_C@"))
304
    // COFF sections that look like string literal sections (i.e. no
305
    // relocations, in .rdata, leader symbol name matches the MSVC name mangling
306
    // for string literals) are subject to string tail merging.
307
    MergeChunk::addSection(ctx, c);
308
  else if (name == ".rsrc" || name.starts_with(".rsrc$"))
309
    resourceChunks.push_back(c);
310
  else
311
    chunks.push_back(c);
312

313
  return c;
314
}
315

316
void ObjFile::includeResourceChunks() {
317
  chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
318
}
319

320
void ObjFile::readAssociativeDefinition(
321
    COFFSymbolRef sym, const coff_aux_section_definition *def) {
322
  readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
323
}
324

325
void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
326
                                        const coff_aux_section_definition *def,
327
                                        uint32_t parentIndex) {
328
  SectionChunk *parent = sparseChunks[parentIndex];
329
  int32_t sectionNumber = sym.getSectionNumber();
330

331
  auto diag = [&]() {
332
    StringRef name = check(coffObj->getSymbolName(sym));
333

334
    StringRef parentName;
335
    const coff_section *parentSec = getSection(parentIndex);
336
    if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
337
      parentName = *e;
338
    error(toString(this) + ": associative comdat " + name + " (sec " +
339
          Twine(sectionNumber) + ") has invalid reference to section " +
340
          parentName + " (sec " + Twine(parentIndex) + ")");
341
  };
342

343
  if (parent == pendingComdat) {
344
    // This can happen if an associative comdat refers to another associative
345
    // comdat that appears after it (invalid per COFF spec) or to a section
346
    // without any symbols.
347
    diag();
348
    return;
349
  }
350

351
  // Check whether the parent is prevailing. If it is, so are we, and we read
352
  // the section; otherwise mark it as discarded.
353
  if (parent) {
354
    SectionChunk *c = readSection(sectionNumber, def, "");
355
    sparseChunks[sectionNumber] = c;
356
    if (c) {
357
      c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
358
      parent->addAssociative(c);
359
    }
360
  } else {
361
    sparseChunks[sectionNumber] = nullptr;
362
  }
363
}
364

365
void ObjFile::recordPrevailingSymbolForMingw(
366
    COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
367
  // For comdat symbols in executable sections, where this is the copy
368
  // of the section chunk we actually include instead of discarding it,
369
  // add the symbol to a map to allow using it for implicitly
370
  // associating .[px]data$<func> sections to it.
371
  // Use the suffix from the .text$<func> instead of the leader symbol
372
  // name, for cases where the names differ (i386 mangling/decorations,
373
  // cases where the leader is a weak symbol named .weak.func.default*).
374
  int32_t sectionNumber = sym.getSectionNumber();
375
  SectionChunk *sc = sparseChunks[sectionNumber];
376
  if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
377
    StringRef name = sc->getSectionName().split('$').second;
378
    prevailingSectionMap[name] = sectionNumber;
379
  }
380
}
381

382
void ObjFile::maybeAssociateSEHForMingw(
383
    COFFSymbolRef sym, const coff_aux_section_definition *def,
384
    const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
385
  StringRef name = check(coffObj->getSymbolName(sym));
386
  if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
387
      name.consume_front(".eh_frame$")) {
388
    // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
389
    // associative to the symbol <func>.
390
    auto parentSym = prevailingSectionMap.find(name);
391
    if (parentSym != prevailingSectionMap.end())
392
      readAssociativeDefinition(sym, def, parentSym->second);
393
  }
394
}
395

396
Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
397
  SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
398
  if (sym.isExternal()) {
399
    StringRef name = check(coffObj->getSymbolName(sym));
400
    if (sc)
401
      return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
402
                                   sym.getValue());
403
    // For MinGW symbols named .weak.* that point to a discarded section,
404
    // don't create an Undefined symbol. If nothing ever refers to the symbol,
405
    // everything should be fine. If something actually refers to the symbol
406
    // (e.g. the undefined weak alias), linking will fail due to undefined
407
    // references at the end.
408
    if (ctx.config.mingw && name.starts_with(".weak."))
409
      return nullptr;
410
    return ctx.symtab.addUndefined(name, this, false);
411
  }
412
  if (sc)
413
    return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
414
                                /*IsExternal*/ false, sym.getGeneric(), sc);
415
  return nullptr;
416
}
417

418
void ObjFile::initializeSymbols() {
419
  uint32_t numSymbols = coffObj->getNumberOfSymbols();
420
  symbols.resize(numSymbols);
421

