llvm-project

Форк
0
/
CGObjCGNU.cpp 
4364 строки · 176.5 Кб
1
//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This provides Objective-C code generation targeting the GNU runtime.  The
10
// class in this file generates structures used by the GNU Objective-C runtime
11
// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
12
// the GNU runtime distribution.
13
//
14
//===----------------------------------------------------------------------===//
15

16
#include "CGCXXABI.h"
17
#include "CGCleanup.h"
18
#include "CGObjCRuntime.h"
19
#include "CodeGenFunction.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenTypes.h"
22
#include "SanitizerMetadata.h"
23
#include "clang/AST/ASTContext.h"
24
#include "clang/AST/Attr.h"
25
#include "clang/AST/Decl.h"
26
#include "clang/AST/DeclObjC.h"
27
#include "clang/AST/RecordLayout.h"
28
#include "clang/AST/StmtObjC.h"
29
#include "clang/Basic/FileManager.h"
30
#include "clang/Basic/SourceManager.h"
31
#include "clang/CodeGen/ConstantInitBuilder.h"
32
#include "llvm/ADT/SmallVector.h"
33
#include "llvm/ADT/StringMap.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/Intrinsics.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Module.h"
38
#include "llvm/Support/Compiler.h"
39
#include "llvm/Support/ConvertUTF.h"
40
#include <cctype>
41

42
using namespace clang;
43
using namespace CodeGen;
44

45
namespace {
46

47
/// Class that lazily initialises the runtime function.  Avoids inserting the
48
/// types and the function declaration into a module if they're not used, and
49
/// avoids constructing the type more than once if it's used more than once.
50
class LazyRuntimeFunction {
51
  CodeGenModule *CGM = nullptr;
52
  llvm::FunctionType *FTy = nullptr;
53
  const char *FunctionName = nullptr;
54
  llvm::FunctionCallee Function = nullptr;
55

56
public:
57
  LazyRuntimeFunction() = default;
58

59
  /// Initialises the lazy function with the name, return type, and the types
60
  /// of the arguments.
61
  template <typename... Tys>
62
  void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
63
            Tys *... Types) {
64
    CGM = Mod;
65
    FunctionName = name;
66
    Function = nullptr;
67
    if(sizeof...(Tys)) {
68
      SmallVector<llvm::Type *, 8> ArgTys({Types...});
69
      FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
70
    }
71
    else {
72
      FTy = llvm::FunctionType::get(RetTy, std::nullopt, false);
73
    }
74
  }
75

76
  llvm::FunctionType *getType() { return FTy; }
77

78
  /// Overloaded cast operator, allows the class to be implicitly cast to an
79
  /// LLVM constant.
80
  operator llvm::FunctionCallee() {
81
    if (!Function) {
82
      if (!FunctionName)
83
        return nullptr;
84
      Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
85
    }
86
    return Function;
87
  }
88
};
89

90

91
/// GNU Objective-C runtime code generation.  This class implements the parts of
92
/// Objective-C support that are specific to the GNU family of runtimes (GCC,
93
/// GNUstep and ObjFW).
94
class CGObjCGNU : public CGObjCRuntime {
95
protected:
96
  /// The LLVM module into which output is inserted
97
  llvm::Module &TheModule;
98
  /// strut objc_super.  Used for sending messages to super.  This structure
99
  /// contains the receiver (object) and the expected class.
100
  llvm::StructType *ObjCSuperTy;
101
  /// struct objc_super*.  The type of the argument to the superclass message
102
  /// lookup functions.
103
  llvm::PointerType *PtrToObjCSuperTy;
104
  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
105
  /// SEL is included in a header somewhere, in which case it will be whatever
106
  /// type is declared in that header, most likely {i8*, i8*}.
107
  llvm::PointerType *SelectorTy;
108
  /// Element type of SelectorTy.
109
  llvm::Type *SelectorElemTy;
110
  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
111
  /// places where it's used
112
  llvm::IntegerType *Int8Ty;
113
  /// Pointer to i8 - LLVM type of char*, for all of the places where the
114
  /// runtime needs to deal with C strings.
115
  llvm::PointerType *PtrToInt8Ty;
116
  /// struct objc_protocol type
117
  llvm::StructType *ProtocolTy;
118
  /// Protocol * type.
119
  llvm::PointerType *ProtocolPtrTy;
120
  /// Instance Method Pointer type.  This is a pointer to a function that takes,
121
  /// at a minimum, an object and a selector, and is the generic type for
122
  /// Objective-C methods.  Due to differences between variadic / non-variadic
123
  /// calling conventions, it must always be cast to the correct type before
124
  /// actually being used.
125
  llvm::PointerType *IMPTy;
126
  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
127
  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
128
  /// but if the runtime header declaring it is included then it may be a
129
  /// pointer to a structure.
130
  llvm::PointerType *IdTy;
131
  /// Element type of IdTy.
132
  llvm::Type *IdElemTy;
133
  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
134
  /// message lookup function and some GC-related functions.
135
  llvm::PointerType *PtrToIdTy;
136
  /// The clang type of id.  Used when using the clang CGCall infrastructure to
137
  /// call Objective-C methods.
138
  CanQualType ASTIdTy;
139
  /// LLVM type for C int type.
140
  llvm::IntegerType *IntTy;
141
  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
142
  /// used in the code to document the difference between i8* meaning a pointer
143
  /// to a C string and i8* meaning a pointer to some opaque type.
144
  llvm::PointerType *PtrTy;
145
  /// LLVM type for C long type.  The runtime uses this in a lot of places where
146
  /// it should be using intptr_t, but we can't fix this without breaking
147
  /// compatibility with GCC...
148
  llvm::IntegerType *LongTy;
149
  /// LLVM type for C size_t.  Used in various runtime data structures.
150
  llvm::IntegerType *SizeTy;
151
  /// LLVM type for C intptr_t.
152
  llvm::IntegerType *IntPtrTy;
153
  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
154
  llvm::IntegerType *PtrDiffTy;
155
  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
156
  /// variables.
157
  llvm::PointerType *PtrToIntTy;
158
  /// LLVM type for Objective-C BOOL type.
159
  llvm::Type *BoolTy;
160
  /// 32-bit integer type, to save us needing to look it up every time it's used.
161
  llvm::IntegerType *Int32Ty;
162
  /// 64-bit integer type, to save us needing to look it up every time it's used.
163
  llvm::IntegerType *Int64Ty;
164
  /// The type of struct objc_property.
165
  llvm::StructType *PropertyMetadataTy;
166
  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
167
  /// runtime provides some LLVM passes that can use this to do things like
168
  /// automatic IMP caching and speculative inlining.
169
  unsigned msgSendMDKind;
170
  /// Does the current target use SEH-based exceptions? False implies
171
  /// Itanium-style DWARF unwinding.
172
  bool usesSEHExceptions;
173
  /// Does the current target uses C++-based exceptions?
174
  bool usesCxxExceptions;
175

176
  /// Helper to check if we are targeting a specific runtime version or later.
177
  bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
178
    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
179
    return (R.getKind() == kind) &&
180
      (R.getVersion() >= VersionTuple(major, minor));
181
  }
182

183
  std::string ManglePublicSymbol(StringRef Name) {
184
    return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
185
  }
186

187
  std::string SymbolForProtocol(Twine Name) {
188
    return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
189
  }
190

191
  std::string SymbolForProtocolRef(StringRef Name) {
192
    return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
193
  }
194

195

196
  /// Helper function that generates a constant string and returns a pointer to
197
  /// the start of the string.  The result of this function can be used anywhere
198
  /// where the C code specifies const char*.
199
  llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
200
    ConstantAddress Array =
201
        CGM.GetAddrOfConstantCString(std::string(Str), Name);
202
    return Array.getPointer();
203
  }
204

205
  /// Emits a linkonce_odr string, whose name is the prefix followed by the
206
  /// string value.  This allows the linker to combine the strings between
207
  /// different modules.  Used for EH typeinfo names, selector strings, and a
208
  /// few other things.
209
  llvm::Constant *ExportUniqueString(const std::string &Str,
210
                                     const std::string &prefix,
211
                                     bool Private=false) {
212
    std::string name = prefix + Str;
213
    auto *ConstStr = TheModule.getGlobalVariable(name);
214
    if (!ConstStr) {
215
      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
216
      auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
217
              llvm::GlobalValue::LinkOnceODRLinkage, value, name);
218
      GV->setComdat(TheModule.getOrInsertComdat(name));
219
      if (Private)
220
        GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
221
      ConstStr = GV;
222
    }
223
    return ConstStr;
224
  }
225

226
  /// Returns a property name and encoding string.
227
  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
228
                                             const Decl *Container) {
229
    assert(!isRuntime(ObjCRuntime::GNUstep, 2));
230
    if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
231
      std::string NameAndAttributes;
232
      std::string TypeStr =
233
        CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
234
      NameAndAttributes += '\0';
235
      NameAndAttributes += TypeStr.length() + 3;
236
      NameAndAttributes += TypeStr;
237
      NameAndAttributes += '\0';
238
      NameAndAttributes += PD->getNameAsString();
239
      return MakeConstantString(NameAndAttributes);
240
    }
241
    return MakeConstantString(PD->getNameAsString());
242
  }
243

244
  /// Push the property attributes into two structure fields.
245
  void PushPropertyAttributes(ConstantStructBuilder &Fields,
246
      const ObjCPropertyDecl *property, bool isSynthesized=true, bool
247
      isDynamic=true) {
248
    int attrs = property->getPropertyAttributes();
249
    // For read-only properties, clear the copy and retain flags
250
    if (attrs & ObjCPropertyAttribute::kind_readonly) {
251
      attrs &= ~ObjCPropertyAttribute::kind_copy;
252
      attrs &= ~ObjCPropertyAttribute::kind_retain;
253
      attrs &= ~ObjCPropertyAttribute::kind_weak;
254
      attrs &= ~ObjCPropertyAttribute::kind_strong;
255
    }
256
    // The first flags field has the same attribute values as clang uses internally
257
    Fields.addInt(Int8Ty, attrs & 0xff);
258
    attrs >>= 8;
259
    attrs <<= 2;
260
    // For protocol properties, synthesized and dynamic have no meaning, so we
261
    // reuse these flags to indicate that this is a protocol property (both set
262
    // has no meaning, as a property can't be both synthesized and dynamic)
263
    attrs |= isSynthesized ? (1<<0) : 0;
264
    attrs |= isDynamic ? (1<<1) : 0;
265
    // The second field is the next four fields left shifted by two, with the
266
    // low bit set to indicate whether the field is synthesized or dynamic.
267
    Fields.addInt(Int8Ty, attrs & 0xff);
268
    // Two padding fields
269
    Fields.addInt(Int8Ty, 0);
270
    Fields.addInt(Int8Ty, 0);
271
  }
272

273
  virtual llvm::Constant *GenerateCategoryProtocolList(const
274
      ObjCCategoryDecl *OCD);
275
  virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
276
      int count) {
277
      // int count;
278
      Fields.addInt(IntTy, count);
279
      // int size; (only in GNUstep v2 ABI.
280
      if (isRuntime(ObjCRuntime::GNUstep, 2)) {
281
        llvm::DataLayout td(&TheModule);
282
        Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
283
            CGM.getContext().getCharWidth());
284
      }
285
      // struct objc_property_list *next;
286
      Fields.add(NULLPtr);
287
      // struct objc_property properties[]
288
      return Fields.beginArray(PropertyMetadataTy);
289
  }
290
  virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
291
            const ObjCPropertyDecl *property,
292
            const Decl *OCD,
293
            bool isSynthesized=true, bool
294
            isDynamic=true) {
295
    auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
296
    ASTContext &Context = CGM.getContext();
297
    Fields.add(MakePropertyEncodingString(property, OCD));
298
    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
299
    auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
300
      if (accessor) {
301
        std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
302
        llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
303
        Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
304
        Fields.add(TypeEncoding);
305
      } else {
306
        Fields.add(NULLPtr);
307
        Fields.add(NULLPtr);
308
      }
309
    };
310
    addPropertyMethod(property->getGetterMethodDecl());
311
    addPropertyMethod(property->getSetterMethodDecl());
312
    Fields.finishAndAddTo(PropertiesArray);
313
  }
314

315
  /// Ensures that the value has the required type, by inserting a bitcast if
316
  /// required.  This function lets us avoid inserting bitcasts that are
317
  /// redundant.
318
  llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
319
    if (V->getType() == Ty)
320
      return V;
321
    return B.CreateBitCast(V, Ty);
322
  }
323

324
  // Some zeros used for GEPs in lots of places.
325
  llvm::Constant *Zeros[2];
326
  /// Null pointer value.  Mainly used as a terminator in various arrays.
327
  llvm::Constant *NULLPtr;
328
  /// LLVM context.
329
  llvm::LLVMContext &VMContext;
330

331
protected:
332

333
  /// Placeholder for the class.  Lots of things refer to the class before we've
334
  /// actually emitted it.  We use this alias as a placeholder, and then replace
335
  /// it with a pointer to the class structure before finally emitting the
336
  /// module.
337
  llvm::GlobalAlias *ClassPtrAlias;
338
  /// Placeholder for the metaclass.  Lots of things refer to the class before
339
  /// we've / actually emitted it.  We use this alias as a placeholder, and then
340
  /// replace / it with a pointer to the metaclass structure before finally
341
  /// emitting the / module.
342
  llvm::GlobalAlias *MetaClassPtrAlias;
343
  /// All of the classes that have been generated for this compilation units.
344
  std::vector<llvm::Constant*> Classes;
345
  /// All of the categories that have been generated for this compilation units.
346
  std::vector<llvm::Constant*> Categories;
347
  /// All of the Objective-C constant strings that have been generated for this
348
  /// compilation units.
349
  std::vector<llvm::Constant*> ConstantStrings;
350
  /// Map from string values to Objective-C constant strings in the output.
351
  /// Used to prevent emitting Objective-C strings more than once.  This should
352
  /// not be required at all - CodeGenModule should manage this list.
353
  llvm::StringMap<llvm::Constant*> ObjCStrings;
354
  /// All of the protocols that have been declared.
355
  llvm::StringMap<llvm::Constant*> ExistingProtocols;
356
  /// For each variant of a selector, we store the type encoding and a
357
  /// placeholder value.  For an untyped selector, the type will be the empty
358
  /// string.  Selector references are all done via the module's selector table,
359
  /// so we create an alias as a placeholder and then replace it with the real
360
  /// value later.
361
  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
362
  /// Type of the selector map.  This is roughly equivalent to the structure
363
  /// used in the GNUstep runtime, which maintains a list of all of the valid
364
  /// types for a selector in a table.
365
  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
366
    SelectorMap;
367
  /// A map from selectors to selector types.  This allows us to emit all
368
  /// selectors of the same name and type together.
369
  SelectorMap SelectorTable;
370

371
  /// Selectors related to memory management.  When compiling in GC mode, we
372
  /// omit these.
373
  Selector RetainSel, ReleaseSel, AutoreleaseSel;
374
  /// Runtime functions used for memory management in GC mode.  Note that clang
375
  /// supports code generation for calling these functions, but neither GNU
376
  /// runtime actually supports this API properly yet.
377
  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
378
    WeakAssignFn, GlobalAssignFn;
379

380
  typedef std::pair<std::string, std::string> ClassAliasPair;
381
  /// All classes that have aliases set for them.
382
  std::vector<ClassAliasPair> ClassAliases;
383

384
protected:
385
  /// Function used for throwing Objective-C exceptions.
386
  LazyRuntimeFunction ExceptionThrowFn;
387
  /// Function used for rethrowing exceptions, used at the end of \@finally or
388
  /// \@synchronize blocks.
389
  LazyRuntimeFunction ExceptionReThrowFn;
390
  /// Function called when entering a catch function.  This is required for
391
  /// differentiating Objective-C exceptions and foreign exceptions.
392
  LazyRuntimeFunction EnterCatchFn;
393
  /// Function called when exiting from a catch block.  Used to do exception
394
  /// cleanup.
395
  LazyRuntimeFunction ExitCatchFn;
396
  /// Function called when entering an \@synchronize block.  Acquires the lock.
397
  LazyRuntimeFunction SyncEnterFn;
398
  /// Function called when exiting an \@synchronize block.  Releases the lock.
399
  LazyRuntimeFunction SyncExitFn;
400

