llvm-project
307 строк · 11.4 Кб
1//===--- MacroArgs.cpp - Formal argument info for Macros ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MacroArgs interface.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Lex/MacroArgs.h"
14#include "clang/Lex/LexDiagnostic.h"
15#include "clang/Lex/MacroInfo.h"
16#include "clang/Lex/Preprocessor.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/Support/SaveAndRestore.h"
19#include <algorithm>
20
21using namespace clang;
22
23/// MacroArgs ctor function - This destroys the vector passed in.
24MacroArgs *MacroArgs::create(const MacroInfo *MI,
25ArrayRef<Token> UnexpArgTokens,
26bool VarargsElided, Preprocessor &PP) {
27assert(MI->isFunctionLike() &&
28"Can't have args for an object-like macro!");
29MacroArgs **ResultEnt = nullptr;
30unsigned ClosestMatch = ~0U;
31
32// See if we have an entry with a big enough argument list to reuse on the
33// free list. If so, reuse it.
34for (MacroArgs **Entry = &PP.MacroArgCache; *Entry;
35Entry = &(*Entry)->ArgCache) {
36if ((*Entry)->NumUnexpArgTokens >= UnexpArgTokens.size() &&
37(*Entry)->NumUnexpArgTokens < ClosestMatch) {
38ResultEnt = Entry;
39
40// If we have an exact match, use it.
41if ((*Entry)->NumUnexpArgTokens == UnexpArgTokens.size())
42break;
43// Otherwise, use the best fit.
44ClosestMatch = (*Entry)->NumUnexpArgTokens;
45}
46}
47MacroArgs *Result;
48if (!ResultEnt) {
49// Allocate memory for a MacroArgs object with the lexer tokens at the end,
50// and construct the MacroArgs object.
51Result = new (
52llvm::safe_malloc(totalSizeToAlloc<Token>(UnexpArgTokens.size())))
53MacroArgs(UnexpArgTokens.size(), VarargsElided, MI->getNumParams());
54} else {
55Result = *ResultEnt;
56// Unlink this node from the preprocessors singly linked list.
57*ResultEnt = Result->ArgCache;
58Result->NumUnexpArgTokens = UnexpArgTokens.size();
59Result->VarargsElided = VarargsElided;
60Result->NumMacroArgs = MI->getNumParams();
61}
62
63// Copy the actual unexpanded tokens to immediately after the result ptr.
64if (!UnexpArgTokens.empty()) {
65static_assert(std::is_trivial_v<Token>,
66"assume trivial copyability if copying into the "
67"uninitialized array (as opposed to reusing a cached "
68"MacroArgs)");
69std::copy(UnexpArgTokens.begin(), UnexpArgTokens.end(),
70Result->getTrailingObjects<Token>());
71}
72
73return Result;
74}
75
76/// destroy - Destroy and deallocate the memory for this object.
77///
78void MacroArgs::destroy(Preprocessor &PP) {
79// Don't clear PreExpArgTokens, just clear the entries. Clearing the entries
80// would deallocate the element vectors.
81for (unsigned i = 0, e = PreExpArgTokens.size(); i != e; ++i)
82PreExpArgTokens[i].clear();
83
84// Add this to the preprocessor's free list.
85ArgCache = PP.MacroArgCache;
86PP.MacroArgCache = this;
87}
88
89/// deallocate - This should only be called by the Preprocessor when managing
90/// its freelist.
91MacroArgs *MacroArgs::deallocate() {
92MacroArgs *Next = ArgCache;
93
94// Run the dtor to deallocate the vectors.
95this->~MacroArgs();
96// Release the memory for the object.
97static_assert(std::is_trivially_destructible_v<Token>,
98"assume trivially destructible and forego destructors");
99free(this);
100
101return Next;
102}
103
104
105/// getArgLength - Given a pointer to an expanded or unexpanded argument,
106/// return the number of tokens, not counting the EOF, that make up the
107/// argument.
108unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
109unsigned NumArgTokens = 0;
110for (; ArgPtr->isNot(tok::eof); ++ArgPtr)
111++NumArgTokens;
112return NumArgTokens;
113}
114
115
116/// getUnexpArgument - Return the unexpanded tokens for the specified formal.
117///
118const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
119
120assert(Arg < getNumMacroArguments() && "Invalid arg #");
121// The unexpanded argument tokens start immediately after the MacroArgs object
122// in memory.
123const Token *Start = getTrailingObjects<Token>();
124const Token *Result = Start;
125
126// Scan to find Arg.
127for (; Arg; ++Result) {
128assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
129if (Result->is(tok::eof))
130--Arg;
131}
132assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
133return Result;
134}
135
136bool MacroArgs::invokedWithVariadicArgument(const MacroInfo *const MI,
137Preprocessor &PP) {
138if (!MI->isVariadic())
139return false;
140const int VariadicArgIndex = getNumMacroArguments() - 1;
141return getPreExpArgument(VariadicArgIndex, PP).front().isNot(tok::eof);
142}
143
144/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
145/// by pre-expansion, return false. Otherwise, conservatively return true.
146bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok,
147Preprocessor &PP) const {
148// If there are no identifiers in the argument list, or if the identifiers are
149// known to not be macros, pre-expansion won't modify it.
150for (; ArgTok->isNot(tok::eof); ++ArgTok)
151if (IdentifierInfo *II = ArgTok->getIdentifierInfo())
152if (II->hasMacroDefinition())
153// Return true even though the macro could be a function-like macro
154// without a following '(' token, or could be disabled, or not visible.
155return true;
156return false;
157}
158
159/// getPreExpArgument - Return the pre-expanded form of the specified
160/// argument.