422
  SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
423
  std::vector<uint32_t> pendingIndexes;
424
  pendingIndexes.reserve(numSymbols);
425

426
  DenseMap<StringRef, uint32_t> prevailingSectionMap;
427
  std::vector<const coff_aux_section_definition *> comdatDefs(
428
      coffObj->getNumberOfSections() + 1);
429

430
  for (uint32_t i = 0; i < numSymbols; ++i) {
431
    COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
432
    bool prevailingComdat;
433
    if (coffSym.isUndefined()) {
434
      symbols[i] = createUndefined(coffSym);
435
    } else if (coffSym.isWeakExternal()) {
436
      symbols[i] = createUndefined(coffSym);
437
      uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
438
      weakAliases.emplace_back(symbols[i], tagIndex);
439
    } else if (std::optional<Symbol *> optSym =
440
                   createDefined(coffSym, comdatDefs, prevailingComdat)) {
441
      symbols[i] = *optSym;
442
      if (ctx.config.mingw && prevailingComdat)
443
        recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
444
    } else {
445
      // createDefined() returns std::nullopt if a symbol belongs to a section
446
      // that was pending at the point when the symbol was read. This can happen
447
      // in two cases:
448
      // 1) section definition symbol for a comdat leader;
449
      // 2) symbol belongs to a comdat section associated with another section.
450
      // In both of these cases, we can expect the section to be resolved by
451
      // the time we finish visiting the remaining symbols in the symbol
452
      // table. So we postpone the handling of this symbol until that time.
453
      pendingIndexes.push_back(i);
454
    }
455
    i += coffSym.getNumberOfAuxSymbols();
456
  }
457

458
  for (uint32_t i : pendingIndexes) {
459
    COFFSymbolRef sym = check(coffObj->getSymbol(i));
460
    if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
461
      if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
462
        readAssociativeDefinition(sym, def);
463
      else if (ctx.config.mingw)
464
        maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
465
    }
466
    if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
467
      StringRef name = check(coffObj->getSymbolName(sym));
468
      log("comdat section " + name +
469
          " without leader and unassociated, discarding");
470
      continue;
471
    }
472
    symbols[i] = createRegular(sym);
473
  }
474

475
  for (auto &kv : weakAliases) {
476
    Symbol *sym = kv.first;
477
    uint32_t idx = kv.second;
478
    checkAndSetWeakAlias(ctx, this, sym, symbols[idx]);
479
  }
480

481
  // Free the memory used by sparseChunks now that symbol loading is finished.
482
  decltype(sparseChunks)().swap(sparseChunks);
483
}
484

485
Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
486
  StringRef name = check(coffObj->getSymbolName(sym));
487
  return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
488
}
489

490
static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
491
                                                         int32_t section) {
492
  uint32_t numSymbols = obj->getNumberOfSymbols();
493
  for (uint32_t i = 0; i < numSymbols; ++i) {
494
    COFFSymbolRef sym = check(obj->getSymbol(i));
495
    if (sym.getSectionNumber() != section)
496
      continue;
497
    if (const coff_aux_section_definition *def = sym.getSectionDefinition())
498
      return def;
499
  }
500
  return nullptr;
501
}
502

503
void ObjFile::handleComdatSelection(
504
    COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
505
    DefinedRegular *leader,
506
    const llvm::object::coff_aux_section_definition *def) {
507
  if (prevailing)
508
    return;
509
  // There's already an existing comdat for this symbol: `Leader`.
510
  // Use the comdats's selection field to determine if the new
511
  // symbol in `Sym` should be discarded, produce a duplicate symbol
512
  // error, etc.
513

514
  SectionChunk *leaderChunk = leader->getChunk();
515
  COMDATType leaderSelection = leaderChunk->selection;
516

517
  assert(leader->data && "Comdat leader without SectionChunk?");
518
  if (isa<BitcodeFile>(leader->file)) {
519
    // If the leader is only a LTO symbol, we don't know e.g. its final size
520
    // yet, so we can't do the full strict comdat selection checking yet.
521
    selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
522
  }
523

524
  if ((selection == IMAGE_COMDAT_SELECT_ANY &&
525
       leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
526
      (selection == IMAGE_COMDAT_SELECT_LARGEST &&
527
       leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
528
    // cl.exe picks "any" for vftables when building with /GR- and
529
    // "largest" when building with /GR. To be able to link object files
530
    // compiled with each flag, "any" and "largest" are merged as "largest".
531
    leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
532
  }
533