401
private:
402
  /// Function called if fast enumeration detects that the collection is
403
  /// modified during the update.
404
  LazyRuntimeFunction EnumerationMutationFn;
405
  /// Function for implementing synthesized property getters that return an
406
  /// object.
407
  LazyRuntimeFunction GetPropertyFn;
408
  /// Function for implementing synthesized property setters that return an
409
  /// object.
410
  LazyRuntimeFunction SetPropertyFn;
411
  /// Function used for non-object declared property getters.
412
  LazyRuntimeFunction GetStructPropertyFn;
413
  /// Function used for non-object declared property setters.
414
  LazyRuntimeFunction SetStructPropertyFn;
415

416
protected:
417
  /// The version of the runtime that this class targets.  Must match the
418
  /// version in the runtime.
419
  int RuntimeVersion;
420
  /// The version of the protocol class.  Used to differentiate between ObjC1
421
  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
422
  /// components and can not contain declared properties.  We always emit
423
  /// Objective-C 2 property structures, but we have to pretend that they're
424
  /// Objective-C 1 property structures when targeting the GCC runtime or it
425
  /// will abort.
426
  const int ProtocolVersion;
427
  /// The version of the class ABI.  This value is used in the class structure
428
  /// and indicates how various fields should be interpreted.
429
  const int ClassABIVersion;
430
  /// Generates an instance variable list structure.  This is a structure
431
  /// containing a size and an array of structures containing instance variable
432
  /// metadata.  This is used purely for introspection in the fragile ABI.  In
433
  /// the non-fragile ABI, it's used for instance variable fixup.
434
  virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435
                             ArrayRef<llvm::Constant *> IvarTypes,
436
                             ArrayRef<llvm::Constant *> IvarOffsets,
437
                             ArrayRef<llvm::Constant *> IvarAlign,
438
                             ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
439

440
  /// Generates a method list structure.  This is a structure containing a size
441
  /// and an array of structures containing method metadata.
442
  ///
443
  /// This structure is used by both classes and categories, and contains a next
444
  /// pointer allowing them to be chained together in a linked list.
445
  llvm::Constant *GenerateMethodList(StringRef ClassName,
446
      StringRef CategoryName,
447
      ArrayRef<const ObjCMethodDecl*> Methods,
448
      bool isClassMethodList);
449

450
  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
451
  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
452
  /// real protocol.
453
  virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
454

455
  /// Generates a list of property metadata structures.  This follows the same
456
  /// pattern as method and instance variable metadata lists.
457
  llvm::Constant *GeneratePropertyList(const Decl *Container,
458
      const ObjCContainerDecl *OCD,
459
      bool isClassProperty=false,
460
      bool protocolOptionalProperties=false);
461

462
  /// Generates a list of referenced protocols.  Classes, categories, and
463
  /// protocols all use this structure.
464
  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
465

466
  /// To ensure that all protocols are seen by the runtime, we add a category on
467
  /// a class defined in the runtime, declaring no methods, but adopting the
468
  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
469
  /// of the protocols without changing the ABI.
470
  void GenerateProtocolHolderCategory();
471

472
  /// Generates a class structure.
473
  llvm::Constant *GenerateClassStructure(
474
      llvm::Constant *MetaClass,
475
      llvm::Constant *SuperClass,
476
      unsigned info,
477
      const char *Name,
478
      llvm::Constant *Version,
479
      llvm::Constant *InstanceSize,
480
      llvm::Constant *IVars,
481
      llvm::Constant *Methods,
482
      llvm::Constant *Protocols,
483
      llvm::Constant *IvarOffsets,
484
      llvm::Constant *Properties,
485
      llvm::Constant *StrongIvarBitmap,
486
      llvm::Constant *WeakIvarBitmap,
487
      bool isMeta=false);
488

489
  /// Generates a method list.  This is used by protocols to define the required
490
  /// and optional methods.
491
  virtual llvm::Constant *GenerateProtocolMethodList(
492
      ArrayRef<const ObjCMethodDecl*> Methods);
493
  /// Emits optional and required method lists.
494
  template<class T>
495
  void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
496
      llvm::Constant *&Optional) {
497
    SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
498
    SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
499
    for (const auto *I : Methods)
500
      if (I->isOptional())
501
        OptionalMethods.push_back(I);
502
      else
503
        RequiredMethods.push_back(I);
504
    Required = GenerateProtocolMethodList(RequiredMethods);
505
    Optional = GenerateProtocolMethodList(OptionalMethods);
506
  }
507

508
  /// Returns a selector with the specified type encoding.  An empty string is
509
  /// used to return an untyped selector (with the types field set to NULL).
510
  virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
511
                                        const std::string &TypeEncoding);
512

513
  /// Returns the name of ivar offset variables.  In the GNUstep v1 ABI, this
514
  /// contains the class and ivar names, in the v2 ABI this contains the type
515
  /// encoding as well.
516
  virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
517
                                                const ObjCIvarDecl *Ivar) {
518
    const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
519
      + '.' + Ivar->getNameAsString();
520
    return Name;
521
  }
522
  /// Returns the variable used to store the offset of an instance variable.
523
  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
524
      const ObjCIvarDecl *Ivar);
525
  /// Emits a reference to a class.  This allows the linker to object if there
526
  /// is no class of the matching name.
527
  void EmitClassRef(const std::string &className);
528

529
  /// Emits a pointer to the named class
530
  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
531
                                     const std::string &Name, bool isWeak);
532

533
  /// Looks up the method for sending a message to the specified object.  This
534
  /// mechanism differs between the GCC and GNU runtimes, so this method must be
535
  /// overridden in subclasses.
536
  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
537
                                 llvm::Value *&Receiver,
538
                                 llvm::Value *cmd,
539
                                 llvm::MDNode *node,
540
                                 MessageSendInfo &MSI) = 0;
541

542
  /// Looks up the method for sending a message to a superclass.  This
543
  /// mechanism differs between the GCC and GNU runtimes, so this method must
544
  /// be overridden in subclasses.
545
  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
546
                                      Address ObjCSuper,
547
                                      llvm::Value *cmd,
548
                                      MessageSendInfo &MSI) = 0;
549

550
  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
551
  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
552
  /// bits set to their values, LSB first, while larger ones are stored in a
553
  /// structure of this / form:
554
  ///
555
  /// struct { int32_t length; int32_t values[length]; };
556
  ///
557
  /// The values in the array are stored in host-endian format, with the least
558
  /// significant bit being assumed to come first in the bitfield.  Therefore,
559
  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
560
  /// while a bitfield / with the 63rd bit set will be 1<<64.
561
  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
562

563
public:
564
  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
565
      unsigned protocolClassVersion, unsigned classABI=1);
566

567
  ConstantAddress GenerateConstantString(const StringLiteral *) override;
568

569
  RValue
570
  GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
571
                      QualType ResultType, Selector Sel,
572
                      llvm::Value *Receiver, const CallArgList &CallArgs,
573
                      const ObjCInterfaceDecl *Class,
574
                      const ObjCMethodDecl *Method) override;
575
  RValue
576
  GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
577
                           QualType ResultType, Selector Sel,
578
                           const ObjCInterfaceDecl *Class,
579
                           bool isCategoryImpl, llvm::Value *Receiver,
580
                           bool IsClassMessage, const CallArgList &CallArgs,
581
                           const ObjCMethodDecl *Method) override;
582
  llvm::Value *GetClass(CodeGenFunction &CGF,
583
                        const ObjCInterfaceDecl *OID) override;
584
  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585
  Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
586
  llvm::Value *GetSelector(CodeGenFunction &CGF,
587
                           const ObjCMethodDecl *Method) override;
588
  virtual llvm::Constant *GetConstantSelector(Selector Sel,
589
                                              const std::string &TypeEncoding) {
590
    llvm_unreachable("Runtime unable to generate constant selector");
591
  }
592
  llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
593
    return GetConstantSelector(M->getSelector(),
594
        CGM.getContext().getObjCEncodingForMethodDecl(M));
595
  }
596
  llvm::Constant *GetEHType(QualType T) override;
597

598
  llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
599
                                 const ObjCContainerDecl *CD) override;
600

601
  // Map to unify direct method definitions.
602
  llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *>
603
      DirectMethodDefinitions;
604
  void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
605
                                    const ObjCMethodDecl *OMD,
606
                                    const ObjCContainerDecl *CD) override;
607
  void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
608
  void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
609
  void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
610
  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
611
                                   const ObjCProtocolDecl *PD) override;
612
  void GenerateProtocol(const ObjCProtocolDecl *PD) override;
613

614
  virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
615

616
  llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
617
    return GenerateProtocolRef(PD);
618
  }
619

620
  llvm::Function *ModuleInitFunction() override;
621
  llvm::FunctionCallee GetPropertyGetFunction() override;
622
  llvm::FunctionCallee GetPropertySetFunction() override;
623
  llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
624
                                                       bool copy) override;
625
  llvm::FunctionCallee GetSetStructFunction() override;
626
  llvm::FunctionCallee GetGetStructFunction() override;
627
  llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
628
  llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
629
  llvm::FunctionCallee EnumerationMutationFunction() override;
630

631
  void EmitTryStmt(CodeGenFunction &CGF,
632
                   const ObjCAtTryStmt &S) override;
633
  void EmitSynchronizedStmt(CodeGenFunction &CGF,
634
                            const ObjCAtSynchronizedStmt &S) override;
635
  void EmitThrowStmt(CodeGenFunction &CGF,
636
                     const ObjCAtThrowStmt &S,
637
                     bool ClearInsertionPoint=true) override;
638
  llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
639
                                 Address AddrWeakObj) override;
640
  void EmitObjCWeakAssign(CodeGenFunction &CGF,
641
                          llvm::Value *src, Address dst) override;
642
  void EmitObjCGlobalAssign(CodeGenFunction &CGF,
643
                            llvm::Value *src, Address dest,
644
                            bool threadlocal=false) override;
645
  void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
646
                          Address dest, llvm::Value *ivarOffset) override;
647
  void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
648
                                llvm::Value *src, Address dest) override;
649
  void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
650
                                Address SrcPtr,
651
                                llvm::Value *Size) override;
652
  LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
653
                              llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
654
                              unsigned CVRQualifiers) override;
655
  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
656
                              const ObjCInterfaceDecl *Interface,
657
                              const ObjCIvarDecl *Ivar) override;
658
  llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
659
  llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
660
                                     const CGBlockInfo &blockInfo) override {
661
    return NULLPtr;
662
  }
663
  llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
664
                                     const CGBlockInfo &blockInfo) override {
665
    return NULLPtr;
666
  }
667

668
  llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
669
    return NULLPtr;
670
  }
671
};
672

673
/// Class representing the legacy GCC Objective-C ABI.  This is the default when
674
/// -fobjc-nonfragile-abi is not specified.
675
///
676
/// The GCC ABI target actually generates code that is approximately compatible
677
/// with the new GNUstep runtime ABI, but refrains from using any features that
678
/// would not work with the GCC runtime.  For example, clang always generates
679
/// the extended form of the class structure, and the extra fields are simply
680
/// ignored by GCC libobjc.
681
class CGObjCGCC : public CGObjCGNU {
682
  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
683
  /// method implementation for this message.
684
  LazyRuntimeFunction MsgLookupFn;
685
  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
686
  /// structure describing the receiver and the class, and a selector as
687
  /// arguments.  Returns the IMP for the corresponding method.
688
  LazyRuntimeFunction MsgLookupSuperFn;
689

690
protected:
691
  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
692
                         llvm::Value *cmd, llvm::MDNode *node,
693
                         MessageSendInfo &MSI) override {
694
    CGBuilderTy &Builder = CGF.Builder;
695
    llvm::Value *args[] = {
696
            EnforceType(Builder, Receiver, IdTy),
697
            EnforceType(Builder, cmd, SelectorTy) };
698
    llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
699
    imp->setMetadata(msgSendMDKind, node);
700
    return imp;
701
  }
702

703
  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
704
                              llvm::Value *cmd, MessageSendInfo &MSI) override {
705
    CGBuilderTy &Builder = CGF.Builder;
706
    llvm::Value *lookupArgs[] = {
707
        EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
708
        cmd};
709
    return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
710
  }
711

712
public:
713
  CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
714
    // IMP objc_msg_lookup(id, SEL);
715
    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
716
    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
717
    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
718
                          PtrToObjCSuperTy, SelectorTy);
719
  }
720
};
721

722
/// Class used when targeting the new GNUstep runtime ABI.
723
class CGObjCGNUstep : public CGObjCGNU {
724
    /// The slot lookup function.  Returns a pointer to a cacheable structure
725
    /// that contains (among other things) the IMP.
726
    LazyRuntimeFunction SlotLookupFn;
727
    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
728
    /// a structure describing the receiver and the class, and a selector as
729
    /// arguments.  Returns the slot for the corresponding method.  Superclass
730
    /// message lookup rarely changes, so this is a good caching opportunity.
731
    LazyRuntimeFunction SlotLookupSuperFn;
732
    /// Specialised function for setting atomic retain properties
733
    LazyRuntimeFunction SetPropertyAtomic;
734
    /// Specialised function for setting atomic copy properties
735
    LazyRuntimeFunction SetPropertyAtomicCopy;
736
    /// Specialised function for setting nonatomic retain properties
737
    LazyRuntimeFunction SetPropertyNonAtomic;
738
    /// Specialised function for setting nonatomic copy properties
739
    LazyRuntimeFunction SetPropertyNonAtomicCopy;
740
    /// Function to perform atomic copies of C++ objects with nontrivial copy
741
    /// constructors from Objective-C ivars.
742
    LazyRuntimeFunction CxxAtomicObjectGetFn;
743
    /// Function to perform atomic copies of C++ objects with nontrivial copy
744
    /// constructors to Objective-C ivars.
745
    LazyRuntimeFunction CxxAtomicObjectSetFn;
746
    /// Type of a slot structure pointer.  This is returned by the various
747
    /// lookup functions.
748
    llvm::Type *SlotTy;
749
    /// Type of a slot structure.
750
    llvm::Type *SlotStructTy;
751

752
  public:
753
    llvm::Constant *GetEHType(QualType T) override;
754

755
  protected:
756
    llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
757
                           llvm::Value *cmd, llvm::MDNode *node,
758
                           MessageSendInfo &MSI) override {
759
      CGBuilderTy &Builder = CGF.Builder;
760
      llvm::FunctionCallee LookupFn = SlotLookupFn;
761

762
      // Store the receiver on the stack so that we can reload it later
763
      RawAddress ReceiverPtr =
764
          CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
765
      Builder.CreateStore(Receiver, ReceiverPtr);
766

767
      llvm::Value *self;
768

769
      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
770
        self = CGF.LoadObjCSelf();
771
      } else {
772
        self = llvm::ConstantPointerNull::get(IdTy);
773
      }
774

775
      // The lookup function is guaranteed not to capture the receiver pointer.
776
      if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
777
        LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
778

779
      llvm::Value *args[] = {
780
          EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
781
          EnforceType(Builder, cmd, SelectorTy),
782
          EnforceType(Builder, self, IdTy)};
783
      llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
784
      slot->setOnlyReadsMemory();
785
      slot->setMetadata(msgSendMDKind, node);
786

787
      // Load the imp from the slot
788
      llvm::Value *imp = Builder.CreateAlignedLoad(
789
          IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
790
          CGF.getPointerAlign());
791

