llvm-project

Форк
0
/
SwiftCallingConv.cpp 
878 строк · 30.2 Кб
1
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of the abstract lowering for the Swift calling convention.
10
//
11
//===----------------------------------------------------------------------===//
12

13
#include "clang/CodeGen/SwiftCallingConv.h"
14
#include "ABIInfo.h"
15
#include "CodeGenModule.h"
16
#include "TargetInfo.h"
17
#include "clang/Basic/TargetInfo.h"
18
#include <optional>
19

20
using namespace clang;
21
using namespace CodeGen;
22
using namespace swiftcall;
23

24
static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25
  return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
26
}
27

28
static bool isPowerOf2(unsigned n) {
29
  return n == (n & -n);
30
}
31

32
/// Given two types with the same size, try to find a common type.
33
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34
  assert(first != second);
35

36
  // Allow pointers to merge with integers, but prefer the integer type.
37
  if (first->isIntegerTy()) {
38
    if (second->isPointerTy()) return first;
39
  } else if (first->isPointerTy()) {
40
    if (second->isIntegerTy()) return second;
41
    if (second->isPointerTy()) return first;
42

43
  // Allow two vectors to be merged (given that they have the same size).
44
  // This assumes that we never have two different vector register sets.
45
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
46
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
47
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
48
                                        secondVecTy->getElementType())) {
49
        return (commonTy == firstVecTy->getElementType() ? first : second);
50
      }
51
    }
52
  }
53

54
  return nullptr;
55
}
56

57
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
59
}
60

61
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
63
}
64

65
void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
66
  // Deal with various aggregate types as special cases:
67

68
  // Record types.
69
  if (auto recType = type->getAs<RecordType>()) {
70
    addTypedData(recType->getDecl(), begin);
71

72
  // Array types.
73
  } else if (type->isArrayType()) {
74
    // Incomplete array types (flexible array members?) don't provide
75
    // data to lay out, and the other cases shouldn't be possible.
76
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
77
    if (!arrayType) return;
78

79
    QualType eltType = arrayType->getElementType();
80
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81
    for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) {
82
      addTypedData(eltType, begin + i * eltSize);
83
    }
84

85
  // Complex types.
86
  } else if (auto complexType = type->getAs<ComplexType>()) {
87
    auto eltType = complexType->getElementType();
88
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
89
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
90
    addTypedData(eltLLVMType, begin, begin + eltSize);
91
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
92

93
  // Member pointer types.
94
  } else if (type->getAs<MemberPointerType>()) {
95
    // Just add it all as opaque.
96
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
97

98
    // Atomic types.
99
  } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100
    auto valueType = atomicType->getValueType();
101
    auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102
    auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103

104
    addTypedData(atomicType->getValueType(), begin);
105

106
    // Add atomic padding.
107
    auto atomicPadding = atomicSize - valueSize;
108
    if (atomicPadding > CharUnits::Zero())
109
      addOpaqueData(begin + valueSize, begin + atomicSize);
110

111
    // Everything else is scalar and should not convert as an LLVM aggregate.
112
  } else {
113
    // We intentionally convert as !ForMem because we want to preserve
114
    // that a type was an i1.
115
    auto *llvmType = CGM.getTypes().ConvertType(type);
116
    addTypedData(llvmType, begin);
117
  }
118
}
119

120
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
121
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
122
}
123

124
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
125
                                    const ASTRecordLayout &layout) {
126
  // Unions are a special case.
127
  if (record->isUnion()) {
128
    for (auto *field : record->fields()) {
129
      if (field->isBitField()) {
130
        addBitFieldData(field, begin, 0);
131
      } else {
132
        addTypedData(field->getType(), begin);
133
      }
134
    }
135
    return;
136
  }
137

138
  // Note that correctness does not rely on us adding things in
139
  // their actual order of layout; it's just somewhat more efficient
140
  // for the builder.
141