534
  // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
535
  // Clang on the other hand picks "any". To be able to link two object files
536
  // with a __declspec(selectany) declaration, one compiled with gcc and the
537
  // other with clang, we merge them as proper "same size as"
538
  if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
539
                            leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
540
                           (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
541
                            leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
542
    leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
543
  }
544

545
  // Other than that, comdat selections must match.  This is a bit more
546
  // strict than link.exe which allows merging "any" and "largest" if "any"
547
  // is the first symbol the linker sees, and it allows merging "largest"
548
  // with everything (!) if "largest" is the first symbol the linker sees.
549
  // Making this symmetric independent of which selection is seen first
550
  // seems better though.
551
  // (This behavior matches ModuleLinker::getComdatResult().)
552
  if (selection != leaderSelection) {
553
    log(("conflicting comdat type for " + toString(ctx, *leader) + ": " +
554
         Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
555
         " and " + Twine((int)selection) + " in " + toString(this))
556
            .str());
557
    ctx.symtab.reportDuplicate(leader, this);
558
    return;
559
  }
560

561
  switch (selection) {
562
  case IMAGE_COMDAT_SELECT_NODUPLICATES:
563
    ctx.symtab.reportDuplicate(leader, this);
564
    break;
565

566
  case IMAGE_COMDAT_SELECT_ANY:
567
    // Nothing to do.
568
    break;
569

570
  case IMAGE_COMDAT_SELECT_SAME_SIZE:
571
    if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
572
      if (!ctx.config.mingw) {
573
        ctx.symtab.reportDuplicate(leader, this);
574
      } else {
575
        const coff_aux_section_definition *leaderDef = nullptr;
576
        if (leaderChunk->file)
577
          leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
578
                                     leaderChunk->getSectionNumber());
579
        if (!leaderDef || leaderDef->Length != def->Length)
580
          ctx.symtab.reportDuplicate(leader, this);
581
      }
582
    }
583
    break;
584

585
  case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
586
    SectionChunk newChunk(this, getSection(sym));
587
    // link.exe only compares section contents here and doesn't complain
588
    // if the two comdat sections have e.g. different alignment.
589
    // Match that.
590
    if (leaderChunk->getContents() != newChunk.getContents())
591
      ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
592
    break;
593
  }
594

595
  case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
596
    // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
597
    // (This means lld-link doesn't produce duplicate symbol errors for
598
    // associative comdats while link.exe does, but associate comdats
599
    // are never extern in practice.)
600
    llvm_unreachable("createDefined not called for associative comdats");
601

602
  case IMAGE_COMDAT_SELECT_LARGEST:
603
    if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
604
      // Replace the existing comdat symbol with the new one.
605
      StringRef name = check(coffObj->getSymbolName(sym));
606
      // FIXME: This is incorrect: With /opt:noref, the previous sections
607
      // make it into the final executable as well. Correct handling would
608
      // be to undo reading of the whole old section that's being replaced,
609
      // or doing one pass that determines what the final largest comdat
610
      // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
611
      // only the largest one.
612
      replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
613
                                    /*IsExternal*/ true, sym.getGeneric(),
614
                                    nullptr);
615
      prevailing = true;
616
    }
617
    break;
618

619
  case IMAGE_COMDAT_SELECT_NEWEST:
620
    llvm_unreachable("should have been rejected earlier");
621
  }
622
}
623

624
std::optional<Symbol *> ObjFile::createDefined(
625
    COFFSymbolRef sym,
626
    std::vector<const coff_aux_section_definition *> &comdatDefs,
627
    bool &prevailing) {
628
  prevailing = false;
629
  auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
630

631
  if (sym.isCommon()) {
632
    auto *c = make<CommonChunk>(sym);
633
    chunks.push_back(c);
634
    return ctx.symtab.addCommon(this, getName(), sym.getValue(),
635
                                sym.getGeneric(), c);
636
  }
637

638
  if (sym.isAbsolute()) {
639
    StringRef name = getName();
640

641
    if (name == "@feat.00")
642
      feat00Flags = sym.getValue();
643
    // Skip special symbols.
644
    if (ignoredSymbolName(name))
645
      return nullptr;
646

647
    if (sym.isExternal())
648
      return ctx.symtab.addAbsolute(name, sym);
649
    return make<DefinedAbsolute>(ctx, name, sym);
650
  }
651

652
  int32_t sectionNumber = sym.getSectionNumber();
653
  if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
654
    return nullptr;
655