792
      // The lookup function may have changed the receiver, so make sure we use
793
      // the new one.
794
      Receiver = Builder.CreateLoad(ReceiverPtr, true);
795
      return imp;
796
    }
797

798
    llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
799
                                llvm::Value *cmd,
800
                                MessageSendInfo &MSI) override {
801
      CGBuilderTy &Builder = CGF.Builder;
802
      llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd};
803

804
      llvm::CallInst *slot =
805
        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
806
      slot->setOnlyReadsMemory();
807

808
      return Builder.CreateAlignedLoad(
809
          IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
810
          CGF.getPointerAlign());
811
    }
812

813
  public:
814
    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
815
    CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
816
        unsigned ClassABI) :
817
      CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
818
      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
819

820
      SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
821
      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
822
      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
823
      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
824
                        SelectorTy, IdTy);
825
      // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
826
      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
827
                             PtrToObjCSuperTy, SelectorTy);
828
      // If we're in ObjC++ mode, then we want to make
829
      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
830
      if (usesCxxExceptions) {
831
        // void *__cxa_begin_catch(void *e)
832
        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
833
        // void __cxa_end_catch(void)
834
        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
835
        // void objc_exception_rethrow(void*)
836
        ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
837
      } else if (usesSEHExceptions) {
838
        // void objc_exception_rethrow(void)
839
        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
840
      } else if (CGM.getLangOpts().CPlusPlus) {
841
        // void *__cxa_begin_catch(void *e)
842
        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
843
        // void __cxa_end_catch(void)
844
        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
845
        // void _Unwind_Resume_or_Rethrow(void*)
846
        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
847
                                PtrTy);
848
      } else if (R.getVersion() >= VersionTuple(1, 7)) {
849
        // id objc_begin_catch(void *e)
850
        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
851
        // void objc_end_catch(void)
852
        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
853
        // void _Unwind_Resume_or_Rethrow(void*)
854
        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
855
      }
856
      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
857
                             SelectorTy, IdTy, PtrDiffTy);
858
      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
859
                                 IdTy, SelectorTy, IdTy, PtrDiffTy);
860
      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
861
                                IdTy, SelectorTy, IdTy, PtrDiffTy);
862
      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
863
                                    VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
864
      // void objc_setCppObjectAtomic(void *dest, const void *src, void
865
      // *helper);
866
      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
867
                                PtrTy, PtrTy);
868
      // void objc_getCppObjectAtomic(void *dest, const void *src, void
869
      // *helper);
870
      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
871
                                PtrTy, PtrTy);
872
    }
873

874
    llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
875
      // The optimised functions were added in version 1.7 of the GNUstep
876
      // runtime.
877
      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
878
          VersionTuple(1, 7));
879
      return CxxAtomicObjectGetFn;
880
    }
881

882
    llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
883
      // The optimised functions were added in version 1.7 of the GNUstep
884
      // runtime.
885
      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
886
          VersionTuple(1, 7));
887
      return CxxAtomicObjectSetFn;
888
    }
889

890
    llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
891
                                                         bool copy) override {
892
      // The optimised property functions omit the GC check, and so are not
893
      // safe to use in GC mode.  The standard functions are fast in GC mode,
894
      // so there is less advantage in using them.
895
      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
896
      // The optimised functions were added in version 1.7 of the GNUstep
897
      // runtime.
898
      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
899
          VersionTuple(1, 7));
900

901
      if (atomic) {
902
        if (copy) return SetPropertyAtomicCopy;
903
        return SetPropertyAtomic;
904
      }
905

906
      return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
907
    }
908
};
909

910
/// GNUstep Objective-C ABI version 2 implementation.
911
/// This is the ABI that provides a clean break with the legacy GCC ABI and
912
/// cleans up a number of things that were added to work around 1980s linkers.
913
class CGObjCGNUstep2 : public CGObjCGNUstep {
914
  enum SectionKind
915
  {
916
    SelectorSection = 0,
917
    ClassSection,
918
    ClassReferenceSection,
919
    CategorySection,
920
    ProtocolSection,
921
    ProtocolReferenceSection,
922
    ClassAliasSection,
923
    ConstantStringSection
924
  };
925
  /// The subset of `objc_class_flags` used at compile time.
926
  enum ClassFlags {
927
    /// This is a metaclass
928
    ClassFlagMeta = (1 << 0),
929
    /// This class has been initialised by the runtime (+initialize has been
930
    /// sent if necessary).
931
    ClassFlagInitialized = (1 << 8),
932
  };
933
  static const char *const SectionsBaseNames[8];
934
  static const char *const PECOFFSectionsBaseNames[8];
935
  template<SectionKind K>
936
  std::string sectionName() {
937
    if (CGM.getTriple().isOSBinFormatCOFF()) {
938
      std::string name(PECOFFSectionsBaseNames[K]);
939
      name += "$m";
940
      return name;
941
    }
942
    return SectionsBaseNames[K];
943
  }
944
  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
945
  /// structure describing the receiver and the class, and a selector as
946
  /// arguments.  Returns the IMP for the corresponding method.
947
  LazyRuntimeFunction MsgLookupSuperFn;
948
  /// Function to ensure that +initialize is sent to a class.
949
  LazyRuntimeFunction SentInitializeFn;
950
  /// A flag indicating if we've emitted at least one protocol.
951
  /// If we haven't, then we need to emit an empty protocol, to ensure that the
952
  /// __start__objc_protocols and __stop__objc_protocols sections exist.
953
  bool EmittedProtocol = false;
954
  /// A flag indicating if we've emitted at least one protocol reference.
955
  /// If we haven't, then we need to emit an empty protocol, to ensure that the
956
  /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
957
  /// exist.
958
  bool EmittedProtocolRef = false;
959
  /// A flag indicating if we've emitted at least one class.
960
  /// If we haven't, then we need to emit an empty protocol, to ensure that the
961
  /// __start__objc_classes and __stop__objc_classes sections / exist.
962
  bool EmittedClass = false;
963
  /// Generate the name of a symbol for a reference to a class.  Accesses to
964
  /// classes should be indirected via this.
965

966
  typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
967
      EarlyInitPair;
968
  std::vector<EarlyInitPair> EarlyInitList;
969

970
  std::string SymbolForClassRef(StringRef Name, bool isWeak) {
971
    if (isWeak)
972
      return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
973
    else
974
      return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
975
  }
976
  /// Generate the name of a class symbol.
977
  std::string SymbolForClass(StringRef Name) {
978
    return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
979
  }
980
  void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
981
      ArrayRef<llvm::Value*> Args) {
982
    SmallVector<llvm::Type *,8> Types;
983
    for (auto *Arg : Args)
984
      Types.push_back(Arg->getType());
985
    llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
986
        false);
987
    llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
988
    B.CreateCall(Fn, Args);
989
  }
990

991
  ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
992

993
    auto Str = SL->getString();
994
    CharUnits Align = CGM.getPointerAlign();
995

996
    // Look for an existing one
997
    llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
998
    if (old != ObjCStrings.end())
999
      return ConstantAddress(old->getValue(), IdElemTy, Align);
1000

1001
    bool isNonASCII = SL->containsNonAscii();
1002

1003
    auto LiteralLength = SL->getLength();
1004

1005
    if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
1006
        (LiteralLength < 9) && !isNonASCII) {
1007
      // Tiny strings are only used on 64-bit platforms.  They store 8 7-bit
1008
      // ASCII characters in the high 56 bits, followed by a 4-bit length and a
1009
      // 3-bit tag (which is always 4).
1010
      uint64_t str = 0;
1011
      // Fill in the characters
1012
      for (unsigned i=0 ; i<LiteralLength ; i++)
1013
        str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1014
      // Fill in the length
1015
      str |= LiteralLength << 3;
1016
      // Set the tag
1017
      str |= 4;
1018
      auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1019
          llvm::ConstantInt::get(Int64Ty, str), IdTy);
1020
      ObjCStrings[Str] = ObjCStr;
1021
      return ConstantAddress(ObjCStr, IdElemTy, Align);
1022
    }
1023

1024
    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1025

1026
    if (StringClass.empty()) StringClass = "NSConstantString";
1027

1028
    std::string Sym = SymbolForClass(StringClass);
1029

1030
    llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1031

1032
    if (!isa) {
1033
      isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1034
              llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1035
      if (CGM.getTriple().isOSBinFormatCOFF()) {
1036
        cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1037
      }
1038
    }
1039

1040
    //  struct
1041
    //  {
1042
    //    Class isa;
1043
    //    uint32_t flags;
1044
    //    uint32_t length; // Number of codepoints
1045
    //    uint32_t size; // Number of bytes
1046
    //    uint32_t hash;
1047
    //    const char *data;
1048
    //  };
1049

1050
    ConstantInitBuilder Builder(CGM);
1051
    auto Fields = Builder.beginStruct();
1052
    if (!CGM.getTriple().isOSBinFormatCOFF()) {
1053
      Fields.add(isa);
1054
    } else {
1055
      Fields.addNullPointer(PtrTy);
1056
    }
1057
    // For now, all non-ASCII strings are represented as UTF-16.  As such, the
1058
    // number of bytes is simply double the number of UTF-16 codepoints.  In
1059
    // ASCII strings, the number of bytes is equal to the number of non-ASCII
1060
    // codepoints.
1061
    if (isNonASCII) {
1062
      unsigned NumU8CodeUnits = Str.size();
1063
      // A UTF-16 representation of a unicode string contains at most the same
1064
      // number of code units as a UTF-8 representation.  Allocate that much
1065
      // space, plus one for the final null character.
1066
      SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1067
      const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1068
      llvm::UTF16 *ToPtr = &ToBuf[0];
1069
      (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1070
          &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1071
      uint32_t StringLength = ToPtr - &ToBuf[0];
1072
      // Add null terminator
1073
      *ToPtr = 0;
1074
      // Flags: 2 indicates UTF-16 encoding
1075
      Fields.addInt(Int32Ty, 2);
1076
      // Number of UTF-16 codepoints
1077
      Fields.addInt(Int32Ty, StringLength);
1078
      // Number of bytes
1079
      Fields.addInt(Int32Ty, StringLength * 2);
1080
      // Hash.  Not currently initialised by the compiler.
1081
      Fields.addInt(Int32Ty, 0);
1082
      // pointer to the data string.
1083
      auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1084
      auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1085
      auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1086
          /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1087
      Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1088
      Fields.add(Buffer);
1089
    } else {
1090
      // Flags: 0 indicates ASCII encoding
1091
      Fields.addInt(Int32Ty, 0);
1092
      // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1093
      Fields.addInt(Int32Ty, Str.size());
1094
      // Number of bytes
1095
      Fields.addInt(Int32Ty, Str.size());
1096
      // Hash.  Not currently initialised by the compiler.
1097
      Fields.addInt(Int32Ty, 0);
1098
      // Data pointer
1099
      Fields.add(MakeConstantString(Str));
1100
    }
1101
    std::string StringName;
1102
    bool isNamed = !isNonASCII;
1103
    if (isNamed) {
1104
      StringName = ".objc_str_";
1105
      for (int i=0,e=Str.size() ; i<e ; ++i) {
1106
        unsigned char c = Str[i];
1107
        if (isalnum(c))
1108
          StringName += c;
1109
        else if (c == ' ')
1110
          StringName += '_';
1111
        else {
1112
          isNamed = false;
1113
          break;
1114
        }
1115
      }
1116
    }
1117
    llvm::GlobalVariable *ObjCStrGV =
1118
      Fields.finishAndCreateGlobal(
1119
          isNamed ? StringRef(StringName) : ".objc_string",
1120
          Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1121
                                : llvm::GlobalValue::PrivateLinkage);
1122
    ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1123
    if (isNamed) {
1124
      ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1125
      ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1126
    }
1127
    if (CGM.getTriple().isOSBinFormatCOFF()) {
1128
      std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1129
      EarlyInitList.emplace_back(Sym, v);
1130
    }
1131
    ObjCStrings[Str] = ObjCStrGV;
1132
    ConstantStrings.push_back(ObjCStrGV);
1133
    return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1134
  }
1135

1136
  void PushProperty(ConstantArrayBuilder &PropertiesArray,
1137
            const ObjCPropertyDecl *property,
1138
            const Decl *OCD,
1139
            bool isSynthesized=true, bool
1140
            isDynamic=true) override {
1141
    // struct objc_property
1142
    // {
1143
    //   const char *name;
1144
    //   const char *attributes;
1145
    //   const char *type;
1146
    //   SEL getter;
1147
    //   SEL setter;
1148
    // };
1149
    auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1150
    ASTContext &Context = CGM.getContext();
1151
    Fields.add(MakeConstantString(property->getNameAsString()));
1152
    std::string TypeStr =
1153
      CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1154
    Fields.add(MakeConstantString(TypeStr));
1155
    std::string typeStr;
1156
    Context.getObjCEncodingForType(property->getType(), typeStr);
1157
    Fields.add(MakeConstantString(typeStr));
1158
    auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1159
      if (accessor) {
1160
        std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1161
        Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1162
      } else {
1163
        Fields.add(NULLPtr);
1164
      }
1165
    };
1166
    addPropertyMethod(property->getGetterMethodDecl());
1167
    addPropertyMethod(property->getSetterMethodDecl());
1168
    Fields.finishAndAddTo(PropertiesArray);
1169
  }
1170

1171
  llvm::Constant *
1172
  GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1173
    // struct objc_protocol_method_description
1174
    // {
1175
    //   SEL selector;
1176
    //   const char *types;
1177
    // };
1178
    llvm::StructType *ObjCMethodDescTy =
1179
      llvm::StructType::get(CGM.getLLVMContext(),
1180
          { PtrToInt8Ty, PtrToInt8Ty });
1181
    ASTContext &Context = CGM.getContext();
1182
    ConstantInitBuilder Builder(CGM);
1183
    // struct objc_protocol_method_description_list
1184
    // {
1185
    //   int count;
1186
    //   int size;
1187
    //   struct objc_protocol_method_description methods[];
1188
    // };
1189
    auto MethodList = Builder.beginStruct();
1190
    // int count;
1191
    MethodList.addInt(IntTy, Methods.size());
1192
    // int size; // sizeof(struct objc_method_description)
1193
    llvm::DataLayout td(&TheModule);
1194
    MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1195
        CGM.getContext().getCharWidth());
1196
    // struct objc_method_description[]
1197
    auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1198
    for (auto *M : Methods) {
1199
      auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1200
      Method.add(CGObjCGNU::GetConstantSelector(M));
1201
      Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1202
      Method.finishAndAddTo(MethodArray);
1203
    }
1204
    MethodArray.finishAndAddTo(MethodList);
1205
    return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1206
                                            CGM.getPointerAlign());
1207
  }
1208
  llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1209
    override {
1210
    const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1211
    auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1212
                                                   ReferencedProtocols.end());
1213
    SmallVector<llvm::Constant *, 16> Protocols;
1214
    for (const auto *PI : RuntimeProtocols)
1215
      Protocols.push_back(GenerateProtocolRef(PI));
1216
    return GenerateProtocolList(Protocols);
1217
  }
1218

1219
  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1220
                              llvm::Value *cmd, MessageSendInfo &MSI) override {
1221
    // Don't access the slot unless we're trying to cache the result.
1222
    CGBuilderTy &Builder = CGF.Builder;
1223
    llvm::Value *lookupArgs[] = {
1224
        CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF),
1225
                               PtrToObjCSuperTy),
1226
        cmd};
1227
    return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1228
  }
1229

1230
  llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1231
    std::string SymbolName = SymbolForClassRef(Name, isWeak);
1232
    auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1233
    if (ClassSymbol)
1234
      return ClassSymbol;
1235
    ClassSymbol = new llvm::GlobalVariable(TheModule,
1236
        IdTy, false, llvm::GlobalValue::ExternalLinkage,
1237
        nullptr, SymbolName);
1238
    // If this is a weak symbol, then we are creating a valid definition for
1239
    // the symbol, pointing to a weak definition of the real class pointer.  If
1240
    // this is not a weak reference, then we are expecting another compilation
1241
    // unit to provide the real indirection symbol.
1242
    if (isWeak)
1243
      ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1244
          Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1245
          nullptr, SymbolForClass(Name)));
1246
    else {
1247
      if (CGM.getTriple().isOSBinFormatCOFF()) {
1248
        IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1249
        TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1250
        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1251

