llvm-project

Форк
0
/
asan_thread.cpp 
592 строки · 19.6 Кб
1
//===-- asan_thread.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of AddressSanitizer, an address sanity checker.
10
//
11
// Thread-related code.
12
//===----------------------------------------------------------------------===//
13
#include "asan_thread.h"
14

15
#include "asan_allocator.h"
16
#include "asan_interceptors.h"
17
#include "asan_mapping.h"
18
#include "asan_poisoning.h"
19
#include "asan_stack.h"
20
#include "lsan/lsan_common.h"
21
#include "sanitizer_common/sanitizer_common.h"
22
#include "sanitizer_common/sanitizer_placement_new.h"
23
#include "sanitizer_common/sanitizer_stackdepot.h"
24
#include "sanitizer_common/sanitizer_tls_get_addr.h"
25

26
namespace __asan {
27

28
// AsanThreadContext implementation.
29

30
void AsanThreadContext::OnCreated(void *arg) {
31
  CreateThreadContextArgs *args = static_cast<CreateThreadContextArgs *>(arg);
32
  if (args->stack)
33
    stack_id = StackDepotPut(*args->stack);
34
  thread = args->thread;
35
  thread->set_context(this);
36
}
37

38
void AsanThreadContext::OnFinished() {
39
  // Drop the link to the AsanThread object.
40
  thread = nullptr;
41
}
42

43
static ThreadRegistry *asan_thread_registry;
44
static ThreadArgRetval *thread_data;
45

46
static Mutex mu_for_thread_context;
47
// TODO(leonardchan@): It should be possible to make LowLevelAllocator
48
// threadsafe and consolidate this one into the GlobalLoweLevelAllocator.
49
// We should be able to do something similar to what's in
50
// sanitizer_stack_store.cpp.
51
static LowLevelAllocator allocator_for_thread_context;
52

53
static ThreadContextBase *GetAsanThreadContext(u32 tid) {
54
  Lock lock(&mu_for_thread_context);
55
  return new (allocator_for_thread_context) AsanThreadContext(tid);
56
}
57

58
static void InitThreads() {
59
  static bool initialized;
60
  // Don't worry about thread_safety - this should be called when there is
61
  // a single thread.
62
  if (LIKELY(initialized))
63
    return;
64
  // Never reuse ASan threads: we store pointer to AsanThreadContext
65
  // in TSD and can't reliably tell when no more TSD destructors will
66
  // be called. It would be wrong to reuse AsanThreadContext for another
67
  // thread before all TSD destructors will be called for it.
68

69
  // MIPS requires aligned address
70
  static ALIGNED(alignof(
71
      ThreadRegistry)) char thread_registry_placeholder[sizeof(ThreadRegistry)];
72
  static ALIGNED(alignof(
73
      ThreadArgRetval)) char thread_data_placeholder[sizeof(ThreadArgRetval)];
74

75
  asan_thread_registry =
76
      new (thread_registry_placeholder) ThreadRegistry(GetAsanThreadContext);
77
  thread_data = new (thread_data_placeholder) ThreadArgRetval();
78
  initialized = true;
79
}
80

81
ThreadRegistry &asanThreadRegistry() {
82
  InitThreads();
83
  return *asan_thread_registry;
84
}
85

86
ThreadArgRetval &asanThreadArgRetval() {
87
  InitThreads();
88
  return *thread_data;
89
}
90

91
AsanThreadContext *GetThreadContextByTidLocked(u32 tid) {
92
  return static_cast<AsanThreadContext *>(
93
      asanThreadRegistry().GetThreadLocked(tid));
94
}
95

96
// AsanThread implementation.
97

98
AsanThread *AsanThread::Create(const void *start_data, uptr data_size,
99
                               u32 parent_tid, StackTrace *stack,
100
                               bool detached) {
101
  uptr PageSize = GetPageSizeCached();
102
  uptr size = RoundUpTo(sizeof(AsanThread), PageSize);
103
  AsanThread *thread = (AsanThread *)MmapOrDie(size, __func__);
104
  if (data_size) {
105
    uptr availible_size = (uptr)thread + size - (uptr)(thread->start_data_);
106
    CHECK_LE(data_size, availible_size);
107
    internal_memcpy(thread->start_data_, start_data, data_size);
108
  }
109
  AsanThreadContext::CreateThreadContextArgs args = {thread, stack};
110
  asanThreadRegistry().CreateThread(0, detached, parent_tid, &args);
111