656
  if (llvm::COFF::isReservedSectionNumber(sectionNumber))
657
    fatal(toString(this) + ": " + getName() +
658
          " should not refer to special section " + Twine(sectionNumber));
659

660
  if ((uint32_t)sectionNumber >= sparseChunks.size())
661
    fatal(toString(this) + ": " + getName() +
662
          " should not refer to non-existent section " + Twine(sectionNumber));
663

664
  // Comdat handling.
665
  // A comdat symbol consists of two symbol table entries.
666
  // The first symbol entry has the name of the section (e.g. .text), fixed
667
  // values for the other fields, and one auxiliary record.
668
  // The second symbol entry has the name of the comdat symbol, called the
669
  // "comdat leader".
670
  // When this function is called for the first symbol entry of a comdat,
671
  // it sets comdatDefs and returns std::nullopt, and when it's called for the
672
  // second symbol entry it reads comdatDefs and then sets it back to nullptr.
673

674
  // Handle comdat leader.
675
  if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
676
    comdatDefs[sectionNumber] = nullptr;
677
    DefinedRegular *leader;
678

679
    if (sym.isExternal()) {
680
      std::tie(leader, prevailing) =
681
          ctx.symtab.addComdat(this, getName(), sym.getGeneric());
682
    } else {
683
      leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
684
                                    /*IsExternal*/ false, sym.getGeneric());
685
      prevailing = true;
686
    }
687

688
    if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
689
        // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
690
        // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
691
        def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
692
      fatal("unknown comdat type " + std::to_string((int)def->Selection) +
693
            " for " + getName() + " in " + toString(this));
694
    }
695
    COMDATType selection = (COMDATType)def->Selection;
696

697
    if (leader->isCOMDAT)
698
      handleComdatSelection(sym, selection, prevailing, leader, def);
699

700
    if (prevailing) {
701
      SectionChunk *c = readSection(sectionNumber, def, getName());
702
      sparseChunks[sectionNumber] = c;
703
      if (!c)
704
        return nullptr;
705
      c->sym = cast<DefinedRegular>(leader);
706
      c->selection = selection;
707
      cast<DefinedRegular>(leader)->data = &c->repl;
708
    } else {
709
      sparseChunks[sectionNumber] = nullptr;
710
    }
711
    return leader;
712
  }
713

714
  // Prepare to handle the comdat leader symbol by setting the section's
715
  // ComdatDefs pointer if we encounter a non-associative comdat.
716
  if (sparseChunks[sectionNumber] == pendingComdat) {
717
    if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
718
      if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
719
        comdatDefs[sectionNumber] = def;
720
    }
721
    return std::nullopt;
722
  }
723

724
  return createRegular(sym);
725
}
726

727
MachineTypes ObjFile::getMachineType() {
728
  if (coffObj)
729
    return static_cast<MachineTypes>(coffObj->getMachine());
730
  return IMAGE_FILE_MACHINE_UNKNOWN;
731
}
732

733
ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
734
  if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
735
    return sec->consumeDebugMagic();
736
  return {};
737
}
738

739
// OBJ files systematically store critical information in a .debug$S stream,
740
// even if the TU was compiled with no debug info. At least two records are
741
// always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
742
// PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
743
// currently used to initialize the hotPatchable member.
744
void ObjFile::initializeFlags() {
745
  ArrayRef<uint8_t> data = getDebugSection(".debug$S");
746
  if (data.empty())
747
    return;
748

749
  DebugSubsectionArray subsections;
750

751
  BinaryStreamReader reader(data, llvm::endianness::little);
752
  ExitOnError exitOnErr;
753
  exitOnErr(reader.readArray(subsections, data.size()));
754

755
  for (const DebugSubsectionRecord &ss : subsections) {
756
    if (ss.kind() != DebugSubsectionKind::Symbols)
757
      continue;
758

759
    unsigned offset = 0;
760

761
    // Only parse the first two records. We are only looking for S_OBJNAME
762
    // and S_COMPILE3, and they usually appear at the beginning of the
763
    // stream.
764
    for (unsigned i = 0; i < 2; ++i) {
765
      Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
766
      if (!sym) {
767
        consumeError(sym.takeError());
768
        return;
769
      }
770
      if (sym->kind() == SymbolKind::S_COMPILE3) {
771
        auto cs =
772
            cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
773
        hotPatchable =
774
            (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
775
      }
776
      if (sym->kind() == SymbolKind::S_OBJNAME) {
777
        auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
778
            sym.get()));
779
        if (objName.Signature)
780
          pchSignature = objName.Signature;
781
      }
782
      offset += sym->length();
783
    }
784
  }
785
}
786