142
  // With that in mind, add "early" C++ data.
143
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
144
  if (cxxRecord) {
145
    //   - a v-table pointer, if the class adds its own
146
    if (layout.hasOwnVFPtr()) {
147
      addTypedData(CGM.Int8PtrTy, begin);
148
    }
149

150
    //   - non-virtual bases
151
    for (auto &baseSpecifier : cxxRecord->bases()) {
152
      if (baseSpecifier.isVirtual()) continue;
153

154
      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
156
    }
157

158
    //   - a vbptr if the class adds its own
159
    if (layout.hasOwnVBPtr()) {
160
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
161
    }
162
  }
163

164
  // Add fields.
165
  for (auto *field : record->fields()) {
166
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
167
    if (field->isBitField()) {
168
      addBitFieldData(field, begin, fieldOffsetInBits);
169
    } else {
170
      addTypedData(field->getType(),
171
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
172
    }
173
  }
174

175
  // Add "late" C++ data:
176
  if (cxxRecord) {
177
    //   - virtual bases
178
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
181
    }
182
  }
183
}
184

185
void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186
                                       CharUnits recordBegin,
187
                                       uint64_t bitfieldBitBegin) {
188
  assert(bitfield->isBitField());
189
  auto &ctx = CGM.getContext();
190
  auto width = bitfield->getBitWidthValue(ctx);
191

192
  // We can ignore zero-width bit-fields.
193
  if (width == 0) return;
194

195
  // toCharUnitsFromBits rounds down.
196
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
197

198
  // Find the offset of the last byte that is partially occupied by the
199
  // bit-field; since we otherwise expect exclusive ends, the end is the
200
  // next byte.
201
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202
  CharUnits bitfieldByteEnd =
203
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
204
  addOpaqueData(recordBegin + bitfieldByteBegin,
205
                recordBegin + bitfieldByteEnd);
206
}
207

208
void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
209
  assert(type && "didn't provide type for typed data");
210
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
211
}
212

213
void SwiftAggLowering::addTypedData(llvm::Type *type,
214
                                    CharUnits begin, CharUnits end) {
215
  assert(type && "didn't provide type for typed data");
216
  assert(getTypeStoreSize(CGM, type) == end - begin);
217

218
  // Legalize vector types.
219
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
220
    SmallVector<llvm::Type*, 4> componentTys;
221
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
222
    assert(componentTys.size() >= 1);
223

224
    // Walk the initial components.
225
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226
      llvm::Type *componentTy = componentTys[i];
227
      auto componentSize = getTypeStoreSize(CGM, componentTy);
228
      assert(componentSize < end - begin);
229
      addLegalTypedData(componentTy, begin, begin + componentSize);
230
      begin += componentSize;
231
    }
232

233
    return addLegalTypedData(componentTys.back(), begin, end);
234
  }
235

236
  // Legalize integer types.
237
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
238
    if (!isLegalIntegerType(CGM, intTy))
239
      return addOpaqueData(begin, end);
240
  }
241

242
  // All other types should be legal.
243
  return addLegalTypedData(type, begin, end);
244
}
245

246
void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247
                                         CharUnits begin, CharUnits end) {
248
  // Require the type to be naturally aligned.
249
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
250

251
    // Try splitting vector types.
252
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
253
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
254
      auto eltTy = split.first;
255
      auto numElts = split.second;
256

257
      auto eltSize = (end - begin) / numElts;
258
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
259
      for (size_t i = 0, e = numElts; i != e; ++i) {
260
        addLegalTypedData(eltTy, begin, begin + eltSize);
261
        begin += eltSize;
262
      }
263
      assert(begin == end);
264
      return;
265
    }
266

267
    return addOpaqueData(begin, end);
268
  }
269

270
  addEntry(type, begin, end);
271
}
272

273
void SwiftAggLowering::addEntry(llvm::Type *type,
274
                                CharUnits begin, CharUnits end) {
275
  assert((!type ||
276
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277
         "cannot add aggregate-typed data");
278
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279

