llvm-project
83 строки · 4.1 Кб
1//===--- PatternInit.cpp - Pattern Initialization -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "PatternInit.h"
10#include "CodeGenModule.h"
11#include "clang/Basic/TargetInfo.h"
12#include "llvm/IR/Constant.h"
13#include "llvm/IR/Type.h"
14
15llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM,
16llvm::Type *Ty) {
17// The following value is a guaranteed unmappable pointer value and has a
18// repeated byte-pattern which makes it easier to synthesize. We use it for
19// pointers as well as integers so that aggregates are likely to be
20// initialized with this repeated value.
21// For 32-bit platforms it's a bit trickier because, across systems, only the
22// zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF
23// assuming that memory access will overlap into zero page.
24const uint64_t IntValue =
25CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64
26? 0xFFFFFFFFFFFFFFFFull
27: 0xAAAAAAAAAAAAAAAAull;
28// Floating-point values are initialized as NaNs because they propagate. Using
29// a repeated byte pattern means that it will be easier to initialize
30// all-floating-point aggregates and arrays with memset. Further, aggregates
31// which mix integral and a few floats might also initialize with memset
32// followed by a handful of stores for the floats. Using fairly unique NaNs
33// also means they'll be easier to distinguish in a crash.
34constexpr bool NegativeNaN = true;
35constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
36if (Ty->isIntOrIntVectorTy()) {
37unsigned BitWidth =
38cast<llvm::IntegerType>(Ty->getScalarType())->getBitWidth();
39if (BitWidth <= 64)
40return llvm::ConstantInt::get(Ty, IntValue);
41return llvm::ConstantInt::get(
42Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, IntValue)));
43}
44if (Ty->isPtrOrPtrVectorTy()) {
45auto *PtrTy = cast<llvm::PointerType>(Ty->getScalarType());
46unsigned PtrWidth =
47CGM.getDataLayout().getPointerSizeInBits(PtrTy->getAddressSpace());
48if (PtrWidth > 64)
49llvm_unreachable("pattern initialization of unsupported pointer width");
50llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
51auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
52return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
53}
54if (Ty->isFPOrFPVectorTy()) {
55unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
56Ty->getScalarType()->getFltSemantics());
57llvm::APInt Payload(64, NaNPayload);
58if (BitWidth >= 64)
59Payload = llvm::APInt::getSplat(BitWidth, Payload);
60return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
61}
62if (Ty->isArrayTy()) {
63// Note: this doesn't touch tail padding (at the end of an object, before
64// the next array object). It is instead handled by replaceUndef.
65auto *ArrTy = cast<llvm::ArrayType>(Ty);
66llvm::SmallVector<llvm::Constant *, 8> Element(
67ArrTy->getNumElements(),
68initializationPatternFor(CGM, ArrTy->getElementType()));
69return llvm::ConstantArray::get(ArrTy, Element);
70}
71
72// Note: this doesn't touch struct padding. It will initialize as much union
73// padding as is required for the largest type in the union. Padding is
74// instead handled by replaceUndef. Stores to structs with volatile members
75// don't have a volatile qualifier when initialized according to C++. This is
76// fine because stack-based volatiles don't really have volatile semantics
77// anyways, and the initialization shouldn't be observable.
78auto *StructTy = cast<llvm::StructType>(Ty);
79llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
80for (unsigned El = 0; El != Struct.size(); ++El)
81Struct[El] = initializationPatternFor(CGM, StructTy->getElementType(El));
82return llvm::ConstantStruct::get(StructTy, Struct);
83}
84