787
// Depending on the compilation flags, OBJs can refer to external files,
788
// necessary to merge this OBJ into the final PDB. We currently support two
789
// types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
790
// And PDB type servers, when compiling with /Zi. This function extracts these
791
// dependencies and makes them available as a TpiSource interface (see
792
// DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
793
// output even with /Yc and /Yu and with /Zi.
794
void ObjFile::initializeDependencies() {
795
  if (!ctx.config.debug)
796
    return;
797

798
  bool isPCH = false;
799

800
  ArrayRef<uint8_t> data = getDebugSection(".debug$P");
801
  if (!data.empty())
802
    isPCH = true;
803
  else
804
    data = getDebugSection(".debug$T");
805

806
  // symbols but no types, make a plain, empty TpiSource anyway, because it
807
  // simplifies adding the symbols later.
808
  if (data.empty()) {
809
    if (!debugChunks.empty())
810
      debugTypesObj = makeTpiSource(ctx, this);
811
    return;
812
  }
813

814
  // Get the first type record. It will indicate if this object uses a type
815
  // server (/Zi) or a PCH file (/Yu).
816
  CVTypeArray types;
817
  BinaryStreamReader reader(data, llvm::endianness::little);
818
  cantFail(reader.readArray(types, reader.getLength()));
819
  CVTypeArray::Iterator firstType = types.begin();
820
  if (firstType == types.end())
821
    return;
822

823
  // Remember the .debug$T or .debug$P section.
824
  debugTypes = data;
825

826
  // This object file is a PCH file that others will depend on.
827
  if (isPCH) {
828
    debugTypesObj = makePrecompSource(ctx, this);
829
    return;
830
  }
831

832
  // This object file was compiled with /Zi. Enqueue the PDB dependency.
833
  if (firstType->kind() == LF_TYPESERVER2) {
834
    TypeServer2Record ts = cantFail(
835
        TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
836
    debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
837
    enqueuePdbFile(ts.getName(), this);
838
    return;
839
  }
840

841
  // This object was compiled with /Yu. It uses types from another object file
842
  // with a matching signature.
843
  if (firstType->kind() == LF_PRECOMP) {
844
    PrecompRecord precomp = cantFail(
845
        TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
846
    // We're better off trusting the LF_PRECOMP signature. In some cases the
847
    // S_OBJNAME record doesn't contain a valid PCH signature.
848
    if (precomp.Signature)
849
      pchSignature = precomp.Signature;
850
    debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
851
    // Drop the LF_PRECOMP record from the input stream.
852
    debugTypes = debugTypes.drop_front(firstType->RecordData.size());
853
    return;
854
  }
855

856
  // This is a plain old object file.
857
  debugTypesObj = makeTpiSource(ctx, this);
858
}
859

860
// The casing of the PDB path stamped in the OBJ can differ from the actual path
861
// on disk. With this, we ensure to always use lowercase as a key for the
862
// pdbInputFileInstances map, at least on Windows.
863
static std::string normalizePdbPath(StringRef path) {
864
#if defined(_WIN32)
865
  return path.lower();
866
#else // LINUX
867
  return std::string(path);
868
#endif
869
}
870

871
// If existing, return the actual PDB path on disk.
872
static std::optional<std::string>
873
findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) {
874
  // Ensure the file exists before anything else. In some cases, if the path
875
  // points to a removable device, Driver::enqueuePath() would fail with an
876
  // error (EAGAIN, "resource unavailable try again") which we want to skip
877
  // silently.
878
  if (llvm::sys::fs::exists(pdbPath))
879
    return normalizePdbPath(pdbPath);
880

881
  StringRef objPath = !dependentFile->parentName.empty()
882
                          ? dependentFile->parentName
883
                          : dependentFile->getName();
884

885
  // Currently, type server PDBs are only created by MSVC cl, which only runs
886
  // on Windows, so we can assume type server paths are Windows style.
887
  StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows);
888

889
  // Check if the PDB is in the same folder as the OBJ.
890
  SmallString<128> path;
891
  sys::path::append(path, sys::path::parent_path(objPath), pdbName);
892
  if (llvm::sys::fs::exists(path))
893
    return normalizePdbPath(path);
894

895
  // Check if the PDB is in the output folder.
896
  path.clear();
897
  sys::path::append(path, sys::path::parent_path(outputPath), pdbName);
898
  if (llvm::sys::fs::exists(path))
899
    return normalizePdbPath(path);
900