280
  // Fast path: we can just add entries to the end.
281
  if (Entries.empty() || Entries.back().End <= begin) {
282
    Entries.push_back({begin, end, type});
283
    return;
284
  }
285

286
  // Find the first existing entry that ends after the start of the new data.
287
  // TODO: do a binary search if Entries is big enough for it to matter.
288
  size_t index = Entries.size() - 1;
289
  while (index != 0) {
290
    if (Entries[index - 1].End <= begin) break;
291
    --index;
292
  }
293

294
  // The entry ends after the start of the new data.
295
  // If the entry starts after the end of the new data, there's no conflict.
296
  if (Entries[index].Begin >= end) {
297
    // This insertion is potentially O(n), but the way we generally build
298
    // these layouts makes that unlikely to matter: we'd need a union of
299
    // several very large types.
300
    Entries.insert(Entries.begin() + index, {begin, end, type});
301
    return;
302
  }
303

304
  // Otherwise, the ranges overlap.  The new range might also overlap
305
  // with later ranges.
306
restartAfterSplit:
307

308
  // Simplest case: an exact overlap.
309
  if (Entries[index].Begin == begin && Entries[index].End == end) {
310
    // If the types match exactly, great.
311
    if (Entries[index].Type == type) return;
312

313
    // If either type is opaque, make the entry opaque and return.
314
    if (Entries[index].Type == nullptr) {
315
      return;
316
    } else if (type == nullptr) {
317
      Entries[index].Type = nullptr;
318
      return;
319
    }
320

321
    // If they disagree in an ABI-agnostic way, just resolve the conflict
322
    // arbitrarily.
323
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
324
      Entries[index].Type = entryType;
325
      return;
326
    }
327

328
    // Otherwise, make the entry opaque.
329
    Entries[index].Type = nullptr;
330
    return;
331
  }
332

333
  // Okay, we have an overlapping conflict of some sort.
334

335
  // If we have a vector type, split it.
336
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
337
    auto eltTy = vecTy->getElementType();
338
    CharUnits eltSize =
339
        (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
340
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
341
    for (unsigned i = 0,
342
                  e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343
         i != e; ++i) {
344
      addEntry(eltTy, begin, begin + eltSize);
345
      begin += eltSize;
346
    }
347
    assert(begin == end);
348
    return;
349
  }
350

351
  // If the entry is a vector type, split it and try again.
352
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353
    splitVectorEntry(index);
354
    goto restartAfterSplit;
355
  }
356

357
  // Okay, we have no choice but to make the existing entry opaque.
358

359
  Entries[index].Type = nullptr;
360

361
  // Stretch the start of the entry to the beginning of the range.
362
  if (begin < Entries[index].Begin) {
363
    Entries[index].Begin = begin;
364
    assert(index == 0 || begin >= Entries[index - 1].End);
365
  }
366

367
  // Stretch the end of the entry to the end of the range; but if we run
368
  // into the start of the next entry, just leave the range there and repeat.
369
  while (end > Entries[index].End) {
370
    assert(Entries[index].Type == nullptr);
371

372
    // If the range doesn't overlap the next entry, we're done.
373
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374
      Entries[index].End = end;
375
      break;
376
    }
377

378
    // Otherwise, stretch to the start of the next entry.
379
    Entries[index].End = Entries[index + 1].Begin;
380

381
    // Continue with the next entry.
382
    index++;
383

384
    // This entry needs to be made opaque if it is not already.
385
    if (Entries[index].Type == nullptr)
386
      continue;
387

388
    // Split vector entries unless we completely subsume them.
389
    if (Entries[index].Type->isVectorTy() &&
390
        end < Entries[index].End) {
391
      splitVectorEntry(index);
392
    }
393

394
    // Make the entry opaque.
395
    Entries[index].Type = nullptr;
396
  }
397
}
398