112
  return thread;
113
}
114

115
void AsanThread::GetStartData(void *out, uptr out_size) const {
116
  internal_memcpy(out, start_data_, out_size);
117
}
118

119
void AsanThread::TSDDtor(void *tsd) {
120
  AsanThreadContext *context = (AsanThreadContext *)tsd;
121
  VReport(1, "T%d TSDDtor\n", context->tid);
122
  if (context->thread)
123
    context->thread->Destroy();
124
}
125

126
void AsanThread::Destroy() {
127
  int tid = this->tid();
128
  VReport(1, "T%d exited\n", tid);
129

130
  bool was_running =
131
      (asanThreadRegistry().FinishThread(tid) == ThreadStatusRunning);
132
  if (was_running) {
133
    if (AsanThread *thread = GetCurrentThread())
134
      CHECK_EQ(this, thread);
135
    malloc_storage().CommitBack();
136
    if (common_flags()->use_sigaltstack)
137
      UnsetAlternateSignalStack();
138
    FlushToDeadThreadStats(&stats_);
139
    // We also clear the shadow on thread destruction because
140
    // some code may still be executing in later TSD destructors
141
    // and we don't want it to have any poisoned stack.
142
    ClearShadowForThreadStackAndTLS();
143
    DeleteFakeStack(tid);
144
  } else {
145
    CHECK_NE(this, GetCurrentThread());
146
  }
147
  uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached());
148
  UnmapOrDie(this, size);
149
  if (was_running)
150
    DTLS_Destroy();
151
}
152

153
void AsanThread::StartSwitchFiber(FakeStack **fake_stack_save, uptr bottom,
154
                                  uptr size) {
155
  if (atomic_load(&stack_switching_, memory_order_relaxed)) {
156
    Report("ERROR: starting fiber switch while in fiber switch\n");
157
    Die();
158
  }
159

160
  next_stack_bottom_ = bottom;
161
  next_stack_top_ = bottom + size;
162
  atomic_store(&stack_switching_, 1, memory_order_release);
163

164
  FakeStack *current_fake_stack = fake_stack_;
165
  if (fake_stack_save)
166
    *fake_stack_save = fake_stack_;
167
  fake_stack_ = nullptr;
168
  SetTLSFakeStack(nullptr);
169
  // if fake_stack_save is null, the fiber will die, delete the fakestack
170
  if (!fake_stack_save && current_fake_stack)
171
    current_fake_stack->Destroy(this->tid());
172
}
173

174
void AsanThread::FinishSwitchFiber(FakeStack *fake_stack_save, uptr *bottom_old,
175
                                   uptr *size_old) {
176
  if (!atomic_load(&stack_switching_, memory_order_relaxed)) {
177
    Report("ERROR: finishing a fiber switch that has not started\n");
178
    Die();
179
  }
180

181
  if (fake_stack_save) {
182
    SetTLSFakeStack(fake_stack_save);
183
    fake_stack_ = fake_stack_save;
184
  }
185

186
  if (bottom_old)
187
    *bottom_old = stack_bottom_;
188
  if (size_old)
189
    *size_old = stack_top_ - stack_bottom_;
190
  stack_bottom_ = next_stack_bottom_;
191
  stack_top_ = next_stack_top_;
192
  atomic_store(&stack_switching_, 0, memory_order_release);
193
  next_stack_top_ = 0;
194
  next_stack_bottom_ = 0;
195
}
196

197
inline AsanThread::StackBounds AsanThread::GetStackBounds() const {
198
  if (!atomic_load(&stack_switching_, memory_order_acquire)) {
199
    // Make sure the stack bounds are fully initialized.
200
    if (stack_bottom_ >= stack_top_)
201
      return {0, 0};
202
    return {stack_bottom_, stack_top_};
203
  }
204
  char local;
205
  const uptr cur_stack = (uptr)&local;
206
  // Note: need to check next stack first, because FinishSwitchFiber
207
  // may be in process of overwriting stack_top_/bottom_. But in such case
208
  // we are already on the next stack.
209
  if (cur_stack >= next_stack_bottom_ && cur_stack < next_stack_top_)
210
    return {next_stack_bottom_, next_stack_top_};
211
  return {stack_bottom_, stack_top_};
212
}
213