901
  return std::nullopt;
902
}
903

904
PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
905
    : InputFile(ctx, PDBKind, m) {}
906

907
PDBInputFile::~PDBInputFile() = default;
908

909
PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
910
                                               StringRef path,
911
                                               ObjFile *fromFile) {
912
  auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
913
  if (!p)
914
    return nullptr;
915
  auto it = ctx.pdbInputFileInstances.find(*p);
916
  if (it != ctx.pdbInputFileInstances.end())
917
    return it->second;
918
  return nullptr;
919
}
920

921
void PDBInputFile::parse() {
922
  ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
923

924
  std::unique_ptr<pdb::IPDBSession> thisSession;
925
  Error E = pdb::NativeSession::createFromPdb(
926
      MemoryBuffer::getMemBuffer(mb, false), thisSession);
927
  if (E) {
928
    loadErrorStr.emplace(toString(std::move(E)));
929
    return; // fail silently at this point - the error will be handled later,
930
            // when merging the debug type stream
931
  }
932

933
  session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
934

935
  pdb::PDBFile &pdbFile = session->getPDBFile();
936
  auto expectedInfo = pdbFile.getPDBInfoStream();
937
  // All PDB Files should have an Info stream.
938
  if (!expectedInfo) {
939
    loadErrorStr.emplace(toString(expectedInfo.takeError()));
940
    return;
941
  }
942
  debugTypesObj = makeTypeServerSource(ctx, this);
943
}
944

945
// Used only for DWARF debug info, which is not common (except in MinGW
946
// environments). This returns an optional pair of file name and line
947
// number for where the variable was defined.
948
std::optional<std::pair<StringRef, uint32_t>>
949
ObjFile::getVariableLocation(StringRef var) {
950
  if (!dwarf) {
951
    dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
952
    if (!dwarf)
953
      return std::nullopt;
954
  }
955
  if (ctx.config.machine == I386)
956
    var.consume_front("_");
957
  std::optional<std::pair<std::string, unsigned>> ret =
958
      dwarf->getVariableLoc(var);
959
  if (!ret)
960
    return std::nullopt;
961
  return std::make_pair(saver().save(ret->first), ret->second);
962
}
963

964
// Used only for DWARF debug info, which is not common (except in MinGW
965
// environments).
966
std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
967
                                                 uint32_t sectionIndex) {
968
  if (!dwarf) {
969
    dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
970
    if (!dwarf)
971
      return std::nullopt;
972
  }
973

974
  return dwarf->getDILineInfo(offset, sectionIndex);
975
}
976

977
void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
978
  auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
979
  if (!p)
980
    return;
981
  auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
982
  if (!it.second)
983
    return; // already scheduled for load
984
  ctx.driver.enqueuePDB(*p);
985
}
986

987
ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
988
    : InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {}
989

990
void ImportFile::parse() {
991
  const auto *hdr =
992
      reinterpret_cast<const coff_import_header *>(mb.getBufferStart());
993

994
  // Check if the total size is valid.
995
  if (mb.getBufferSize() < sizeof(*hdr) ||
996
      mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
997
    fatal("broken import library");
998

999
  // Read names and create an __imp_ symbol.
1000
  StringRef buf = mb.getBuffer().substr(sizeof(*hdr));
1001
  StringRef name = saver().save(buf.split('\0').first);
1002
  StringRef impName = saver().save("__imp_" + name);
1003
  buf = buf.substr(name.size() + 1);
1004
  dllName = buf.split('\0').first;
1005
  StringRef extName;
1006
  switch (hdr->getNameType()) {
1007
  case IMPORT_ORDINAL:
1008
    extName = "";
1009
    break;
1010
  case IMPORT_NAME:
1011
    extName = name;
1012
    break;
1013
  case IMPORT_NAME_NOPREFIX:
1014
    extName = ltrim1(name, "?@_");
1015
    break;
1016
  case IMPORT_NAME_UNDECORATE:
1017
    extName = ltrim1(name, "?@_");
1018
    extName = extName.substr(0, extName.find('@'));
1019
    break;
1020
  case IMPORT_NAME_EXPORTAS:
1021
    extName = buf.substr(dllName.size() + 1).split('\0').first;
1022
    break;
1023
  }
1024

1025
  this->hdr = hdr;
1026
  externalName = extName;
1027

1028
  impSym = ctx.symtab.addImportData(impName, this);
1029
  // If this was a duplicate, we logged an error but may continue;
1030
  // in this case, impSym is nullptr.
1031
  if (!impSym)
1032
    return;
1033