161const std::vector<Token> &MacroArgs::getPreExpArgument(unsigned Arg,
162Preprocessor &PP) {
163assert(Arg < getNumMacroArguments() && "Invalid argument number!");
164
165// If we have already computed this, return it.
166if (PreExpArgTokens.size() < getNumMacroArguments())
167PreExpArgTokens.resize(getNumMacroArguments());
168
169std::vector<Token> &Result = PreExpArgTokens[Arg];
170if (!Result.empty()) return Result;
171
172SaveAndRestore PreExpandingMacroArgs(PP.InMacroArgPreExpansion, true);
173
174const Token *AT = getUnexpArgument(Arg);
175unsigned NumToks = getArgLength(AT)+1; // Include the EOF.
176
177// Otherwise, we have to pre-expand this argument, populating Result. To do
178// this, we set up a fake TokenLexer to lex from the unexpanded argument
179// list. With this installed, we lex expanded tokens until we hit the EOF
180// token at the end of the unexp list.
181PP.EnterTokenStream(AT, NumToks, false /*disable expand*/,
182false /*owns tokens*/, false /*is reinject*/);
183
184// Lex all of the macro-expanded tokens into Result.
185do {
186Result.push_back(Token());
187Token &Tok = Result.back();
188PP.Lex(Tok);
189} while (Result.back().isNot(tok::eof));
190
191// Pop the token stream off the top of the stack. We know that the internal
192// pointer inside of it is to the "end" of the token stream, but the stack
193// will not otherwise be popped until the next token is lexed. The problem is
194// that the token may be lexed sometime after the vector of tokens itself is
195// destroyed, which would be badness.
196if (PP.InCachingLexMode())
197PP.ExitCachingLexMode();
198PP.RemoveTopOfLexerStack();
199return Result;
200}
201
202
203/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
204/// tokens into the literal string token that should be produced by the C #
205/// preprocessor operator. If Charify is true, then it should be turned into
206/// a character literal for the Microsoft charize (#@) extension.
207///
208Token MacroArgs::StringifyArgument(const Token *ArgToks,
209Preprocessor &PP, bool Charify,
210SourceLocation ExpansionLocStart,
211SourceLocation ExpansionLocEnd) {
212Token Tok;
213Tok.startToken();
214Tok.setKind(Charify ? tok::char_constant : tok::string_literal);
215
216const Token *ArgTokStart = ArgToks;
217
218// Stringify all the tokens.
219SmallString<128> Result;
220Result += "\"";
221
222bool isFirst = true;
223for (; ArgToks->isNot(tok::eof); ++ArgToks) {
224const Token &Tok = *ArgToks;
225if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
226Result += ' ';
227isFirst = false;
228
229// If this is a string or character constant, escape the token as specified
230// by 6.10.3.2p2.
231if (tok::isStringLiteral(Tok.getKind()) || // "foo", u8R"x(foo)x"_bar, etc.
232Tok.is(tok::char_constant) || // 'x'
233Tok.is(tok::wide_char_constant) || // L'x'.
234Tok.is(tok::utf8_char_constant) || // u8'x'.
235Tok.is(tok::utf16_char_constant) || // u'x'.
236Tok.is(tok::utf32_char_constant)) { // U'x'.
237bool Invalid = false;
238std::string TokStr = PP.getSpelling(Tok, &Invalid);
239if (!Invalid) {
240std::string Str = Lexer::Stringify(TokStr);
241Result.append(Str.begin(), Str.end());
242}
243} else if (Tok.is(tok::code_completion)) {
244PP.CodeCompleteNaturalLanguage();
245} else {
246// Otherwise, just append the token. Do some gymnastics to get the token
247// in place and avoid copies where possible.
248unsigned CurStrLen = Result.size();
249Result.resize(CurStrLen+Tok.getLength());
250const char *BufPtr = Result.data() + CurStrLen;
251bool Invalid = false;
252unsigned ActualTokLen = PP.getSpelling(Tok, BufPtr, &Invalid);
253
254if (!Invalid) {
255// If getSpelling returned a pointer to an already uniqued version of
256// the string instead of filling in BufPtr, memcpy it onto our string.
257if (ActualTokLen && BufPtr != &Result[CurStrLen])
258memcpy(&Result[CurStrLen], BufPtr, ActualTokLen);
259
260// If the token was dirty, the spelling may be shorter than the token.
261if (ActualTokLen != Tok.getLength())
262Result.resize(CurStrLen+ActualTokLen);
263}
264}
265}
266
267// If the last character of the string is a \, and if it isn't escaped, this
268// is an invalid string literal, diagnose it as specified in C99.
269if (Result.back() == '\\') {
270// Count the number of consecutive \ characters. If even, then they are
271// just escaped backslashes, otherwise it's an error.
272unsigned FirstNonSlash = Result.size()-2;
273// Guaranteed to find the starting " if nothing else.
274while (Result[FirstNonSlash] == '\\')
275--FirstNonSlash;
276if ((Result.size()-1-FirstNonSlash) & 1) {
277// Diagnose errors for things like: #define F(X) #X / F(\)
278PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
279Result.pop_back(); // remove one of the \'s.
280}
281}
282Result += '"';
283
284// If this is the charify operation and the result is not a legal character
285// constant, diagnose it.
286if (Charify) {
287// First step, turn double quotes into single quotes:
288Result[0] = '\'';
289Result[Result.size()-1] = '\'';
290
291// Check for bogus character.
292bool isBad = false;
293if (Result.size() == 3)
294isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above.
295else
296isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x'
297
298if (isBad) {
299PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
300Result = "' '"; // Use something arbitrary, but legal.
301}
302}
303
304PP.CreateString(Result, Tok,
305ExpansionLocStart, ExpansionLocEnd);
306return Tok;
307}
308