1252
        const ObjCInterfaceDecl *OID = nullptr;
1253
        for (const auto *Result : DC->lookup(&II))
1254
          if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1255
            break;
1256

1257
        // The first Interface we find may be a @class,
1258
        // which should only be treated as the source of
1259
        // truth in the absence of a true declaration.
1260
        assert(OID && "Failed to find ObjCInterfaceDecl");
1261
        const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1262
        if (OIDDef != nullptr)
1263
          OID = OIDDef;
1264

1265
        auto Storage = llvm::GlobalValue::DefaultStorageClass;
1266
        if (OID->hasAttr<DLLImportAttr>())
1267
          Storage = llvm::GlobalValue::DLLImportStorageClass;
1268
        else if (OID->hasAttr<DLLExportAttr>())
1269
          Storage = llvm::GlobalValue::DLLExportStorageClass;
1270

1271
        cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1272
      }
1273
    }
1274
    assert(ClassSymbol->getName() == SymbolName);
1275
    return ClassSymbol;
1276
  }
1277
  llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1278
                             const std::string &Name,
1279
                             bool isWeak) override {
1280
    return CGF.Builder.CreateLoad(
1281
        Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1282
  }
1283
  int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1284
    // typedef enum {
1285
    //   ownership_invalid = 0,
1286
    //   ownership_strong  = 1,
1287
    //   ownership_weak    = 2,
1288
    //   ownership_unsafe  = 3
1289
    // } ivar_ownership;
1290
    int Flag;
1291
    switch (Ownership) {
1292
      case Qualifiers::OCL_Strong:
1293
          Flag = 1;
1294
          break;
1295
      case Qualifiers::OCL_Weak:
1296
          Flag = 2;
1297
          break;
1298
      case Qualifiers::OCL_ExplicitNone:
1299
          Flag = 3;
1300
          break;
1301
      case Qualifiers::OCL_None:
1302
      case Qualifiers::OCL_Autoreleasing:
1303
        assert(Ownership != Qualifiers::OCL_Autoreleasing);
1304
        Flag = 0;
1305
    }
1306
    return Flag;
1307
  }
1308
  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1309
                   ArrayRef<llvm::Constant *> IvarTypes,
1310
                   ArrayRef<llvm::Constant *> IvarOffsets,
1311
                   ArrayRef<llvm::Constant *> IvarAlign,
1312
                   ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1313
    llvm_unreachable("Method should not be called!");
1314
  }
1315

1316
  llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1317
    std::string Name = SymbolForProtocol(ProtocolName);
1318
    auto *GV = TheModule.getGlobalVariable(Name);
1319
    if (!GV) {
1320
      // Emit a placeholder symbol.
1321
      GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1322
          llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1323
      GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1324
    }
1325
    return GV;
1326
  }
1327

1328
  /// Existing protocol references.
1329
  llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1330

1331
  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1332
                                   const ObjCProtocolDecl *PD) override {
1333
    auto Name = PD->getNameAsString();
1334
    auto *&Ref = ExistingProtocolRefs[Name];
1335
    if (!Ref) {
1336
      auto *&Protocol = ExistingProtocols[Name];
1337
      if (!Protocol)
1338
        Protocol = GenerateProtocolRef(PD);
1339
      std::string RefName = SymbolForProtocolRef(Name);
1340
      assert(!TheModule.getGlobalVariable(RefName));
1341
      // Emit a reference symbol.
1342
      auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1343
                                         llvm::GlobalValue::LinkOnceODRLinkage,
1344
                                         Protocol, RefName);
1345
      GV->setComdat(TheModule.getOrInsertComdat(RefName));
1346
      GV->setSection(sectionName<ProtocolReferenceSection>());
1347
      GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1348
      Ref = GV;
1349
    }
1350
    EmittedProtocolRef = true;
1351
    return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1352
                                         CGM.getPointerAlign());
1353
  }
1354

1355
  llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1356
    llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1357
        Protocols.size());
1358
    llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1359
        Protocols);
1360
    ConstantInitBuilder builder(CGM);
1361
    auto ProtocolBuilder = builder.beginStruct();
1362
    ProtocolBuilder.addNullPointer(PtrTy);
1363
    ProtocolBuilder.addInt(SizeTy, Protocols.size());
1364
    ProtocolBuilder.add(ProtocolArray);
1365
    return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1366
        CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1367
  }
1368

1369
  void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1370
    // Do nothing - we only emit referenced protocols.
1371
  }
1372
  llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1373
    std::string ProtocolName = PD->getNameAsString();
1374
    auto *&Protocol = ExistingProtocols[ProtocolName];
1375
    if (Protocol)
1376
      return Protocol;
1377

1378
    EmittedProtocol = true;
1379

1380
    auto SymName = SymbolForProtocol(ProtocolName);
1381
    auto *OldGV = TheModule.getGlobalVariable(SymName);
1382

1383
    // Use the protocol definition, if there is one.
1384
    if (const ObjCProtocolDecl *Def = PD->getDefinition())
1385
      PD = Def;
1386
    else {
1387
      // If there is no definition, then create an external linkage symbol and
1388
      // hope that someone else fills it in for us (and fail to link if they
1389
      // don't).
1390
      assert(!OldGV);
1391
      Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1392
        /*isConstant*/false,
1393
        llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1394
      return Protocol;
1395
    }
1396

1397
    SmallVector<llvm::Constant*, 16> Protocols;
1398
    auto RuntimeProtocols =
1399
        GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1400
    for (const auto *PI : RuntimeProtocols)
1401
      Protocols.push_back(GenerateProtocolRef(PI));
1402
    llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1403

1404
    // Collect information about methods
1405
    llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1406
    llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1407
    EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1408
        OptionalInstanceMethodList);
1409
    EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1410
        OptionalClassMethodList);
1411

1412
    // The isa pointer must be set to a magic number so the runtime knows it's
1413
    // the correct layout.
1414
    ConstantInitBuilder builder(CGM);
1415
    auto ProtocolBuilder = builder.beginStruct();
1416
    ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1417
          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1418
    ProtocolBuilder.add(MakeConstantString(ProtocolName));
1419
    ProtocolBuilder.add(ProtocolList);
1420
    ProtocolBuilder.add(InstanceMethodList);
1421
    ProtocolBuilder.add(ClassMethodList);
1422
    ProtocolBuilder.add(OptionalInstanceMethodList);
1423
    ProtocolBuilder.add(OptionalClassMethodList);
1424
    // Required instance properties
1425
    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1426
    // Optional instance properties
1427
    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1428
    // Required class properties
1429
    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1430
    // Optional class properties
1431
    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1432

1433
    auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1434
        CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1435
    GV->setSection(sectionName<ProtocolSection>());
1436
    GV->setComdat(TheModule.getOrInsertComdat(SymName));
1437
    if (OldGV) {
1438
      OldGV->replaceAllUsesWith(GV);
1439
      OldGV->removeFromParent();
1440
      GV->setName(SymName);
1441
    }
1442
    Protocol = GV;
1443
    return GV;
1444
  }
1445
  llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1446
                                const std::string &TypeEncoding) override {
1447
    return GetConstantSelector(Sel, TypeEncoding);
1448
  }
1449
  std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) {
1450
    std::string MangledTypes = std::string(TypeEncoding);
1451
    // @ is used as a special character in ELF symbol names (used for symbol
1452
    // versioning), so mangle the name to not include it.  Replace it with a
1453
    // character that is not a valid type encoding character (and, being
1454
    // non-printable, never will be!)
1455
    if (CGM.getTriple().isOSBinFormatELF())
1456
      std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1');
1457
    // = in dll exported names causes lld to fail when linking on Windows.
1458
    if (CGM.getTriple().isOSWindows())
1459
      std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2');
1460
    return MangledTypes;
1461
  }
1462
  llvm::Constant  *GetTypeString(llvm::StringRef TypeEncoding) {
1463
    if (TypeEncoding.empty())
1464
      return NULLPtr;
1465
    std::string MangledTypes =
1466
        GetSymbolNameForTypeEncoding(std::string(TypeEncoding));
1467
    std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1468
    auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1469
    if (!TypesGlobal) {
1470
      llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1471
          TypeEncoding);
1472
      auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1473
          true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1474
      GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1475
      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1476
      TypesGlobal = GV;
1477
    }
1478
    return TypesGlobal;
1479
  }
1480
  llvm::Constant *GetConstantSelector(Selector Sel,
1481
                                      const std::string &TypeEncoding) override {
1482
    std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding);
1483
    auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1484
      MangledTypes).str();
1485
    if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1486
      return GV;
1487
    ConstantInitBuilder builder(CGM);
1488
    auto SelBuilder = builder.beginStruct();
1489
    SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1490
          true));
1491
    SelBuilder.add(GetTypeString(TypeEncoding));
1492
    auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1493
        CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1494
    GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1495
    GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1496
    GV->setSection(sectionName<SelectorSection>());
1497
    return GV;
1498
  }
1499
  llvm::StructType *emptyStruct = nullptr;
1500

1501
  /// Return pointers to the start and end of a section.  On ELF platforms, we
1502
  /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1503
  /// to the start and end of section names, as long as those section names are
1504
  /// valid identifiers and the symbols are referenced but not defined.  On
1505
  /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1506
  /// by subsections and place everything that we want to reference in a middle
1507
  /// subsection and then insert zero-sized symbols in subsections a and z.
1508
  std::pair<llvm::Constant*,llvm::Constant*>
1509
  GetSectionBounds(StringRef Section) {
1510
    if (CGM.getTriple().isOSBinFormatCOFF()) {
1511
      if (emptyStruct == nullptr) {
1512
        emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1513
        emptyStruct->setBody({}, /*isPacked*/true);
1514
      }
1515
      auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1516
      auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1517
        auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1518
            /*isConstant*/false,
1519
            llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1520
            Section);
1521
        Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1522
        Sym->setSection((Section + SecSuffix).str());
1523
        Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1524
            Section).str()));
1525
        Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1526
        return Sym;
1527
      };
1528
      return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1529
    }
1530
    auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1531
        /*isConstant*/false,
1532
        llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1533
        Section);
1534
    Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1535
    auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1536
        /*isConstant*/false,
1537
        llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1538
        Section);
1539
    Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1540
    return { Start, Stop };
1541
  }
1542
  CatchTypeInfo getCatchAllTypeInfo() override {
1543
    return CGM.getCXXABI().getCatchAllTypeInfo();
1544
  }
1545
  llvm::Function *ModuleInitFunction() override {
1546
    llvm::Function *LoadFunction = llvm::Function::Create(
1547
      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1548
      llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1549
      &TheModule);
1550
    LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1551
    LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1552

1553
    llvm::BasicBlock *EntryBB =
1554
        llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1555
    CGBuilderTy B(CGM, VMContext);
1556
    B.SetInsertPoint(EntryBB);
1557
    ConstantInitBuilder builder(CGM);
1558
    auto InitStructBuilder = builder.beginStruct();
1559
    InitStructBuilder.addInt(Int64Ty, 0);
1560
    auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1561
    for (auto *s : sectionVec) {
1562
      auto bounds = GetSectionBounds(s);
1563
      InitStructBuilder.add(bounds.first);
1564
      InitStructBuilder.add(bounds.second);
1565
    }
1566
    auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1567
        CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1568
    InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1569
    InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1570

1571
    CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1572
    B.CreateRetVoid();
1573
    // Make sure that the optimisers don't delete this function.
1574
    CGM.addCompilerUsedGlobal(LoadFunction);
1575
    // FIXME: Currently ELF only!
1576
    // We have to do this by hand, rather than with @llvm.ctors, so that the
1577
    // linker can remove the duplicate invocations.
1578
    auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1579
        /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1580
        LoadFunction, ".objc_ctor");
1581
    // Check that this hasn't been renamed.  This shouldn't happen, because
1582
    // this function should be called precisely once.
1583
    assert(InitVar->getName() == ".objc_ctor");
1584
    // In Windows, initialisers are sorted by the suffix.  XCL is for library
1585
    // initialisers, which run before user initialisers.  We are running
1586
    // Objective-C loads at the end of library load.  This means +load methods
1587
    // will run before any other static constructors, but that static
1588
    // constructors can see a fully initialised Objective-C state.
1589
    if (CGM.getTriple().isOSBinFormatCOFF())
1590
        InitVar->setSection(".CRT$XCLz");
1591
    else
1592
    {
1593
      if (CGM.getCodeGenOpts().UseInitArray)
1594
        InitVar->setSection(".init_array");
1595
      else
1596
        InitVar->setSection(".ctors");
1597
    }
1598
    InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1599
    InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1600
    CGM.addUsedGlobal(InitVar);
1601
    for (auto *C : Categories) {
1602
      auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1603
      Cat->setSection(sectionName<CategorySection>());
1604
      CGM.addUsedGlobal(Cat);
1605
    }
1606
    auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1607
        StringRef Section) {
1608
      auto nullBuilder = builder.beginStruct();
1609
      for (auto *F : Init)
1610
        nullBuilder.add(F);
1611
      auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1612
          false, llvm::GlobalValue::LinkOnceODRLinkage);
1613
      GV->setSection(Section);
1614
      GV->setComdat(TheModule.getOrInsertComdat(Name));
1615
      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1616
      CGM.addUsedGlobal(GV);
1617
      return GV;
1618
    };
1619
    for (auto clsAlias : ClassAliases)
1620
      createNullGlobal(std::string(".objc_class_alias") +
1621
          clsAlias.second, { MakeConstantString(clsAlias.second),
1622
          GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1623
    // On ELF platforms, add a null value for each special section so that we
1624
    // can always guarantee that the _start and _stop symbols will exist and be
1625
    // meaningful.  This is not required on COFF platforms, where our start and
1626
    // stop symbols will create the section.
1627
    if (!CGM.getTriple().isOSBinFormatCOFF()) {
1628
      createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1629
          sectionName<SelectorSection>());
1630
      if (Categories.empty())
1631
        createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1632
                      NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1633
            sectionName<CategorySection>());
1634
      if (!EmittedClass) {
1635
        createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1636
            sectionName<ClassSection>());
1637
        createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1638
            sectionName<ClassReferenceSection>());
1639
      }
1640
      if (!EmittedProtocol)
1641
        createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1642
            NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1643
            NULLPtr}, sectionName<ProtocolSection>());
1644
      if (!EmittedProtocolRef)
1645
        createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1646
            sectionName<ProtocolReferenceSection>());
1647
      if (ClassAliases.empty())
1648
        createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1649
            sectionName<ClassAliasSection>());
1650
      if (ConstantStrings.empty()) {
1651
        auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1652
        createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1653
            i32Zero, i32Zero, i32Zero, NULLPtr },
1654
            sectionName<ConstantStringSection>());
1655
      }
1656
    }
1657
    ConstantStrings.clear();
1658
    Categories.clear();
1659
    Classes.clear();
1660