399
/// Replace the entry of vector type at offset 'index' with a sequence
400
/// of its component vectors.
401
void SwiftAggLowering::splitVectorEntry(unsigned index) {
402
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
403
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
404

405
  auto eltTy = split.first;
406
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
407
  auto numElts = split.second;
408
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
409

410
  CharUnits begin = Entries[index].Begin;
411
  for (unsigned i = 0; i != numElts; ++i) {
412
    unsigned idx = index + i;
413
    Entries[idx].Type = eltTy;
414
    Entries[idx].Begin = begin;
415
    Entries[idx].End = begin + eltSize;
416
    begin += eltSize;
417
  }
418
}
419

420
/// Given a power-of-two unit size, return the offset of the aligned unit
421
/// of that size which contains the given offset.
422
///
423
/// In other words, round down to the nearest multiple of the unit size.
424
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
425
  assert(isPowerOf2(unitSize.getQuantity()));
426
  auto unitMask = ~(unitSize.getQuantity() - 1);
427
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
428
}
429

430
static bool areBytesInSameUnit(CharUnits first, CharUnits second,
431
                               CharUnits chunkSize) {
432
  return getOffsetAtStartOfUnit(first, chunkSize)
433
      == getOffsetAtStartOfUnit(second, chunkSize);
434
}
435

436
static bool isMergeableEntryType(llvm::Type *type) {
437
  // Opaquely-typed memory is always mergeable.
438
  if (type == nullptr) return true;
439

440
  // Pointers and integers are always mergeable.  In theory we should not
441
  // merge pointers, but (1) it doesn't currently matter in practice because
442
  // the chunk size is never greater than the size of a pointer and (2)
443
  // Swift IRGen uses integer types for a lot of things that are "really"
444
  // just storing pointers (like std::optional<SomePointer>).  If we ever have a
445
  // target that would otherwise combine pointers, we should put some effort
446
  // into fixing those cases in Swift IRGen and then call out pointer types
447
  // here.
448

449
  // Floating-point and vector types should never be merged.
450
  // Most such types are too large and highly-aligned to ever trigger merging
451
  // in practice, but it's important for the rule to cover at least 'half'
452
  // and 'float', as well as things like small vectors of 'i1' or 'i8'.
453
  return (!type->isFloatingPointTy() && !type->isVectorTy());
454
}
455

456
bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
457
                                          const StorageEntry &second,
458
                                          CharUnits chunkSize) {
459
  // Only merge entries that overlap the same chunk.  We test this first
460
  // despite being a bit more expensive because this is the condition that
461
  // tends to prevent merging.
462
  if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
463
                          chunkSize))
464
    return false;
465

466
  return (isMergeableEntryType(first.Type) &&
467
          isMergeableEntryType(second.Type));
468
}
469

470
void SwiftAggLowering::finish() {
471
  if (Entries.empty()) {
472
    Finished = true;
473
    return;
474
  }
475

476
  // We logically split the layout down into a series of chunks of this size,
477
  // which is generally the size of a pointer.
478
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
479

480
  // First pass: if two entries should be merged, make them both opaque
481
  // and stretch one to meet the next.
482
  // Also, remember if there are any opaque entries.
483
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
484
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
485
    if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
486
      Entries[i - 1].Type = nullptr;
487
      Entries[i].Type = nullptr;
488
      Entries[i - 1].End = Entries[i].Begin;
489
      hasOpaqueEntries = true;
490

491
    } else if (Entries[i].Type == nullptr) {
492
      hasOpaqueEntries = true;
493
    }
494
  }
495

496
  // The rest of the algorithm leaves non-opaque entries alone, so if we
497
  // have no opaque entries, we're done.
498
  if (!hasOpaqueEntries) {
499
    Finished = true;
500
    return;
501
  }
502

503
  // Okay, move the entries to a temporary and rebuild Entries.
504
  auto orig = std::move(Entries);
505
  assert(Entries.empty());
506