214
uptr AsanThread::stack_top() { return GetStackBounds().top; }
215

216
uptr AsanThread::stack_bottom() { return GetStackBounds().bottom; }
217

218
uptr AsanThread::stack_size() {
219
  const auto bounds = GetStackBounds();
220
  return bounds.top - bounds.bottom;
221
}
222

223
// We want to create the FakeStack lazily on the first use, but not earlier
224
// than the stack size is known and the procedure has to be async-signal safe.
225
FakeStack *AsanThread::AsyncSignalSafeLazyInitFakeStack() {
226
  uptr stack_size = this->stack_size();
227
  if (stack_size == 0)  // stack_size is not yet available, don't use FakeStack.
228
    return nullptr;
229
  uptr old_val = 0;
230
  // fake_stack_ has 3 states:
231
  // 0   -- not initialized
232
  // 1   -- being initialized
233
  // ptr -- initialized
234
  // This CAS checks if the state was 0 and if so changes it to state 1,
235
  // if that was successful, it initializes the pointer.
236
  if (atomic_compare_exchange_strong(
237
          reinterpret_cast<atomic_uintptr_t *>(&fake_stack_), &old_val, 1UL,
238
          memory_order_relaxed)) {
239
    uptr stack_size_log = Log2(RoundUpToPowerOfTwo(stack_size));
240
    CHECK_LE(flags()->min_uar_stack_size_log, flags()->max_uar_stack_size_log);
241
    stack_size_log =
242
        Min(stack_size_log, static_cast<uptr>(flags()->max_uar_stack_size_log));
243
    stack_size_log =
244
        Max(stack_size_log, static_cast<uptr>(flags()->min_uar_stack_size_log));
245
    fake_stack_ = FakeStack::Create(stack_size_log);
246
    DCHECK_EQ(GetCurrentThread(), this);
247
    SetTLSFakeStack(fake_stack_);
248
    return fake_stack_;
249
  }
250
  return nullptr;
251
}
252

253
void AsanThread::Init(const InitOptions *options) {
254
  DCHECK_NE(tid(), kInvalidTid);
255
  next_stack_top_ = next_stack_bottom_ = 0;
256
  atomic_store(&stack_switching_, false, memory_order_release);
257
  CHECK_EQ(this->stack_size(), 0U);
258
  SetThreadStackAndTls(options);
259
  if (stack_top_ != stack_bottom_) {
260
    CHECK_GT(this->stack_size(), 0U);
261
    CHECK(AddrIsInMem(stack_bottom_));
262
    CHECK(AddrIsInMem(stack_top_ - 1));
263
  }
264
  ClearShadowForThreadStackAndTLS();
265
  fake_stack_ = nullptr;
266
  if (__asan_option_detect_stack_use_after_return &&
267
      tid() == GetCurrentTidOrInvalid()) {
268
    // AsyncSignalSafeLazyInitFakeStack makes use of threadlocals and must be
269
    // called from the context of the thread it is initializing, not its parent.
270
    // Most platforms call AsanThread::Init on the newly-spawned thread, but
271
    // Fuchsia calls this function from the parent thread.  To support that
272
    // approach, we avoid calling AsyncSignalSafeLazyInitFakeStack here; it will
273
    // be called by the new thread when it first attempts to access the fake
274
    // stack.
275
    AsyncSignalSafeLazyInitFakeStack();
276
  }
277
  int local = 0;
278
  VReport(1, "T%d: stack [%p,%p) size 0x%zx; local=%p\n", tid(),
279
          (void *)stack_bottom_, (void *)stack_top_, stack_top_ - stack_bottom_,
280
          (void *)&local);
281
}
282

283
// Fuchsia doesn't use ThreadStart.
284
// asan_fuchsia.c definies CreateMainThread and SetThreadStackAndTls.
285
#if !SANITIZER_FUCHSIA
286

287
void AsanThread::ThreadStart(tid_t os_id) {
288
  Init();
289
  asanThreadRegistry().StartThread(tid(), os_id, ThreadType::Regular, nullptr);
290

291
  if (common_flags()->use_sigaltstack)
292
    SetAlternateSignalStack();
293
}
294