1661
    if (EarlyInitList.size() > 0) {
1662
      auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1663
            {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1664
          &CGM.getModule());
1665
      llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1666
            Init));
1667
      for (const auto &lateInit : EarlyInitList) {
1668
        auto *global = TheModule.getGlobalVariable(lateInit.first);
1669
        if (global) {
1670
          llvm::GlobalVariable *GV = lateInit.second.first;
1671
          b.CreateAlignedStore(
1672
              global,
1673
              b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1674
              CGM.getPointerAlign().getAsAlign());
1675
        }
1676
      }
1677
      b.CreateRetVoid();
1678
      // We can't use the normal LLVM global initialisation array, because we
1679
      // need to specify that this runs early in library initialisation.
1680
      auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1681
          /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1682
          Init, ".objc_early_init_ptr");
1683
      InitVar->setSection(".CRT$XCLb");
1684
      CGM.addUsedGlobal(InitVar);
1685
    }
1686
    return nullptr;
1687
  }
1688
  /// In the v2 ABI, ivar offset variables use the type encoding in their name
1689
  /// to trigger linker failures if the types don't match.
1690
  std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1691
                                        const ObjCIvarDecl *Ivar) override {
1692
    std::string TypeEncoding;
1693
    CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1694
    TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding);
1695
    const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1696
      + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1697
    return Name;
1698
  }
1699
  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1700
                              const ObjCInterfaceDecl *Interface,
1701
                              const ObjCIvarDecl *Ivar) override {
1702
    const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1703
    llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1704
    if (!IvarOffsetPointer)
1705
      IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1706
              llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1707
    CharUnits Align = CGM.getIntAlign();
1708
    llvm::Value *Offset =
1709
        CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1710
    if (Offset->getType() != PtrDiffTy)
1711
      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1712
    return Offset;
1713
  }
1714
  void GenerateClass(const ObjCImplementationDecl *OID) override {
1715
    ASTContext &Context = CGM.getContext();
1716
    bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1717

1718
    // Get the class name
1719
    ObjCInterfaceDecl *classDecl =
1720
        const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1721
    std::string className = classDecl->getNameAsString();
1722
    auto *classNameConstant = MakeConstantString(className);
1723

1724
    ConstantInitBuilder builder(CGM);
1725
    auto metaclassFields = builder.beginStruct();
1726
    // struct objc_class *isa;
1727
    metaclassFields.addNullPointer(PtrTy);
1728
    // struct objc_class *super_class;
1729
    metaclassFields.addNullPointer(PtrTy);
1730
    // const char *name;
1731
    metaclassFields.add(classNameConstant);
1732
    // long version;
1733
    metaclassFields.addInt(LongTy, 0);
1734
    // unsigned long info;
1735
    // objc_class_flag_meta
1736
    metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta);
1737
    // long instance_size;
1738
    // Setting this to zero is consistent with the older ABI, but it might be
1739
    // more sensible to set this to sizeof(struct objc_class)
1740
    metaclassFields.addInt(LongTy, 0);
1741
    // struct objc_ivar_list *ivars;
1742
    metaclassFields.addNullPointer(PtrTy);
1743
    // struct objc_method_list *methods
1744
    // FIXME: Almost identical code is copied and pasted below for the
1745
    // class, but refactoring it cleanly requires C++14 generic lambdas.
1746
    if (OID->classmeth_begin() == OID->classmeth_end())
1747
      metaclassFields.addNullPointer(PtrTy);
1748
    else {
1749
      SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1750
      ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1751
          OID->classmeth_end());
1752
      metaclassFields.add(
1753
          GenerateMethodList(className, "", ClassMethods, true));
1754
    }
1755
    // void *dtable;
1756
    metaclassFields.addNullPointer(PtrTy);
1757
    // IMP cxx_construct;
1758
    metaclassFields.addNullPointer(PtrTy);
1759
    // IMP cxx_destruct;
1760
    metaclassFields.addNullPointer(PtrTy);
1761
    // struct objc_class *subclass_list
1762
    metaclassFields.addNullPointer(PtrTy);
1763
    // struct objc_class *sibling_class
1764
    metaclassFields.addNullPointer(PtrTy);
1765
    // struct objc_protocol_list *protocols;
1766
    metaclassFields.addNullPointer(PtrTy);
1767
    // struct reference_list *extra_data;
1768
    metaclassFields.addNullPointer(PtrTy);
1769
    // long abi_version;
1770
    metaclassFields.addInt(LongTy, 0);
1771
    // struct objc_property_list *properties
1772
    metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1773

1774
    auto *metaclass = metaclassFields.finishAndCreateGlobal(
1775
        ManglePublicSymbol("OBJC_METACLASS_") + className,
1776
        CGM.getPointerAlign());
1777

1778
    auto classFields = builder.beginStruct();
1779
    // struct objc_class *isa;
1780
    classFields.add(metaclass);
1781
    // struct objc_class *super_class;
1782
    // Get the superclass name.
1783
    const ObjCInterfaceDecl * SuperClassDecl =
1784
      OID->getClassInterface()->getSuperClass();
1785
    llvm::Constant *SuperClass = nullptr;
1786
    if (SuperClassDecl) {
1787
      auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1788
      SuperClass = TheModule.getNamedGlobal(SuperClassName);
1789
      if (!SuperClass)
1790
      {
1791
        SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1792
            llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1793
        if (IsCOFF) {
1794
          auto Storage = llvm::GlobalValue::DefaultStorageClass;
1795
          if (SuperClassDecl->hasAttr<DLLImportAttr>())
1796
            Storage = llvm::GlobalValue::DLLImportStorageClass;
1797
          else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1798
            Storage = llvm::GlobalValue::DLLExportStorageClass;
1799

1800
          cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1801
        }
1802
      }
1803
      if (!IsCOFF)
1804
        classFields.add(SuperClass);
1805
      else
1806
        classFields.addNullPointer(PtrTy);
1807
    } else
1808
      classFields.addNullPointer(PtrTy);
1809
    // const char *name;
1810
    classFields.add(classNameConstant);
1811
    // long version;
1812
    classFields.addInt(LongTy, 0);
1813
    // unsigned long info;
1814
    // !objc_class_flag_meta
1815
    classFields.addInt(LongTy, 0);
1816
    // long instance_size;
1817
    int superInstanceSize = !SuperClassDecl ? 0 :
1818
      Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1819
    // Instance size is negative for classes that have not yet had their ivar
1820
    // layout calculated.
1821
    classFields.addInt(LongTy,
1822
      0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1823
      superInstanceSize));
1824

1825
    if (classDecl->all_declared_ivar_begin() == nullptr)
1826
      classFields.addNullPointer(PtrTy);
1827
    else {
1828
      int ivar_count = 0;
1829
      for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1830
           IVD = IVD->getNextIvar()) ivar_count++;
1831
      llvm::DataLayout td(&TheModule);
1832
      // struct objc_ivar_list *ivars;
1833
      ConstantInitBuilder b(CGM);
1834
      auto ivarListBuilder = b.beginStruct();
1835
      // int count;
1836
      ivarListBuilder.addInt(IntTy, ivar_count);
1837
      // size_t size;
1838
      llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1839
        PtrToInt8Ty,
1840
        PtrToInt8Ty,
1841
        PtrToInt8Ty,
1842
        Int32Ty,
1843
        Int32Ty);
1844
      ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1845
          CGM.getContext().getCharWidth());
1846
      // struct objc_ivar ivars[]
1847
      auto ivarArrayBuilder = ivarListBuilder.beginArray();
1848
      for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1849
           IVD = IVD->getNextIvar()) {
1850
        auto ivarTy = IVD->getType();
1851
        auto ivarBuilder = ivarArrayBuilder.beginStruct();
1852
        // const char *name;
1853
        ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1854
        // const char *type;
1855
        std::string TypeStr;
1856
        //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1857
        Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1858
        ivarBuilder.add(MakeConstantString(TypeStr));
1859
        // int *offset;
1860
        uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1861
        uint64_t Offset = BaseOffset - superInstanceSize;
1862
        llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1863
        std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1864
        llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1865
        if (OffsetVar)
1866
          OffsetVar->setInitializer(OffsetValue);
1867
        else
1868
          OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1869
            false, llvm::GlobalValue::ExternalLinkage,
1870
            OffsetValue, OffsetName);
1871
        auto ivarVisibility =
1872
            (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1873
             IVD->getAccessControl() == ObjCIvarDecl::Package ||
1874
             classDecl->getVisibility() == HiddenVisibility) ?
1875
                    llvm::GlobalValue::HiddenVisibility :
1876
                    llvm::GlobalValue::DefaultVisibility;
1877
        OffsetVar->setVisibility(ivarVisibility);
1878
        if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1879
          CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1880
        ivarBuilder.add(OffsetVar);
1881
        // Ivar size
1882
        ivarBuilder.addInt(Int32Ty,
1883
            CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1884
        // Alignment will be stored as a base-2 log of the alignment.
1885
        unsigned align =
1886
            llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1887
        // Objects that require more than 2^64-byte alignment should be impossible!
1888
        assert(align < 64);
1889
        // uint32_t flags;
1890
        // Bits 0-1 are ownership.
1891
        // Bit 2 indicates an extended type encoding
1892
        // Bits 3-8 contain log2(aligment)
1893
        ivarBuilder.addInt(Int32Ty,
1894
            (align << 3) | (1<<2) |
1895
            FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1896
        ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1897
      }
1898
      ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1899
      auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1900
          CGM.getPointerAlign(), /*constant*/ false,
1901
          llvm::GlobalValue::PrivateLinkage);
1902
      classFields.add(ivarList);
1903
    }
1904
    // struct objc_method_list *methods
1905
    SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1906
    InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1907
        OID->instmeth_end());
1908
    for (auto *propImpl : OID->property_impls())
1909
      if (propImpl->getPropertyImplementation() ==
1910
          ObjCPropertyImplDecl::Synthesize) {
1911
        auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1912
          if (OMD && OMD->hasBody())
1913
            InstanceMethods.push_back(OMD);
1914
        };
1915
        addIfExists(propImpl->getGetterMethodDecl());
1916
        addIfExists(propImpl->getSetterMethodDecl());
1917
      }
1918

1919
    if (InstanceMethods.size() == 0)
1920
      classFields.addNullPointer(PtrTy);
1921
    else
1922
      classFields.add(
1923
          GenerateMethodList(className, "", InstanceMethods, false));
1924

1925
    // void *dtable;
1926
    classFields.addNullPointer(PtrTy);
1927
    // IMP cxx_construct;
1928
    classFields.addNullPointer(PtrTy);
1929
    // IMP cxx_destruct;
1930
    classFields.addNullPointer(PtrTy);
1931
    // struct objc_class *subclass_list
1932
    classFields.addNullPointer(PtrTy);
1933
    // struct objc_class *sibling_class
1934
    classFields.addNullPointer(PtrTy);
1935
    // struct objc_protocol_list *protocols;
1936
    auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1937
                                                   classDecl->protocol_end());
1938
    SmallVector<llvm::Constant *, 16> Protocols;
1939
    for (const auto *I : RuntimeProtocols)
1940
      Protocols.push_back(GenerateProtocolRef(I));
1941

1942
    if (Protocols.empty())
1943
      classFields.addNullPointer(PtrTy);
1944
    else
1945
      classFields.add(GenerateProtocolList(Protocols));
1946
    // struct reference_list *extra_data;
1947
    classFields.addNullPointer(PtrTy);
1948
    // long abi_version;
1949
    classFields.addInt(LongTy, 0);
1950
    // struct objc_property_list *properties
1951
    classFields.add(GeneratePropertyList(OID, classDecl));
1952

1953
    llvm::GlobalVariable *classStruct =
1954
      classFields.finishAndCreateGlobal(SymbolForClass(className),
1955
        CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1956

1957
    auto *classRefSymbol = GetClassVar(className);
1958
    classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1959
    classRefSymbol->setInitializer(classStruct);
1960

1961
    if (IsCOFF) {
1962
      // we can't import a class struct.
1963
      if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1964
        classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1965
        cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1966
      }
1967

1968
      if (SuperClass) {
1969
        std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1970
        EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1971
                                   std::move(v));
1972
      }
1973

1974
    }
1975

1976

1977
    // Resolve the class aliases, if they exist.
1978
    // FIXME: Class pointer aliases shouldn't exist!
1979
    if (ClassPtrAlias) {
1980
      ClassPtrAlias->replaceAllUsesWith(classStruct);
1981
      ClassPtrAlias->eraseFromParent();
1982
      ClassPtrAlias = nullptr;
1983
    }
1984
    if (auto Placeholder =
1985
        TheModule.getNamedGlobal(SymbolForClass(className)))
1986
      if (Placeholder != classStruct) {
1987
        Placeholder->replaceAllUsesWith(classStruct);
1988
        Placeholder->eraseFromParent();
1989
        classStruct->setName(SymbolForClass(className));
1990
      }
1991
    if (MetaClassPtrAlias) {
1992
      MetaClassPtrAlias->replaceAllUsesWith(metaclass);
1993
      MetaClassPtrAlias->eraseFromParent();
1994
      MetaClassPtrAlias = nullptr;
1995
    }
1996
    assert(classStruct->getName() == SymbolForClass(className));
1997

1998
    auto classInitRef = new llvm::GlobalVariable(TheModule,
1999
        classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
2000
        classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
2001
    classInitRef->setSection(sectionName<ClassSection>());
2002
    CGM.addUsedGlobal(classInitRef);
2003

2004
    EmittedClass = true;
2005
  }
2006
  public:
2007
    CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2008
      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2009
                            PtrToObjCSuperTy, SelectorTy);
2010
      SentInitializeFn.init(&CGM, "objc_send_initialize",
2011
                            llvm::Type::getVoidTy(VMContext), IdTy);
2012
      // struct objc_property
2013
      // {
2014
      //   const char *name;
2015
      //   const char *attributes;
2016
      //   const char *type;
2017
      //   SEL getter;
2018
      //   SEL setter;
2019
      // }
2020
      PropertyMetadataTy =
2021
        llvm::StructType::get(CGM.getLLVMContext(),
2022
            { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2023
    }
2024

2025
    void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
2026
                                      const ObjCMethodDecl *OMD,
2027
                                      const ObjCContainerDecl *CD) override {
2028
      auto &Builder = CGF.Builder;
2029
      bool ReceiverCanBeNull = true;
2030
      auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2031
      auto selfValue = Builder.CreateLoad(selfAddr);
2032

2033
      // Generate:
2034
      //
2035
      // /* unless the receiver is never NULL */
2036
      // if (self == nil) {
2037
      //     return (ReturnType){ };
2038
      // }
2039
      //
2040
      // /* for class methods only to force class lazy initialization */
2041
      // if (!__objc_{class}_initialized)
2042
      // {
2043
      //   objc_send_initialize(class);
2044
      //   __objc_{class}_initialized = 1;
2045
      // }
2046
      //
2047
      // _cmd = @selector(...)
2048
      // ...
2049

2050
      if (OMD->isClassMethod()) {
2051
        const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2052

2053
        // Nullable `Class` expressions cannot be messaged with a direct method
2054
        // so the only reason why the receive can be null would be because
2055
        // of weak linking.
2056
        ReceiverCanBeNull = isWeakLinkedClass(OID);
2057
      }
2058

2059
      llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2060
      if (ReceiverCanBeNull) {
2061
        llvm::BasicBlock *SelfIsNilBlock =
2062
            CGF.createBasicBlock("objc_direct_method.self_is_nil");
2063
        llvm::BasicBlock *ContBlock =
2064
            CGF.createBasicBlock("objc_direct_method.cont");
2065

2066
        // if (self == nil) {
2067
        auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2068
        auto Zero = llvm::ConstantPointerNull::get(selfTy);
2069

2070
        Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2071
                             SelfIsNilBlock, ContBlock,
2072
                             MDHelper.createUnlikelyBranchWeights());
2073

2074
        CGF.EmitBlock(SelfIsNilBlock);
2075

2076
        //   return (ReturnType){ };
2077
        auto retTy = OMD->getReturnType();
2078
        Builder.SetInsertPoint(SelfIsNilBlock);
2079
        if (!retTy->isVoidType()) {
2080
          CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2081
        }
2082
        CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
2083
        // }
2084

2085
        // rest of the body
2086
        CGF.EmitBlock(ContBlock);
2087
        Builder.SetInsertPoint(ContBlock);
2088
      }
2089