1034
  if (hdr->getType() == llvm::COFF::IMPORT_CONST)
1035
    static_cast<void>(ctx.symtab.addImportData(name, this));
1036

1037
  // If type is function, we need to create a thunk which jump to an
1038
  // address pointed by the __imp_ symbol. (This allows you to call
1039
  // DLL functions just like regular non-DLL functions.)
1040
  if (hdr->getType() == llvm::COFF::IMPORT_CODE)
1041
    thunkSym = ctx.symtab.addImportThunk(
1042
        name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
1043
}
1044

1045
BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
1046
                         StringRef archiveName, uint64_t offsetInArchive,
1047
                         bool lazy)
1048
    : InputFile(ctx, BitcodeKind, mb, lazy) {
1049
  std::string path = mb.getBufferIdentifier().str();
1050
  if (ctx.config.thinLTOIndexOnly)
1051
    path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
1052
                                ctx.config.thinLTOObjectSuffixReplace.first,
1053
                                ctx.config.thinLTOObjectSuffixReplace.second);
1054

1055
  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1056
  // name. If two archives define two members with the same name, this
1057
  // causes a collision which result in only one of the objects being taken
1058
  // into consideration at LTO time (which very likely causes undefined
1059
  // symbols later in the link stage). So we append file offset to make
1060
  // filename unique.
1061
  MemoryBufferRef mbref(mb.getBuffer(),
1062
                        saver().save(archiveName.empty()
1063
                                         ? path
1064
                                         : archiveName +
1065
                                               sys::path::filename(path) +
1066
                                               utostr(offsetInArchive)));
1067

1068
  obj = check(lto::InputFile::create(mbref));
1069
}
1070

1071
BitcodeFile::~BitcodeFile() = default;
1072

1073
void BitcodeFile::parse() {
1074
  llvm::StringSaver &saver = lld::saver();
1075

1076
  std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1077
  for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1078
    // FIXME: Check nodeduplicate
1079
    comdat[i] =
1080
        ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1081
  for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1082
    StringRef symName = saver.save(objSym.getName());
1083
    int comdatIndex = objSym.getComdatIndex();
1084
    Symbol *sym;
1085
    SectionChunk *fakeSC = nullptr;
1086
    if (objSym.isExecutable())
1087
      fakeSC = &ctx.ltoTextSectionChunk.chunk;
1088
    else
1089
      fakeSC = &ctx.ltoDataSectionChunk.chunk;
1090
    if (objSym.isUndefined()) {
1091
      sym = ctx.symtab.addUndefined(symName, this, false);
1092
      if (objSym.isWeak())
1093
        sym->deferUndefined = true;
1094
      // If one LTO object file references (i.e. has an undefined reference to)
1095
      // a symbol with an __imp_ prefix, the LTO compilation itself sees it
1096
      // as unprefixed but with a dllimport attribute instead, and doesn't
1097
      // understand the relation to a concrete IR symbol with the __imp_ prefix.
1098
      //
1099
      // For such cases, mark the symbol as used in a regular object (i.e. the
1100
      // symbol must be retained) so that the linker can associate the
1101
      // references in the end. If the symbol is defined in an import library
1102
      // or in a regular object file, this has no effect, but if it is defined
1103
      // in another LTO object file, this makes sure it is kept, to fulfill
1104
      // the reference when linking the output of the LTO compilation.
1105
      if (symName.starts_with("__imp_"))
1106
        sym->isUsedInRegularObj = true;
1107
    } else if (objSym.isCommon()) {
1108
      sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1109
    } else if (objSym.isWeak() && objSym.isIndirect()) {
1110
      // Weak external.
1111
      sym = ctx.symtab.addUndefined(symName, this, true);
1112
      std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1113
      Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1114
      checkAndSetWeakAlias(ctx, this, sym, alias);
1115
    } else if (comdatIndex != -1) {
1116
      if (symName == obj->getComdatTable()[comdatIndex].first) {
1117
        sym = comdat[comdatIndex].first;
1118
        if (cast<DefinedRegular>(sym)->data == nullptr)
1119
          cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1120
      } else if (comdat[comdatIndex].second) {
1121
        sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1122
      } else {
1123
        sym = ctx.symtab.addUndefined(symName, this, false);
1124
      }
1125
    } else {
1126
      sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0,
1127
                                  objSym.isWeak());
1128
    }
1129
    symbols.push_back(sym);
1130
    if (objSym.isUsed())
1131
      ctx.config.gcroot.push_back(sym);
1132
  }
1133
  directives = saver.save(obj->getCOFFLinkerOpts());
1134
}
1135