295
AsanThread *CreateMainThread() {
296
  AsanThread *main_thread = AsanThread::Create(
297
      /* parent_tid */ kMainTid,
298
      /* stack */ nullptr, /* detached */ true);
299
  SetCurrentThread(main_thread);
300
  main_thread->ThreadStart(internal_getpid());
301
  return main_thread;
302
}
303

304
// This implementation doesn't use the argument, which is just passed down
305
// from the caller of Init (which see, above).  It's only there to support
306
// OS-specific implementations that need more information passed through.
307
void AsanThread::SetThreadStackAndTls(const InitOptions *options) {
308
  DCHECK_EQ(options, nullptr);
309
  uptr tls_size = 0;
310
  uptr stack_size = 0;
311
  GetThreadStackAndTls(tid() == kMainTid, &stack_bottom_, &stack_size,
312
                       &tls_begin_, &tls_size);
313
  stack_top_ = RoundDownTo(stack_bottom_ + stack_size, ASAN_SHADOW_GRANULARITY);
314
  stack_bottom_ = RoundDownTo(stack_bottom_, ASAN_SHADOW_GRANULARITY);
315
  tls_end_ = tls_begin_ + tls_size;
316
  dtls_ = DTLS_Get();
317

318
  if (stack_top_ != stack_bottom_) {
319
    int local;
320
    CHECK(AddrIsInStack((uptr)&local));
321
  }
322
}
323

324
#endif  // !SANITIZER_FUCHSIA
325

326
void AsanThread::ClearShadowForThreadStackAndTLS() {
327
  if (stack_top_ != stack_bottom_)
328
    PoisonShadow(stack_bottom_, stack_top_ - stack_bottom_, 0);
329
  if (tls_begin_ != tls_end_) {
330
    uptr tls_begin_aligned = RoundDownTo(tls_begin_, ASAN_SHADOW_GRANULARITY);
331
    uptr tls_end_aligned = RoundUpTo(tls_end_, ASAN_SHADOW_GRANULARITY);
332
    FastPoisonShadow(tls_begin_aligned, tls_end_aligned - tls_begin_aligned, 0);
333
  }
334
}
335

336
bool AsanThread::GetStackFrameAccessByAddr(uptr addr,
337
                                           StackFrameAccess *access) {
338
  if (stack_top_ == stack_bottom_)
339
    return false;
340

341
  uptr bottom = 0;
342
  if (AddrIsInStack(addr)) {
343
    bottom = stack_bottom();
344
  } else if (FakeStack *fake_stack = get_fake_stack()) {
345
    bottom = fake_stack->AddrIsInFakeStack(addr);
346
    CHECK(bottom);
347
    access->offset = addr - bottom;
348
    access->frame_pc = ((uptr *)bottom)[2];
349
    access->frame_descr = (const char *)((uptr *)bottom)[1];
350
    return true;
351
  }
352
  uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8);  // align addr.
353
  uptr mem_ptr = RoundDownTo(aligned_addr, ASAN_SHADOW_GRANULARITY);
354
  u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr);
355
  u8 *shadow_bottom = (u8 *)MemToShadow(bottom);
356

357
  while (shadow_ptr >= shadow_bottom &&
358
         *shadow_ptr != kAsanStackLeftRedzoneMagic) {
359
    shadow_ptr--;
360
    mem_ptr -= ASAN_SHADOW_GRANULARITY;
361
  }
362

363
  while (shadow_ptr >= shadow_bottom &&
364
         *shadow_ptr == kAsanStackLeftRedzoneMagic) {
365
    shadow_ptr--;
366
    mem_ptr -= ASAN_SHADOW_GRANULARITY;
367
  }
368

369
  if (shadow_ptr < shadow_bottom) {
370
    return false;
371
  }
372

373
  uptr *ptr = (uptr *)(mem_ptr + ASAN_SHADOW_GRANULARITY);
374
  CHECK(ptr[0] == kCurrentStackFrameMagic);
375
  access->offset = addr - (uptr)ptr;
376
  access->frame_pc = ptr[2];
377
  access->frame_descr = (const char *)ptr[1];
378
  return true;
379
}
380