2090
      if (OMD->isClassMethod()) {
2091
        // Prefix of the class type.
2092
        auto *classStart =
2093
            llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy);
2094
        auto &astContext = CGM.getContext();
2095
        auto flags = Builder.CreateLoad(
2096
            Address{Builder.CreateStructGEP(classStart, selfValue, 4), LongTy,
2097
                    CharUnits::fromQuantity(
2098
                        astContext.getTypeAlign(astContext.UnsignedLongTy))});
2099
        auto isInitialized =
2100
            Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized);
2101
        llvm::BasicBlock *notInitializedBlock =
2102
            CGF.createBasicBlock("objc_direct_method.class_uninitialized");
2103
        llvm::BasicBlock *initializedBlock =
2104
            CGF.createBasicBlock("objc_direct_method.class_initialized");
2105
        Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]),
2106
                             notInitializedBlock, initializedBlock,
2107
                             MDHelper.createUnlikelyBranchWeights());
2108
        CGF.EmitBlock(notInitializedBlock);
2109
        Builder.SetInsertPoint(notInitializedBlock);
2110
        CGF.EmitRuntimeCall(SentInitializeFn, selfValue);
2111
        Builder.CreateBr(initializedBlock);
2112
        CGF.EmitBlock(initializedBlock);
2113
        Builder.SetInsertPoint(initializedBlock);
2114
      }
2115

2116
      // only synthesize _cmd if it's referenced
2117
      if (OMD->getCmdDecl()->isUsed()) {
2118
        // `_cmd` is not a parameter to direct methods, so storage must be
2119
        // explicitly declared for it.
2120
        CGF.EmitVarDecl(*OMD->getCmdDecl());
2121
        Builder.CreateStore(GetSelector(CGF, OMD),
2122
                            CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2123
      }
2124
    }
2125
};
2126

2127
const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2128
{
2129
"__objc_selectors",
2130
"__objc_classes",
2131
"__objc_class_refs",
2132
"__objc_cats",
2133
"__objc_protocols",
2134
"__objc_protocol_refs",
2135
"__objc_class_aliases",
2136
"__objc_constant_string"
2137
};
2138

2139
const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2140
{
2141
".objcrt$SEL",
2142
".objcrt$CLS",
2143
".objcrt$CLR",
2144
".objcrt$CAT",
2145
".objcrt$PCL",
2146
".objcrt$PCR",
2147
".objcrt$CAL",
2148
".objcrt$STR"
2149
};
2150

2151
/// Support for the ObjFW runtime.
2152
class CGObjCObjFW: public CGObjCGNU {
2153
protected:
2154
  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
2155
  /// method implementation for this message.
2156
  LazyRuntimeFunction MsgLookupFn;
2157
  /// stret lookup function.  While this does not seem to make sense at the
2158
  /// first look, this is required to call the correct forwarding function.
2159
  LazyRuntimeFunction MsgLookupFnSRet;
2160
  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
2161
  /// structure describing the receiver and the class, and a selector as
2162
  /// arguments.  Returns the IMP for the corresponding method.
2163
  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2164

2165
  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2166
                         llvm::Value *cmd, llvm::MDNode *node,
2167
                         MessageSendInfo &MSI) override {
2168
    CGBuilderTy &Builder = CGF.Builder;
2169
    llvm::Value *args[] = {
2170
            EnforceType(Builder, Receiver, IdTy),
2171
            EnforceType(Builder, cmd, SelectorTy) };
2172

2173
    llvm::CallBase *imp;
2174
    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2175
      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2176
    else
2177
      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2178

2179
    imp->setMetadata(msgSendMDKind, node);
2180
    return imp;
2181
  }
2182

2183
  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2184
                              llvm::Value *cmd, MessageSendInfo &MSI) override {
2185
    CGBuilderTy &Builder = CGF.Builder;
2186
    llvm::Value *lookupArgs[] = {
2187
        EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
2188
        cmd,
2189
    };
2190

2191
    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2192
      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2193
    else
2194
      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2195
  }
2196

2197
  llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2198
                             bool isWeak) override {
2199
    if (isWeak)
2200
      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2201

2202
    EmitClassRef(Name);
2203
    std::string SymbolName = "_OBJC_CLASS_" + Name;
2204
    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2205
    if (!ClassSymbol)
2206
      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2207
                                             llvm::GlobalValue::ExternalLinkage,
2208
                                             nullptr, SymbolName);
2209
    return ClassSymbol;
2210
  }
2211

2212
public:
2213
  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2214
    // IMP objc_msg_lookup(id, SEL);
2215
    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2216
    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2217
                         SelectorTy);
2218
    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2219
    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2220
                          PtrToObjCSuperTy, SelectorTy);
2221
    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2222
                              PtrToObjCSuperTy, SelectorTy);
2223
  }
2224
};
2225
} // end anonymous namespace
2226

2227
/// Emits a reference to a dummy variable which is emitted with each class.
2228
/// This ensures that a linker error will be generated when trying to link
2229
/// together modules where a referenced class is not defined.
2230
void CGObjCGNU::EmitClassRef(const std::string &className) {
2231
  std::string symbolRef = "__objc_class_ref_" + className;
2232
  // Don't emit two copies of the same symbol
2233
  if (TheModule.getGlobalVariable(symbolRef))
2234
    return;
2235
  std::string symbolName = "__objc_class_name_" + className;
2236
  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2237
  if (!ClassSymbol) {
2238
    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2239
                                           llvm::GlobalValue::ExternalLinkage,
2240
                                           nullptr, symbolName);
2241
  }
2242
  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2243
    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2244
}
2245

2246
CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2247
                     unsigned protocolClassVersion, unsigned classABI)
2248
  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2249
    VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2250
    MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2251
    ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2252

2253
  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2254
  usesSEHExceptions =
2255
      cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2256
  usesCxxExceptions =
2257
      cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2258
      isRuntime(ObjCRuntime::GNUstep, 2);
2259

2260
  CodeGenTypes &Types = CGM.getTypes();
2261
  IntTy = cast<llvm::IntegerType>(
2262
      Types.ConvertType(CGM.getContext().IntTy));
2263
  LongTy = cast<llvm::IntegerType>(
2264
      Types.ConvertType(CGM.getContext().LongTy));
2265
  SizeTy = cast<llvm::IntegerType>(
2266
      Types.ConvertType(CGM.getContext().getSizeType()));
2267
  PtrDiffTy = cast<llvm::IntegerType>(
2268
      Types.ConvertType(CGM.getContext().getPointerDiffType()));
2269
  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2270

2271
  Int8Ty = llvm::Type::getInt8Ty(VMContext);
2272
  // C string type.  Used in lots of places.
2273
  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2274
  ProtocolPtrTy = llvm::PointerType::getUnqual(
2275
      Types.ConvertType(CGM.getContext().getObjCProtoType()));
2276

2277
  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2278
  Zeros[1] = Zeros[0];
2279
  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2280
  // Get the selector Type.
2281
  QualType selTy = CGM.getContext().getObjCSelType();
2282
  if (QualType() == selTy) {
2283
    SelectorTy = PtrToInt8Ty;
2284
    SelectorElemTy = Int8Ty;
2285
  } else {
2286
    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2287
    SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2288
  }
2289

2290
  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2291
  PtrTy = PtrToInt8Ty;
2292

2293
  Int32Ty = llvm::Type::getInt32Ty(VMContext);
2294
  Int64Ty = llvm::Type::getInt64Ty(VMContext);
2295

2296
  IntPtrTy =
2297
      CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2298

2299
  // Object type
2300
  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2301
  ASTIdTy = CanQualType();
2302
  if (UnqualIdTy != QualType()) {
2303
    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2304
    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2305
    IdElemTy = CGM.getTypes().ConvertTypeForMem(
2306
        ASTIdTy.getTypePtr()->getPointeeType());
2307
  } else {
2308
    IdTy = PtrToInt8Ty;
2309
    IdElemTy = Int8Ty;
2310
  }
2311
  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2312
  ProtocolTy = llvm::StructType::get(IdTy,
2313
      PtrToInt8Ty, // name
2314
      PtrToInt8Ty, // protocols
2315
      PtrToInt8Ty, // instance methods
2316
      PtrToInt8Ty, // class methods
2317
      PtrToInt8Ty, // optional instance methods
2318
      PtrToInt8Ty, // optional class methods
2319
      PtrToInt8Ty, // properties
2320
      PtrToInt8Ty);// optional properties
2321

2322
  // struct objc_property_gsv1
2323
  // {
2324
  //   const char *name;
2325
  //   char attributes;
2326
  //   char attributes2;
2327
  //   char unused1;
2328
  //   char unused2;
2329
  //   const char *getter_name;
2330
  //   const char *getter_types;
2331
  //   const char *setter_name;
2332
  //   const char *setter_types;
2333
  // }
2334
  PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2335
      PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2336
      PtrToInt8Ty, PtrToInt8Ty });
2337

2338
  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2339
  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2340

2341
  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2342

2343
  // void objc_exception_throw(id);
2344
  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2345
  ExceptionReThrowFn.init(&CGM,
2346
                          usesCxxExceptions ? "objc_exception_rethrow"
2347
                                            : "objc_exception_throw",
2348
                          VoidTy, IdTy);
2349
  // int objc_sync_enter(id);
2350
  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2351
  // int objc_sync_exit(id);
2352
  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2353

2354
  // void objc_enumerationMutation (id)
2355
  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2356

2357
  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2358
  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2359
                     PtrDiffTy, BoolTy);
2360
  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2361
  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2362
                     PtrDiffTy, IdTy, BoolTy, BoolTy);
2363
  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2364
  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2365
                           PtrDiffTy, BoolTy, BoolTy);
2366
  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2367
  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2368
                           PtrDiffTy, BoolTy, BoolTy);
2369

2370
  // IMP type
2371
  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2372
  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2373
              true));
2374

2375
  const LangOptions &Opts = CGM.getLangOpts();
2376
  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2377
    RuntimeVersion = 10;
2378

2379
  // Don't bother initialising the GC stuff unless we're compiling in GC mode
2380
  if (Opts.getGC() != LangOptions::NonGC) {
2381
    // This is a bit of an hack.  We should sort this out by having a proper
2382
    // CGObjCGNUstep subclass for GC, but we may want to really support the old
2383
    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2384
    // Get selectors needed in GC mode
2385
    RetainSel = GetNullarySelector("retain", CGM.getContext());
2386
    ReleaseSel = GetNullarySelector("release", CGM.getContext());
2387
    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2388

2389
    // Get functions needed in GC mode
2390

2391
    // id objc_assign_ivar(id, id, ptrdiff_t);
2392
    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2393
    // id objc_assign_strongCast (id, id*)
2394
    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2395
                            PtrToIdTy);
2396
    // id objc_assign_global(id, id*);
2397
    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2398
    // id objc_assign_weak(id, id*);
2399
    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2400
    // id objc_read_weak(id*);
2401
    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2402
    // void *objc_memmove_collectable(void*, void *, size_t);
2403
    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2404
                   SizeTy);
2405
  }
2406
}
2407

2408
llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2409
                                      const std::string &Name, bool isWeak) {
2410
  llvm::Constant *ClassName = MakeConstantString(Name);
2411
  // With the incompatible ABI, this will need to be replaced with a direct
2412
  // reference to the class symbol.  For the compatible nonfragile ABI we are
2413
  // still performing this lookup at run time but emitting the symbol for the
2414
  // class externally so that we can make the switch later.
2415
  //
2416
  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2417
  // with memoized versions or with static references if it's safe to do so.
2418
  if (!isWeak)
2419
    EmitClassRef(Name);
2420

2421
  llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2422
      llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2423
  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2424
}
2425

2426
// This has to perform the lookup every time, since posing and related
2427
// techniques can modify the name -> class mapping.
2428
llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2429
                                 const ObjCInterfaceDecl *OID) {
2430
  auto *Value =
2431
      GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2432
  if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2433
    CGM.setGVProperties(ClassSymbol, OID);
2434
  return Value;
2435
}
2436

2437
llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2438
  auto *Value  = GetClassNamed(CGF, "NSAutoreleasePool", false);
2439
  if (CGM.getTriple().isOSBinFormatCOFF()) {
2440
    if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2441
      IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2442
      TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2443
      DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2444

2445
      const VarDecl *VD = nullptr;
2446
      for (const auto *Result : DC->lookup(&II))
2447
        if ((VD = dyn_cast<VarDecl>(Result)))
2448
          break;
2449

2450
      CGM.setGVProperties(ClassSymbol, VD);
2451
    }
2452
  }
2453
  return Value;
2454
}
2455

2456
llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2457
                                         const std::string &TypeEncoding) {
2458
  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2459
  llvm::GlobalAlias *SelValue = nullptr;
2460

2461
  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2462
      e = Types.end() ; i!=e ; i++) {
2463
    if (i->first == TypeEncoding) {
2464
      SelValue = i->second;
2465
      break;
2466
    }
2467
  }
2468
  if (!SelValue) {
2469
    SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2470
                                         llvm::GlobalValue::PrivateLinkage,
2471
                                         ".objc_selector_" + Sel.getAsString(),
2472
                                         &TheModule);
2473
    Types.emplace_back(TypeEncoding, SelValue);
2474
  }
2475

2476
  return SelValue;
2477
}
2478

2479
Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2480
  llvm::Value *SelValue = GetSelector(CGF, Sel);
2481

2482
  // Store it to a temporary.  Does this satisfy the semantics of
2483
  // GetAddrOfSelector?  Hopefully.
2484
  Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2485
                                     CGF.getPointerAlign());
2486
  CGF.Builder.CreateStore(SelValue, tmp);
2487
  return tmp;
2488
}
2489

2490
llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2491
  return GetTypedSelector(CGF, Sel, std::string());
2492
}
2493

2494
llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2495
                                    const ObjCMethodDecl *Method) {
2496
  std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2497
  return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2498
}
2499

2500
llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2501
  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2502
    // With the old ABI, there was only one kind of catchall, which broke
2503
    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
2504
    // a pointer indicating object catchalls, and NULL to indicate real
2505
    // catchalls
2506
    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2507
      return MakeConstantString("@id");
2508
    } else {
2509
      return nullptr;
2510
    }
2511
  }
2512

2513
  // All other types should be Objective-C interface pointer types.
2514
  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2515
  assert(OPT && "Invalid @catch type.");
2516
  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2517
  assert(IDecl && "Invalid @catch type.");
2518
  return MakeConstantString(IDecl->getIdentifier()->getName());
2519
}
2520

2521
llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2522
  if (usesSEHExceptions)
2523
    return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2524

2525
  if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2526
    return CGObjCGNU::GetEHType(T);
2527

2528
  // For Objective-C++, we want to provide the ability to catch both C++ and
2529
  // Objective-C objects in the same function.
2530

2531
  // There's a particular fixed type info for 'id'.
2532
  if (T->isObjCIdType() ||
2533
      T->isObjCQualifiedIdType()) {
2534
    llvm::Constant *IDEHType =
2535
      CGM.getModule().getGlobalVariable("__objc_id_type_info");
2536
    if (!IDEHType)
2537
      IDEHType =
2538
        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2539
                                 false,
2540
                                 llvm::GlobalValue::ExternalLinkage,
2541
                                 nullptr, "__objc_id_type_info");
2542
    return IDEHType;
2543
  }
2544

2545
  const ObjCObjectPointerType *PT =
2546
    T->getAs<ObjCObjectPointerType>();
2547
  assert(PT && "Invalid @catch type.");
2548
  const ObjCInterfaceType *IT = PT->getInterfaceType();
2549
  assert(IT && "Invalid @catch type.");
2550
  std::string className =
2551
      std::string(IT->getDecl()->getIdentifier()->getName());
2552

2553
  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2554

2555
  // Return the existing typeinfo if it exists
2556
  if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2557
    return typeinfo;
2558

2559
  // Otherwise create it.
2560

2561
  // vtable for gnustep::libobjc::__objc_class_type_info
2562
  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
2563
  // platform's name mangling.
2564
  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2565
  auto *Vtable = TheModule.getGlobalVariable(vtableName);
2566
  if (!Vtable) {
2567
    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2568
                                      llvm::GlobalValue::ExternalLinkage,
2569
                                      nullptr, vtableName);
2570
  }
2571
  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2572
  auto *BVtable =
2573
      llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2574