507
  for (size_t i = 0, e = orig.size(); i != e; ++i) {
508
    // Just copy over non-opaque entries.
509
    if (orig[i].Type != nullptr) {
510
      Entries.push_back(orig[i]);
511
      continue;
512
    }
513

514
    // Scan forward to determine the full extent of the next opaque range.
515
    // We know from the first pass that only contiguous ranges will overlap
516
    // the same aligned chunk.
517
    auto begin = orig[i].Begin;
518
    auto end = orig[i].End;
519
    while (i + 1 != e &&
520
           orig[i + 1].Type == nullptr &&
521
           end == orig[i + 1].Begin) {
522
      end = orig[i + 1].End;
523
      i++;
524
    }
525

526
    // Add an entry per intersected chunk.
527
    do {
528
      // Find the smallest aligned storage unit in the maximal aligned
529
      // storage unit containing 'begin' that contains all the bytes in
530
      // the intersection between the range and this chunk.
531
      CharUnits localBegin = begin;
532
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
533
      CharUnits chunkEnd = chunkBegin + chunkSize;
534
      CharUnits localEnd = std::min(end, chunkEnd);
535

536
      // Just do a simple loop over ever-increasing unit sizes.
537
      CharUnits unitSize = CharUnits::One();
538
      CharUnits unitBegin, unitEnd;
539
      for (; ; unitSize *= 2) {
540
        assert(unitSize <= chunkSize);
541
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
542
        unitEnd = unitBegin + unitSize;
543
        if (unitEnd >= localEnd) break;
544
      }
545

546
      // Add an entry for this unit.
547
      auto entryTy =
548
        llvm::IntegerType::get(CGM.getLLVMContext(),
549
                               CGM.getContext().toBits(unitSize));
550
      Entries.push_back({unitBegin, unitEnd, entryTy});
551

552
      // The next chunk starts where this chunk left off.
553
      begin = localEnd;
554
    } while (begin != end);
555
  }
556

557
  // Okay, finally finished.
558
  Finished = true;
559
}
560

561
void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
562
  assert(Finished && "haven't yet finished lowering");
563

564
  for (auto &entry : Entries) {
565
    callback(entry.Begin, entry.End, entry.Type);
566
  }
567
}
568

569
std::pair<llvm::StructType*, llvm::Type*>
570
SwiftAggLowering::getCoerceAndExpandTypes() const {
571
  assert(Finished && "haven't yet finished lowering");
572

573
  auto &ctx = CGM.getLLVMContext();
574

575
  if (Entries.empty()) {
576
    auto type = llvm::StructType::get(ctx);
577
    return { type, type };
578
  }
579

580
  SmallVector<llvm::Type*, 8> elts;
581
  CharUnits lastEnd = CharUnits::Zero();
582
  bool hasPadding = false;
583
  bool packed = false;
584
  for (auto &entry : Entries) {
585
    if (entry.Begin != lastEnd) {
586
      auto paddingSize = entry.Begin - lastEnd;
587
      assert(!paddingSize.isNegative());
588

589
      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
590
                                          paddingSize.getQuantity());
591
      elts.push_back(padding);
592
      hasPadding = true;
593
    }
594

595
    if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
596
                       CGM.getDataLayout().getABITypeAlign(entry.Type))))
597
      packed = true;
598

599
    elts.push_back(entry.Type);
600

601
    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
602
    assert(entry.End <= lastEnd);
603
  }
604

605
  // We don't need to adjust 'packed' to deal with possible tail padding
606
  // because we never do that kind of access through the coercion type.
607
  auto coercionType = llvm::StructType::get(ctx, elts, packed);
608

609
  llvm::Type *unpaddedType = coercionType;
610
  if (hasPadding) {
611
    elts.clear();
612
    for (auto &entry : Entries) {
613
      elts.push_back(entry.Type);
614
    }
615
    if (elts.size() == 1) {
616
      unpaddedType = elts[0];
617
    } else {
618
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
619
    }
620
  } else if (Entries.size() == 1) {
621
    unpaddedType = Entries[0].Type;
622
  }
623