381
uptr AsanThread::GetStackVariableShadowStart(uptr addr) {
382
  uptr bottom = 0;
383
  if (AddrIsInStack(addr)) {
384
    bottom = stack_bottom();
385
  } else if (FakeStack *fake_stack = get_fake_stack()) {
386
    bottom = fake_stack->AddrIsInFakeStack(addr);
387
    if (bottom == 0) {
388
      return 0;
389
    }
390
  } else {
391
    return 0;
392
  }
393

394
  uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8);  // align addr.
395
  u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr);
396
  u8 *shadow_bottom = (u8 *)MemToShadow(bottom);
397

398
  while (shadow_ptr >= shadow_bottom &&
399
         (*shadow_ptr != kAsanStackLeftRedzoneMagic &&
400
          *shadow_ptr != kAsanStackMidRedzoneMagic &&
401
          *shadow_ptr != kAsanStackRightRedzoneMagic))
402
    shadow_ptr--;
403

404
  return (uptr)shadow_ptr + 1;
405
}
406

407
bool AsanThread::AddrIsInStack(uptr addr) {
408
  const auto bounds = GetStackBounds();
409
  return addr >= bounds.bottom && addr < bounds.top;
410
}
411

412
static bool ThreadStackContainsAddress(ThreadContextBase *tctx_base,
413
                                       void *addr) {
414
  AsanThreadContext *tctx = static_cast<AsanThreadContext *>(tctx_base);
415
  AsanThread *t = tctx->thread;
416
  if (!t)
417
    return false;
418
  if (t->AddrIsInStack((uptr)addr))
419
    return true;
420
  FakeStack *fake_stack = t->get_fake_stack();
421
  if (!fake_stack)
422
    return false;
423
  return fake_stack->AddrIsInFakeStack((uptr)addr);
424
}
425

426
AsanThread *GetCurrentThread() {
427
  AsanThreadContext *context =
428
      reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
429
  if (!context) {
430
    if (SANITIZER_ANDROID) {
431
      // On Android, libc constructor is called _after_ asan_init, and cleans up
432
      // TSD. Try to figure out if this is still the main thread by the stack
433
      // address. We are not entirely sure that we have correct main thread
434
      // limits, so only do this magic on Android, and only if the found thread
435
      // is the main thread.
436
      AsanThreadContext *tctx = GetThreadContextByTidLocked(kMainTid);
437
      if (tctx && ThreadStackContainsAddress(tctx, &context)) {
438
        SetCurrentThread(tctx->thread);
439
        return tctx->thread;
440
      }
441
    }
442
    return nullptr;
443
  }
444
  return context->thread;
445
}
446

447
void SetCurrentThread(AsanThread *t) {
448
  CHECK(t->context());
449
  VReport(2, "SetCurrentThread: %p for thread %p\n", (void *)t->context(),
450
          (void *)GetThreadSelf());
451
  // Make sure we do not reset the current AsanThread.
452
  CHECK_EQ(0, AsanTSDGet());
453
  AsanTSDSet(t->context());
454
  CHECK_EQ(t->context(), AsanTSDGet());
455
}
456

457
u32 GetCurrentTidOrInvalid() {
458
  AsanThread *t = GetCurrentThread();
459
  return t ? t->tid() : kInvalidTid;
460
}
461

462
AsanThread *FindThreadByStackAddress(uptr addr) {
463
  asanThreadRegistry().CheckLocked();
464
  AsanThreadContext *tctx = static_cast<AsanThreadContext *>(
465
      asanThreadRegistry().FindThreadContextLocked(ThreadStackContainsAddress,
466
                                                   (void *)addr));
467
  return tctx ? tctx->thread : nullptr;
468
}
469

470
void EnsureMainThreadIDIsCorrect() {
471
  AsanThreadContext *context =
472
      reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
473
  if (context && (context->tid == kMainTid))
474
    context->os_id = GetTid();
475
}
476

477
__asan::AsanThread *GetAsanThreadByOsIDLocked(tid_t os_id) {
478
  __asan::AsanThreadContext *context = static_cast<__asan::AsanThreadContext *>(
479
      __asan::asanThreadRegistry().FindThreadContextByOsIDLocked(os_id));
480
  if (!context)
481
    return nullptr;
482
  return context->thread;
483
}
484
}  // namespace __asan
485