2575
  llvm::Constant *typeName =
2576
    ExportUniqueString(className, "__objc_eh_typename_");
2577

2578
  ConstantInitBuilder builder(CGM);
2579
  auto fields = builder.beginStruct();
2580
  fields.add(BVtable);
2581
  fields.add(typeName);
2582
  llvm::Constant *TI =
2583
    fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2584
                                 CGM.getPointerAlign(),
2585
                                 /*constant*/ false,
2586
                                 llvm::GlobalValue::LinkOnceODRLinkage);
2587
  return TI;
2588
}
2589

2590
/// Generate an NSConstantString object.
2591
ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2592

2593
  std::string Str = SL->getString().str();
2594
  CharUnits Align = CGM.getPointerAlign();
2595

2596
  // Look for an existing one
2597
  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2598
  if (old != ObjCStrings.end())
2599
    return ConstantAddress(old->getValue(), Int8Ty, Align);
2600

2601
  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2602

2603
  if (StringClass.empty()) StringClass = "NSConstantString";
2604

2605
  std::string Sym = "_OBJC_CLASS_";
2606
  Sym += StringClass;
2607

2608
  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2609

2610
  if (!isa)
2611
    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2612
                                   llvm::GlobalValue::ExternalWeakLinkage,
2613
                                   nullptr, Sym);
2614

2615
  ConstantInitBuilder Builder(CGM);
2616
  auto Fields = Builder.beginStruct();
2617
  Fields.add(isa);
2618
  Fields.add(MakeConstantString(Str));
2619
  Fields.addInt(IntTy, Str.size());
2620
  llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2621
  ObjCStrings[Str] = ObjCStr;
2622
  ConstantStrings.push_back(ObjCStr);
2623
  return ConstantAddress(ObjCStr, Int8Ty, Align);
2624
}
2625

2626
///Generates a message send where the super is the receiver.  This is a message
2627
///send to self with special delivery semantics indicating which class's method
2628
///should be called.
2629
RValue
2630
CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2631
                                    ReturnValueSlot Return,
2632
                                    QualType ResultType,
2633
                                    Selector Sel,
2634
                                    const ObjCInterfaceDecl *Class,
2635
                                    bool isCategoryImpl,
2636
                                    llvm::Value *Receiver,
2637
                                    bool IsClassMessage,
2638
                                    const CallArgList &CallArgs,
2639
                                    const ObjCMethodDecl *Method) {
2640
  CGBuilderTy &Builder = CGF.Builder;
2641
  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2642
    if (Sel == RetainSel || Sel == AutoreleaseSel) {
2643
      return RValue::get(EnforceType(Builder, Receiver,
2644
                  CGM.getTypes().ConvertType(ResultType)));
2645
    }
2646
    if (Sel == ReleaseSel) {
2647
      return RValue::get(nullptr);
2648
    }
2649
  }
2650

2651
  llvm::Value *cmd = GetSelector(CGF, Sel);
2652
  CallArgList ActualArgs;
2653

2654
  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2655
  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2656
  ActualArgs.addFrom(CallArgs);
2657

2658
  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2659

2660
  llvm::Value *ReceiverClass = nullptr;
2661
  bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2662
  if (isV2ABI) {
2663
    ReceiverClass = GetClassNamed(CGF,
2664
        Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2665
    if (IsClassMessage)  {
2666
      // Load the isa pointer of the superclass is this is a class method.
2667
      ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2668
                                            llvm::PointerType::getUnqual(IdTy));
2669
      ReceiverClass =
2670
        Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2671
    }
2672
    ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2673
  } else {
2674
    if (isCategoryImpl) {
2675
      llvm::FunctionCallee classLookupFunction = nullptr;
2676
      if (IsClassMessage)  {
2677
        classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2678
              IdTy, PtrTy, true), "objc_get_meta_class");
2679
      } else {
2680
        classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2681
              IdTy, PtrTy, true), "objc_get_class");
2682
      }
2683
      ReceiverClass = Builder.CreateCall(classLookupFunction,
2684
          MakeConstantString(Class->getNameAsString()));
2685
    } else {
2686
      // Set up global aliases for the metaclass or class pointer if they do not
2687
      // already exist.  These will are forward-references which will be set to
2688
      // pointers to the class and metaclass structure created for the runtime
2689
      // load function.  To send a message to super, we look up the value of the
2690
      // super_class pointer from either the class or metaclass structure.
2691
      if (IsClassMessage)  {
2692
        if (!MetaClassPtrAlias) {
2693
          MetaClassPtrAlias = llvm::GlobalAlias::create(
2694
              IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2695
              ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2696
        }
2697
        ReceiverClass = MetaClassPtrAlias;
2698
      } else {
2699
        if (!ClassPtrAlias) {
2700
          ClassPtrAlias = llvm::GlobalAlias::create(
2701
              IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2702
              ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2703
        }
2704
        ReceiverClass = ClassPtrAlias;
2705
      }
2706
    }
2707
    // Cast the pointer to a simplified version of the class structure
2708
    llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2709
    ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2710
                                          llvm::PointerType::getUnqual(CastTy));
2711
    // Get the superclass pointer
2712
    ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2713
    // Load the superclass pointer
2714
    ReceiverClass =
2715
      Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2716
  }
2717
  // Construct the structure used to look up the IMP
2718
  llvm::StructType *ObjCSuperTy =
2719
      llvm::StructType::get(Receiver->getType(), IdTy);
2720

2721
  Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2722
                              CGF.getPointerAlign());
2723

2724
  Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2725
  Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2726

2727
  // Get the IMP
2728
  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2729
  imp = EnforceType(Builder, imp, MSI.MessengerType);
2730

2731
  llvm::Metadata *impMD[] = {
2732
      llvm::MDString::get(VMContext, Sel.getAsString()),
2733
      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2734
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2735
          llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2736
  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2737

2738
  CGCallee callee(CGCalleeInfo(), imp);
2739

2740
  llvm::CallBase *call;
2741
  RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2742
  call->setMetadata(msgSendMDKind, node);
2743
  return msgRet;
2744
}
2745

2746
/// Generate code for a message send expression.
2747
RValue
2748
CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2749
                               ReturnValueSlot Return,
2750
                               QualType ResultType,
2751
                               Selector Sel,
2752
                               llvm::Value *Receiver,
2753
                               const CallArgList &CallArgs,
2754
                               const ObjCInterfaceDecl *Class,
2755
                               const ObjCMethodDecl *Method) {
2756
  CGBuilderTy &Builder = CGF.Builder;
2757

2758
  // Strip out message sends to retain / release in GC mode
2759
  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2760
    if (Sel == RetainSel || Sel == AutoreleaseSel) {
2761
      return RValue::get(EnforceType(Builder, Receiver,
2762
                  CGM.getTypes().ConvertType(ResultType)));
2763
    }
2764
    if (Sel == ReleaseSel) {
2765
      return RValue::get(nullptr);
2766
    }
2767
  }
2768

2769
  bool isDirect = Method && Method->isDirectMethod();
2770

2771
  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2772
  llvm::Value *cmd;
2773
  if (!isDirect) {
2774
    if (Method)
2775
      cmd = GetSelector(CGF, Method);
2776
    else
2777
      cmd = GetSelector(CGF, Sel);
2778
    cmd = EnforceType(Builder, cmd, SelectorTy);
2779
  }
2780

2781
  Receiver = EnforceType(Builder, Receiver, IdTy);
2782

2783
  llvm::Metadata *impMD[] = {
2784
      llvm::MDString::get(VMContext, Sel.getAsString()),
2785
      llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2786
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2787
          llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2788
  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2789

2790
  CallArgList ActualArgs;
2791
  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2792
  if (!isDirect)
2793
    ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2794
  ActualArgs.addFrom(CallArgs);
2795

2796
  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2797

2798
  // Message sends are expected to return a zero value when the
2799
  // receiver is nil.  At one point, this was only guaranteed for
2800
  // simple integer and pointer types, but expectations have grown
2801
  // over time.
2802
  //
2803
  // Given a nil receiver, the GNU runtime's message lookup will
2804
  // return a stub function that simply sets various return-value
2805
  // registers to zero and then returns.  That's good enough for us
2806
  // if and only if (1) the calling conventions of that stub are
2807
  // compatible with the signature we're using and (2) the registers
2808
  // it sets are sufficient to produce a zero value of the return type.
2809
  // Rather than doing a whole target-specific analysis, we assume it
2810
  // only works for void, integer, and pointer types, and in all
2811
  // other cases we do an explicit nil check is emitted code.  In
2812
  // addition to ensuring we produce a zero value for other types, this
2813
  // sidesteps the few outright CC incompatibilities we know about that
2814
  // could otherwise lead to crashes, like when a method is expected to
2815
  // return on the x87 floating point stack or adjust the stack pointer
2816
  // because of an indirect return.
2817
  bool hasParamDestroyedInCallee = false;
2818
  bool requiresExplicitZeroResult = false;
2819
  bool requiresNilReceiverCheck = [&] {
2820
    // We never need a check if we statically know the receiver isn't nil.
2821
    if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2822
                                  Class, Receiver))
2823
      return false;
2824

2825
    // If there's a consumed argument, we need a nil check.
2826
    if (Method && Method->hasParamDestroyedInCallee()) {
2827
      hasParamDestroyedInCallee = true;
2828
    }
2829

2830
    // If the return value isn't flagged as unused, and the result
2831
    // type isn't in our narrow set where we assume compatibility,
2832
    // we need a nil check to ensure a nil value.
2833
    if (!Return.isUnused()) {
2834
      if (ResultType->isVoidType()) {
2835
        // void results are definitely okay.
2836
      } else if (ResultType->hasPointerRepresentation() &&
2837
                 CGM.getTypes().isZeroInitializable(ResultType)) {
2838
        // Pointer types should be fine as long as they have
2839
        // bitwise-zero null pointers.  But do we need to worry
2840
        // about unusual address spaces?
2841
      } else if (ResultType->isIntegralOrEnumerationType()) {
2842
        // Bitwise zero should always be zero for integral types.
2843
        // FIXME: we probably need a size limit here, but we've
2844
        // never imposed one before
2845
      } else {
2846
        // Otherwise, use an explicit check just to be sure, unless we're
2847
        // calling a direct method, where the implementation does this for us.
2848
        requiresExplicitZeroResult = !isDirect;
2849
      }
2850
    }
2851

2852
    return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2853
  }();
2854

2855
  // We will need to explicitly zero-initialize an aggregate result slot
2856
  // if we generally require explicit zeroing and we have an aggregate
2857
  // result.
2858
  bool requiresExplicitAggZeroing =
2859
    requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2860

2861
  // The block we're going to end up in after any message send or nil path.
2862
  llvm::BasicBlock *continueBB = nullptr;
2863
  // The block that eventually branched to continueBB along the nil path.
2864
  llvm::BasicBlock *nilPathBB = nullptr;
2865
  // The block to do explicit work in along the nil path, if necessary.
2866
  llvm::BasicBlock *nilCleanupBB = nullptr;
2867

2868
  // Emit the nil-receiver check.
2869
  if (requiresNilReceiverCheck) {
2870
    llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2871
    continueBB = CGF.createBasicBlock("continue");
2872

2873
    // If we need to zero-initialize an aggregate result or destroy
2874
    // consumed arguments, we'll need a separate cleanup block.
2875
    // Otherwise we can just branch directly to the continuation block.
2876
    if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2877
      nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2878
    } else {
2879
      nilPathBB = Builder.GetInsertBlock();
2880
    }
2881

2882
    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2883
            llvm::Constant::getNullValue(Receiver->getType()));
2884
    Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2885
                         messageBB);
2886
    CGF.EmitBlock(messageBB);
2887
  }
2888

2889
  // Get the IMP to call
2890
  llvm::Value *imp;
2891

2892
  // If this is a direct method, just emit it here.
2893
  if (isDirect)
2894
    imp = GenerateMethod(Method, Method->getClassInterface());
2895
  else
2896
    // If we have non-legacy dispatch specified, we try using the
2897
    // objc_msgSend() functions.  These are not supported on all platforms
2898
    // (or all runtimes on a given platform), so we
2899
    switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2900
    case CodeGenOptions::Legacy:
2901
      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2902
      break;
2903
    case CodeGenOptions::Mixed:
2904
    case CodeGenOptions::NonLegacy:
2905
      StringRef name = "objc_msgSend";
2906
      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2907
        name = "objc_msgSend_fpret";
2908
      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2909
        name = "objc_msgSend_stret";
2910

2911
        // The address of the memory block is be passed in x8 for POD type,
2912
        // or in x0 for non-POD type (marked as inreg).
2913
        bool shouldCheckForInReg =
2914
            CGM.getContext()
2915
                .getTargetInfo()
2916
                .getTriple()
2917
                .isWindowsMSVCEnvironment() &&
2918
            CGM.getContext().getTargetInfo().getTriple().isAArch64();
2919
        if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) {
2920
          name = "objc_msgSend_stret2";
2921
        }
2922
      }
2923
      // The actual types here don't matter - we're going to bitcast the
2924
      // function anyway
2925
      imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2926
                                      name)
2927
                .getCallee();
2928
    }
2929

2930
  // Reset the receiver in case the lookup modified it
2931
  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2932

2933
  imp = EnforceType(Builder, imp, MSI.MessengerType);
2934

2935
  llvm::CallBase *call;
2936
  CGCallee callee(CGCalleeInfo(), imp);
2937
  RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2938
  if (!isDirect)
2939
    call->setMetadata(msgSendMDKind, node);
2940

2941
  if (requiresNilReceiverCheck) {
2942
    llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2943
    CGF.Builder.CreateBr(continueBB);
2944

2945
    // Emit the nil path if we decided it was necessary above.
2946
    if (nilCleanupBB) {
2947
      CGF.EmitBlock(nilCleanupBB);
2948

2949
      if (hasParamDestroyedInCallee) {
2950
        destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2951
      }
2952

2953
      if (requiresExplicitAggZeroing) {
2954
        assert(msgRet.isAggregate());
2955
        Address addr = msgRet.getAggregateAddress();
2956
        CGF.EmitNullInitialization(addr, ResultType);
2957
      }
2958

2959
      nilPathBB = CGF.Builder.GetInsertBlock();
2960
      CGF.Builder.CreateBr(continueBB);
2961
    }
2962

2963
    // Enter the continuation block and emit a phi if required.
2964
    CGF.EmitBlock(continueBB);
2965
    if (msgRet.isScalar()) {
2966
      // If the return type is void, do nothing
2967
      if (llvm::Value *v = msgRet.getScalarVal()) {
2968
        llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2969
        phi->addIncoming(v, nonNilPathBB);
2970
        phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2971
        msgRet = RValue::get(phi);
2972
      }
2973
    } else if (msgRet.isAggregate()) {
2974
      // Aggregate zeroing is handled in nilCleanupBB when it's required.
2975
    } else /* isComplex() */ {
2976
      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2977
      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2978
      phi->addIncoming(v.first, nonNilPathBB);
2979
      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2980
                       nilPathBB);
2981
      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2982
      phi2->addIncoming(v.second, nonNilPathBB);
2983
      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2984
                        nilPathBB);
2985
      msgRet = RValue::getComplex(phi, phi2);
2986
    }
2987
  }
2988
  return msgRet;
2989
}
2990

2991
/// Generates a MethodList.  Used in construction of a objc_class and
2992
/// objc_category structures.
2993
llvm::Constant *CGObjCGNU::
2994
GenerateMethodList(StringRef ClassName,
2995
                   StringRef CategoryName,
2996
                   ArrayRef<const ObjCMethodDecl*> Methods,
2997
                   bool isClassMethodList) {
2998
  if (Methods.empty())
2999
    return NULLPtr;
3000