1136
void BitcodeFile::parseLazy() {
1137
  for (const lto::InputFile::Symbol &sym : obj->symbols())
1138
    if (!sym.isUndefined())
1139
      ctx.symtab.addLazyObject(this, sym.getName());
1140
}
1141

1142
MachineTypes BitcodeFile::getMachineType() {
1143
  switch (Triple(obj->getTargetTriple()).getArch()) {
1144
  case Triple::x86_64:
1145
    return AMD64;
1146
  case Triple::x86:
1147
    return I386;
1148
  case Triple::arm:
1149
  case Triple::thumb:
1150
    return ARMNT;
1151
  case Triple::aarch64:
1152
    return ARM64;
1153
  default:
1154
    return IMAGE_FILE_MACHINE_UNKNOWN;
1155
  }
1156
}
1157

1158
std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
1159
                                            StringRef repl) {
1160
  if (path.consume_back(suffix))
1161
    return (path + repl).str();
1162
  return std::string(path);
1163
}
1164

1165
static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1166
  for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1167
    const coff_section *sec = CHECK(coffObj->getSection(i), file);
1168
    if (rva >= sec->VirtualAddress &&
1169
        rva <= sec->VirtualAddress + sec->VirtualSize) {
1170
      return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1171
    }
1172
  }
1173
  return false;
1174
}
1175

1176
void DLLFile::parse() {
1177
  // Parse a memory buffer as a PE-COFF executable.
1178
  std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1179

1180
  if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1181
    bin.release();
1182
    coffObj.reset(obj);
1183
  } else {
1184
    error(toString(this) + " is not a COFF file");
1185
    return;
1186
  }
1187

1188
  if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1189
    error(toString(this) + " is not a PE-COFF executable");
1190
    return;
1191
  }
1192

1193
  for (const auto &exp : coffObj->export_directories()) {
1194
    StringRef dllName, symbolName;
1195
    uint32_t exportRVA;
1196
    checkError(exp.getDllName(dllName));
1197
    checkError(exp.getSymbolName(symbolName));
1198
    checkError(exp.getExportRVA(exportRVA));
1199

1200
    if (symbolName.empty())
1201
      continue;
1202

1203
    bool code = isRVACode(coffObj.get(), exportRVA, this);
1204

1205
    Symbol *s = make<Symbol>();
1206
    s->dllName = dllName;
1207
    s->symbolName = symbolName;
1208
    s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1209
    s->nameType = ImportNameType::IMPORT_NAME;
1210

1211
    if (coffObj->getMachine() == I386) {
1212
      s->symbolName = symbolName = saver().save("_" + symbolName);
1213
      s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1214
    }
1215

1216
    StringRef impName = saver().save("__imp_" + symbolName);
1217
    ctx.symtab.addLazyDLLSymbol(this, s, impName);
1218
    if (code)
1219
      ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1220
  }
1221
}
1222

1223
MachineTypes DLLFile::getMachineType() {
1224
  if (coffObj)
1225
    return static_cast<MachineTypes>(coffObj->getMachine());
1226
  return IMAGE_FILE_MACHINE_UNKNOWN;
1227
}
1228

1229
void DLLFile::makeImport(DLLFile::Symbol *s) {
1230
  if (!seen.insert(s->symbolName).second)
1231
    return;
1232

1233
  size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1234
  size_t size = sizeof(coff_import_header) + impSize;
1235
  char *buf = bAlloc().Allocate<char>(size);
1236
  memset(buf, 0, size);
1237
  char *p = buf;
1238
  auto *imp = reinterpret_cast<coff_import_header *>(p);
1239
  p += sizeof(*imp);
1240
  imp->Sig2 = 0xFFFF;
1241
  imp->Machine = coffObj->getMachine();
1242
  imp->SizeOfData = impSize;
1243
  imp->OrdinalHint = 0; // Only linking by name
1244
  imp->TypeInfo = (s->nameType << 2) | s->importType;
1245

1246
  // Write symbol name and DLL name.
1247
  memcpy(p, s->symbolName.data(), s->symbolName.size());
1248
  p += s->symbolName.size() + 1;
1249
  memcpy(p, s->dllName.data(), s->dllName.size());
1250
  MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1251
  ImportFile *impFile = make<ImportFile>(ctx, mbref);
1252
  ctx.symtab.addFile(impFile);
1253
}
1254

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.