486
// --- Implementation of LSan-specific functions --- {{{1
487
namespace __lsan {
488
void LockThreads() {
489
  __asan::asanThreadRegistry().Lock();
490
  __asan::asanThreadArgRetval().Lock();
491
}
492

493
void UnlockThreads() {
494
  __asan::asanThreadArgRetval().Unlock();
495
  __asan::asanThreadRegistry().Unlock();
496
}
497

498
static ThreadRegistry *GetAsanThreadRegistryLocked() {
499
  __asan::asanThreadRegistry().CheckLocked();
500
  return &__asan::asanThreadRegistry();
501
}
502

503
void EnsureMainThreadIDIsCorrect() { __asan::EnsureMainThreadIDIsCorrect(); }
504

505
bool GetThreadRangesLocked(tid_t os_id, uptr *stack_begin, uptr *stack_end,
506
                           uptr *tls_begin, uptr *tls_end, uptr *cache_begin,
507
                           uptr *cache_end, DTLS **dtls) {
508
  __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
509
  if (!t)
510
    return false;
511
  *stack_begin = t->stack_bottom();
512
  *stack_end = t->stack_top();
513
  *tls_begin = t->tls_begin();
514
  *tls_end = t->tls_end();
515
  // ASan doesn't keep allocator caches in TLS, so these are unused.
516
  *cache_begin = 0;
517
  *cache_end = 0;
518
  *dtls = t->dtls();
519
  return true;
520
}
521

522
void GetAllThreadAllocatorCachesLocked(InternalMmapVector<uptr> *caches) {}
523

524
void GetThreadExtraStackRangesLocked(tid_t os_id,
525
                                     InternalMmapVector<Range> *ranges) {
526
  __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
527
  if (!t)
528
    return;
529
  __asan::FakeStack *fake_stack = t->get_fake_stack();
530
  if (!fake_stack)
531
    return;
532

533
  fake_stack->ForEachFakeFrame(
534
      [](uptr begin, uptr end, void *arg) {
535
        reinterpret_cast<InternalMmapVector<Range> *>(arg)->push_back(
536
            {begin, end});
537
      },
538
      ranges);
539
}
540

541
void GetThreadExtraStackRangesLocked(InternalMmapVector<Range> *ranges) {
542
  GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked(
543
      [](ThreadContextBase *tctx, void *arg) {
544
        GetThreadExtraStackRangesLocked(
545
            tctx->os_id, reinterpret_cast<InternalMmapVector<Range> *>(arg));
546
      },
547
      ranges);
548
}
549

550
void GetAdditionalThreadContextPtrsLocked(InternalMmapVector<uptr> *ptrs) {
551
  __asan::asanThreadArgRetval().GetAllPtrsLocked(ptrs);
552
}
553

554
void GetRunningThreadsLocked(InternalMmapVector<tid_t> *threads) {
555
  GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked(
556
      [](ThreadContextBase *tctx, void *threads) {
557
        if (tctx->status == ThreadStatusRunning)
558
          reinterpret_cast<InternalMmapVector<tid_t> *>(threads)->push_back(
559
              tctx->os_id);
560
      },
561
      threads);
562
}
563

564
}  // namespace __lsan
565

566
// ---------------------- Interface ---------------- {{{1
567
using namespace __asan;
568

569
extern "C" {
570
SANITIZER_INTERFACE_ATTRIBUTE
571
void __sanitizer_start_switch_fiber(void **fakestacksave, const void *bottom,
572
                                    uptr size) {
573
  AsanThread *t = GetCurrentThread();
574
  if (!t) {
575
    VReport(1, "__asan_start_switch_fiber called from unknown thread\n");
576
    return;
577
  }
578
  t->StartSwitchFiber((FakeStack **)fakestacksave, (uptr)bottom, size);
579
}
580

581
SANITIZER_INTERFACE_ATTRIBUTE
582
void __sanitizer_finish_switch_fiber(void *fakestack, const void **bottom_old,
583
                                     uptr *size_old) {
584
  AsanThread *t = GetCurrentThread();
585
  if (!t) {
586
    VReport(1, "__asan_finish_switch_fiber called from unknown thread\n");
587
    return;
588
  }
589
  t->FinishSwitchFiber((FakeStack *)fakestack, (uptr *)bottom_old,
590
                       (uptr *)size_old);
591
}
592
}
593

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.