624
  return { coercionType, unpaddedType };
625
}
626

627
bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
628
  assert(Finished && "haven't yet finished lowering");
629

630
  // Empty types don't need to be passed indirectly.
631
  if (Entries.empty()) return false;
632

633
  // Avoid copying the array of types when there's just a single element.
634
  if (Entries.size() == 1) {
635
    return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
636
                                                     asReturnValue);
637
  }
638

639
  SmallVector<llvm::Type*, 8> componentTys;
640
  componentTys.reserve(Entries.size());
641
  for (auto &entry : Entries) {
642
    componentTys.push_back(entry.Type);
643
  }
644
  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
645
}
646

647
bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648
                                     ArrayRef<llvm::Type*> componentTys,
649
                                     bool asReturnValue) {
650
  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
651
}
652

653
CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
654
  // Currently always the size of an ordinary pointer.
655
  return CGM.getContext().toCharUnitsFromBits(
656
      CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default));
657
}
658

659
CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
660
  // For Swift's purposes, this is always just the store size of the type
661
  // rounded up to a power of 2.
662
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663
  size = llvm::bit_ceil(size);
664
  assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
665
  return CharUnits::fromQuantity(size);
666
}
667

668
bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
669
                                   llvm::IntegerType *intTy) {
670
  auto size = intTy->getBitWidth();
671
  switch (size) {
672
  case 1:
673
  case 8:
674
  case 16:
675
  case 32:
676
  case 64:
677
    // Just assume that the above are always legal.
678
    return true;
679

680
  case 128:
681
    return CGM.getContext().getTargetInfo().hasInt128Type();
682

683
  default:
684
    return false;
685
  }
686
}
687

688
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
689
                                  llvm::VectorType *vectorTy) {
690
  return isLegalVectorType(
691
      CGM, vectorSize, vectorTy->getElementType(),
692
      cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
693
}
694

695
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
696
                                  llvm::Type *eltTy, unsigned numElts) {
697
  assert(numElts > 1 && "illegal vector length");
698
  return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
699
}
700

701
std::pair<llvm::Type*, unsigned>
702
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
703
                                llvm::VectorType *vectorTy) {
704
  auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
705
  auto eltTy = vectorTy->getElementType();
706

707
  // Try to split the vector type in half.
708
  if (numElts >= 4 && isPowerOf2(numElts)) {
709
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
710
      return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
711
  }
712

713
  return {eltTy, numElts};
714
}
715

716
void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
717
                                   llvm::VectorType *origVectorTy,
718
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
719
  // If it's already a legal vector type, use it.
720
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
721
    components.push_back(origVectorTy);
722
    return;
723
  }
724

725
  // Try to split the vector into legal subvectors.
726
  auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
727
  auto eltTy = origVectorTy->getElementType();
728
  assert(numElts != 1);
729

730
  // The largest size that we're still considering making subvectors of.
731
  // Always a power of 2.
732
  unsigned logCandidateNumElts = llvm::Log2_32(numElts);
733
  unsigned candidateNumElts = 1U << logCandidateNumElts;
734
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
735

736
  // Minor optimization: don't check the legality of this exact size twice.
737
  if (candidateNumElts == numElts) {
738
    logCandidateNumElts--;
739
    candidateNumElts >>= 1;
740
  }
741

742
  CharUnits eltSize = (origVectorSize / numElts);
743
  CharUnits candidateSize = eltSize * candidateNumElts;
744

745
  // The sensibility of this algorithm relies on the fact that we never
746
  // have a legal non-power-of-2 vector size without having the power of 2
747
  // also be legal.
748
  while (logCandidateNumElts > 0) {
749
    assert(candidateNumElts == 1U << logCandidateNumElts);
750
    assert(candidateNumElts <= numElts);
751
    assert(candidateSize == eltSize * candidateNumElts);
752

753
    // Skip illegal vector sizes.
754
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
755
      logCandidateNumElts--;
756
      candidateNumElts /= 2;
757
      candidateSize /= 2;
758
      continue;
759
    }
760

761
    // Add the right number of vectors of this size.
762
    auto numVecs = numElts >> logCandidateNumElts;
763
    components.append(numVecs,
764
                      llvm::FixedVectorType::get(eltTy, candidateNumElts));
765
    numElts -= (numVecs << logCandidateNumElts);
766

767
    if (numElts == 0) return;
768

769
    // It's possible that the number of elements remaining will be legal.
770
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
771
    // This only needs to be separately checked if it's not a power of 2.
772
    if (numElts > 2 && !isPowerOf2(numElts) &&
773
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
774
      components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
775
      return;
776
    }
777

778
    // Bring vecSize down to something no larger than numElts.
779
    do {
780
      logCandidateNumElts--;
781
      candidateNumElts /= 2;
782
      candidateSize /= 2;
783
    } while (candidateNumElts > numElts);
784
  }
785

786
  // Otherwise, just append a bunch of individual elements.
787
  components.append(numElts, eltTy);
788
}
789

790
bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
791
                                         const RecordDecl *record) {
792
  // FIXME: should we not rely on the standard computation in Sema, just in
793
  // case we want to diverge from the platform ABI (e.g. on targets where
794
  // that uses the MSVC rule)?
795
  return !record->canPassInRegisters();
796
}
797

798
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
799
                                       bool forReturn,
800
                                       CharUnits alignmentForIndirect) {
801
  if (lowering.empty()) {
802
    return ABIArgInfo::getIgnore();
803
  } else if (lowering.shouldPassIndirectly(forReturn)) {
804
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
805
  } else {
806
    auto types = lowering.getCoerceAndExpandTypes();
807
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
808
  }
809
}
810

811
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
812
                               bool forReturn) {
813
  if (auto recordType = dyn_cast<RecordType>(type)) {
814
    auto record = recordType->getDecl();
815
    auto &layout = CGM.getContext().getASTRecordLayout(record);
816

817
    if (mustPassRecordIndirectly(CGM, record))
818
      return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
819

820
    SwiftAggLowering lowering(CGM);
821
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
822
    lowering.finish();
823

824
    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
825
  }
826

827
  // Just assume that all of our target ABIs can support returning at least
828
  // two integer or floating-point values.
829
  if (isa<ComplexType>(type)) {
830
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
831
  }
832

833
  // Vector types may need to be legalized.
834
  if (isa<VectorType>(type)) {
835
    SwiftAggLowering lowering(CGM);
836
    lowering.addTypedData(type, CharUnits::Zero());
837
    lowering.finish();
838

839
    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
840
    return classifyExpandedType(lowering, forReturn, alignment);
841
  }
842

843
  // Member pointer types need to be expanded, but it's a simple form of
844
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
845
  // true for this to work.
846

847
  // 'void' needs to be ignored.
848
  if (type->isVoidType()) {
849
    return ABIArgInfo::getIgnore();
850
  }
851

852
  // Everything else can be passed directly.
853
  return ABIArgInfo::getDirect();
854
}
855

856
ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
857
  return classifyType(CGM, type, /*forReturn*/ true);
858
}
859

860
ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
861
                                           CanQualType type) {
862
  return classifyType(CGM, type, /*forReturn*/ false);
863
}
864

865
void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
866
  auto &retInfo = FI.getReturnInfo();
867
  retInfo = classifyReturnType(CGM, FI.getReturnType());
868

869
  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
870
    auto &argInfo = FI.arg_begin()[i];
871
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
872
  }
873
}
874

875
// Is swifterror lowered to a register by the target ABI.
876
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
877
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
878
}
879

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.