3001
  ConstantInitBuilder Builder(CGM);
3002

3003
  auto MethodList = Builder.beginStruct();
3004
  MethodList.addNullPointer(CGM.Int8PtrTy);
3005
  MethodList.addInt(Int32Ty, Methods.size());
3006

3007
  // Get the method structure type.
3008
  llvm::StructType *ObjCMethodTy =
3009
    llvm::StructType::get(CGM.getLLVMContext(), {
3010
      PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3011
      PtrToInt8Ty, // Method types
3012
      IMPTy        // Method pointer
3013
    });
3014
  bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
3015
  if (isV2ABI) {
3016
    // size_t size;
3017
    llvm::DataLayout td(&TheModule);
3018
    MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
3019
        CGM.getContext().getCharWidth());
3020
    ObjCMethodTy =
3021
      llvm::StructType::get(CGM.getLLVMContext(), {
3022
        IMPTy,       // Method pointer
3023
        PtrToInt8Ty, // Selector
3024
        PtrToInt8Ty  // Extended type encoding
3025
      });
3026
  } else {
3027
    ObjCMethodTy =
3028
      llvm::StructType::get(CGM.getLLVMContext(), {
3029
        PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3030
        PtrToInt8Ty, // Method types
3031
        IMPTy        // Method pointer
3032
      });
3033
  }
3034
  auto MethodArray = MethodList.beginArray();
3035
  ASTContext &Context = CGM.getContext();
3036
  for (const auto *OMD : Methods) {
3037
    llvm::Constant *FnPtr =
3038
      TheModule.getFunction(getSymbolNameForMethod(OMD));
3039
    assert(FnPtr && "Can't generate metadata for method that doesn't exist");
3040
    auto Method = MethodArray.beginStruct(ObjCMethodTy);
3041
    if (isV2ABI) {
3042
      Method.add(FnPtr);
3043
      Method.add(GetConstantSelector(OMD->getSelector(),
3044
          Context.getObjCEncodingForMethodDecl(OMD)));
3045
      Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
3046
    } else {
3047
      Method.add(MakeConstantString(OMD->getSelector().getAsString()));
3048
      Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
3049
      Method.add(FnPtr);
3050
    }
3051
    Method.finishAndAddTo(MethodArray);
3052
  }
3053
  MethodArray.finishAndAddTo(MethodList);
3054

3055
  // Create an instance of the structure
3056
  return MethodList.finishAndCreateGlobal(".objc_method_list",
3057
                                          CGM.getPointerAlign());
3058
}
3059

3060
/// Generates an IvarList.  Used in construction of a objc_class.
3061
llvm::Constant *CGObjCGNU::
3062
GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
3063
                 ArrayRef<llvm::Constant *> IvarTypes,
3064
                 ArrayRef<llvm::Constant *> IvarOffsets,
3065
                 ArrayRef<llvm::Constant *> IvarAlign,
3066
                 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
3067
  if (IvarNames.empty())
3068
    return NULLPtr;
3069

3070
  ConstantInitBuilder Builder(CGM);
3071

3072
  // Structure containing array count followed by array.
3073
  auto IvarList = Builder.beginStruct();
3074
  IvarList.addInt(IntTy, (int)IvarNames.size());
3075

3076
  // Get the ivar structure type.
3077
  llvm::StructType *ObjCIvarTy =
3078
      llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
3079

3080
  // Array of ivar structures.
3081
  auto Ivars = IvarList.beginArray(ObjCIvarTy);
3082
  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
3083
    auto Ivar = Ivars.beginStruct(ObjCIvarTy);
3084
    Ivar.add(IvarNames[i]);
3085
    Ivar.add(IvarTypes[i]);
3086
    Ivar.add(IvarOffsets[i]);
3087
    Ivar.finishAndAddTo(Ivars);
3088
  }
3089
  Ivars.finishAndAddTo(IvarList);
3090

3091
  // Create an instance of the structure
3092
  return IvarList.finishAndCreateGlobal(".objc_ivar_list",
3093
                                        CGM.getPointerAlign());
3094
}
3095

3096
/// Generate a class structure
3097
llvm::Constant *CGObjCGNU::GenerateClassStructure(
3098
    llvm::Constant *MetaClass,
3099
    llvm::Constant *SuperClass,
3100
    unsigned info,
3101
    const char *Name,
3102
    llvm::Constant *Version,
3103
    llvm::Constant *InstanceSize,
3104
    llvm::Constant *IVars,
3105
    llvm::Constant *Methods,
3106
    llvm::Constant *Protocols,
3107
    llvm::Constant *IvarOffsets,
3108
    llvm::Constant *Properties,
3109
    llvm::Constant *StrongIvarBitmap,
3110
    llvm::Constant *WeakIvarBitmap,
3111
    bool isMeta) {
3112
  // Set up the class structure
3113
  // Note:  Several of these are char*s when they should be ids.  This is
3114
  // because the runtime performs this translation on load.
3115
  //
3116
  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
3117
  // anyway; the classes will still work with the GNU runtime, they will just
3118
  // be ignored.
3119
  llvm::StructType *ClassTy = llvm::StructType::get(
3120
      PtrToInt8Ty,        // isa
3121
      PtrToInt8Ty,        // super_class
3122
      PtrToInt8Ty,        // name
3123
      LongTy,             // version
3124
      LongTy,             // info
3125
      LongTy,             // instance_size
3126
      IVars->getType(),   // ivars
3127
      Methods->getType(), // methods
3128
      // These are all filled in by the runtime, so we pretend
3129
      PtrTy, // dtable
3130
      PtrTy, // subclass_list
3131
      PtrTy, // sibling_class
3132
      PtrTy, // protocols
3133
      PtrTy, // gc_object_type
3134
      // New ABI:
3135
      LongTy,                 // abi_version
3136
      IvarOffsets->getType(), // ivar_offsets
3137
      Properties->getType(),  // properties
3138
      IntPtrTy,               // strong_pointers
3139
      IntPtrTy                // weak_pointers
3140
      );
3141

3142
  ConstantInitBuilder Builder(CGM);
3143
  auto Elements = Builder.beginStruct(ClassTy);
3144

3145
  // Fill in the structure
3146

3147
  // isa
3148
  Elements.add(MetaClass);
3149
  // super_class
3150
  Elements.add(SuperClass);
3151
  // name
3152
  Elements.add(MakeConstantString(Name, ".class_name"));
3153
  // version
3154
  Elements.addInt(LongTy, 0);
3155
  // info
3156
  Elements.addInt(LongTy, info);
3157
  // instance_size
3158
  if (isMeta) {
3159
    llvm::DataLayout td(&TheModule);
3160
    Elements.addInt(LongTy,
3161
                    td.getTypeSizeInBits(ClassTy) /
3162
                      CGM.getContext().getCharWidth());
3163
  } else
3164
    Elements.add(InstanceSize);
3165
  // ivars
3166
  Elements.add(IVars);
3167
  // methods
3168
  Elements.add(Methods);
3169
  // These are all filled in by the runtime, so we pretend
3170
  // dtable
3171
  Elements.add(NULLPtr);
3172
  // subclass_list
3173
  Elements.add(NULLPtr);
3174
  // sibling_class
3175
  Elements.add(NULLPtr);
3176
  // protocols
3177
  Elements.add(Protocols);
3178
  // gc_object_type
3179
  Elements.add(NULLPtr);
3180
  // abi_version
3181
  Elements.addInt(LongTy, ClassABIVersion);
3182
  // ivar_offsets
3183
  Elements.add(IvarOffsets);
3184
  // properties
3185
  Elements.add(Properties);
3186
  // strong_pointers
3187
  Elements.add(StrongIvarBitmap);
3188
  // weak_pointers
3189
  Elements.add(WeakIvarBitmap);
3190
  // Create an instance of the structure
3191
  // This is now an externally visible symbol, so that we can speed up class
3192
  // messages in the next ABI.  We may already have some weak references to
3193
  // this, so check and fix them properly.
3194
  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3195
          std::string(Name));
3196
  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3197
  llvm::Constant *Class =
3198
    Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3199
                                   llvm::GlobalValue::ExternalLinkage);
3200
  if (ClassRef) {
3201
    ClassRef->replaceAllUsesWith(Class);
3202
    ClassRef->removeFromParent();
3203
    Class->setName(ClassSym);
3204
  }
3205
  return Class;
3206
}
3207

3208
llvm::Constant *CGObjCGNU::
3209
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3210
  // Get the method structure type.
3211
  llvm::StructType *ObjCMethodDescTy =
3212
    llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3213
  ASTContext &Context = CGM.getContext();
3214
  ConstantInitBuilder Builder(CGM);
3215
  auto MethodList = Builder.beginStruct();
3216
  MethodList.addInt(IntTy, Methods.size());
3217
  auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3218
  for (auto *M : Methods) {
3219
    auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3220
    Method.add(MakeConstantString(M->getSelector().getAsString()));
3221
    Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3222
    Method.finishAndAddTo(MethodArray);
3223
  }
3224
  MethodArray.finishAndAddTo(MethodList);
3225
  return MethodList.finishAndCreateGlobal(".objc_method_list",
3226
                                          CGM.getPointerAlign());
3227
}
3228

3229
// Create the protocol list structure used in classes, categories and so on
3230
llvm::Constant *
3231
CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3232

3233
  ConstantInitBuilder Builder(CGM);
3234
  auto ProtocolList = Builder.beginStruct();
3235
  ProtocolList.add(NULLPtr);
3236
  ProtocolList.addInt(LongTy, Protocols.size());
3237

3238
  auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3239
  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3240
      iter != endIter ; iter++) {
3241
    llvm::Constant *protocol = nullptr;
3242
    llvm::StringMap<llvm::Constant*>::iterator value =
3243
      ExistingProtocols.find(*iter);
3244
    if (value == ExistingProtocols.end()) {
3245
      protocol = GenerateEmptyProtocol(*iter);
3246
    } else {
3247
      protocol = value->getValue();
3248
    }
3249
    Elements.add(protocol);
3250
  }
3251
  Elements.finishAndAddTo(ProtocolList);
3252
  return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3253
                                            CGM.getPointerAlign());
3254
}
3255

3256
llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3257
                                            const ObjCProtocolDecl *PD) {
3258
  auto protocol = GenerateProtocolRef(PD);
3259
  llvm::Type *T =
3260
      CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3261
  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3262
}
3263

3264
llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3265
  llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3266
  if (!protocol)
3267
    GenerateProtocol(PD);
3268
  assert(protocol && "Unknown protocol");
3269
  return protocol;
3270
}
3271

3272
llvm::Constant *
3273
CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3274
  llvm::Constant *ProtocolList = GenerateProtocolList({});
3275
  llvm::Constant *MethodList = GenerateProtocolMethodList({});
3276
  // Protocols are objects containing lists of the methods implemented and
3277
  // protocols adopted.
3278
  ConstantInitBuilder Builder(CGM);
3279
  auto Elements = Builder.beginStruct();
3280

3281
  // The isa pointer must be set to a magic number so the runtime knows it's
3282
  // the correct layout.
3283
  Elements.add(llvm::ConstantExpr::getIntToPtr(
3284
          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3285

3286
  Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3287
  Elements.add(ProtocolList); /* .protocol_list */
3288
  Elements.add(MethodList);   /* .instance_methods */
3289
  Elements.add(MethodList);   /* .class_methods */
3290
  Elements.add(MethodList);   /* .optional_instance_methods */
3291
  Elements.add(MethodList);   /* .optional_class_methods */
3292
  Elements.add(NULLPtr);      /* .properties */
3293
  Elements.add(NULLPtr);      /* .optional_properties */
3294
  return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3295
                                        CGM.getPointerAlign());
3296
}
3297

3298
void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3299
  if (PD->isNonRuntimeProtocol())
3300
    return;
3301

3302
  std::string ProtocolName = PD->getNameAsString();
3303

3304
  // Use the protocol definition, if there is one.
3305
  if (const ObjCProtocolDecl *Def = PD->getDefinition())
3306
    PD = Def;
3307

3308
  SmallVector<std::string, 16> Protocols;
3309
  for (const auto *PI : PD->protocols())
3310
    Protocols.push_back(PI->getNameAsString());
3311
  SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3312
  SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3313
  for (const auto *I : PD->instance_methods())
3314
    if (I->isOptional())
3315
      OptionalInstanceMethods.push_back(I);
3316
    else
3317
      InstanceMethods.push_back(I);
3318
  // Collect information about class methods:
3319
  SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3320
  SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3321
  for (const auto *I : PD->class_methods())
3322
    if (I->isOptional())
3323
      OptionalClassMethods.push_back(I);
3324
    else
3325
      ClassMethods.push_back(I);
3326

3327
  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3328
  llvm::Constant *InstanceMethodList =
3329
    GenerateProtocolMethodList(InstanceMethods);
3330
  llvm::Constant *ClassMethodList =
3331
    GenerateProtocolMethodList(ClassMethods);
3332
  llvm::Constant *OptionalInstanceMethodList =
3333
    GenerateProtocolMethodList(OptionalInstanceMethods);
3334
  llvm::Constant *OptionalClassMethodList =
3335
    GenerateProtocolMethodList(OptionalClassMethods);
3336

3337
  // Property metadata: name, attributes, isSynthesized, setter name, setter
3338
  // types, getter name, getter types.
3339
  // The isSynthesized value is always set to 0 in a protocol.  It exists to
3340
  // simplify the runtime library by allowing it to use the same data
3341
  // structures for protocol metadata everywhere.
3342

3343
  llvm::Constant *PropertyList =
3344
    GeneratePropertyList(nullptr, PD, false, false);
3345
  llvm::Constant *OptionalPropertyList =
3346
    GeneratePropertyList(nullptr, PD, false, true);
3347

3348
  // Protocols are objects containing lists of the methods implemented and
3349
  // protocols adopted.
3350
  // The isa pointer must be set to a magic number so the runtime knows it's
3351
  // the correct layout.
3352
  ConstantInitBuilder Builder(CGM);
3353
  auto Elements = Builder.beginStruct();
3354
  Elements.add(
3355
      llvm::ConstantExpr::getIntToPtr(
3356
          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3357
  Elements.add(MakeConstantString(ProtocolName));
3358
  Elements.add(ProtocolList);
3359
  Elements.add(InstanceMethodList);
3360
  Elements.add(ClassMethodList);
3361
  Elements.add(OptionalInstanceMethodList);
3362
  Elements.add(OptionalClassMethodList);
3363
  Elements.add(PropertyList);
3364
  Elements.add(OptionalPropertyList);
3365
  ExistingProtocols[ProtocolName] =
3366
      Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3367
}
3368
void CGObjCGNU::GenerateProtocolHolderCategory() {
3369
  // Collect information about instance methods
3370

3371
  ConstantInitBuilder Builder(CGM);
3372
  auto Elements = Builder.beginStruct();
3373

3374
  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3375
  const std::string CategoryName = "AnotherHack";
3376
  Elements.add(MakeConstantString(CategoryName));
3377
  Elements.add(MakeConstantString(ClassName));
3378
  // Instance method list
3379
  Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3380
  // Class method list
3381
  Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3382

3383
  // Protocol list
3384
  ConstantInitBuilder ProtocolListBuilder(CGM);
3385
  auto ProtocolList = ProtocolListBuilder.beginStruct();
3386
  ProtocolList.add(NULLPtr);
3387
  ProtocolList.addInt(LongTy, ExistingProtocols.size());
3388
  auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3389
  for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3390
       iter != endIter ; iter++) {
3391
    ProtocolElements.add(iter->getValue());
3392
  }
3393
  ProtocolElements.finishAndAddTo(ProtocolList);
3394
  Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3395
                                                  CGM.getPointerAlign()));
3396
  Categories.push_back(
3397
      Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3398
}
3399

3400
/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3401
/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3402
/// bits set to their values, LSB first, while larger ones are stored in a
3403
/// structure of this / form:
3404
///
3405
/// struct { int32_t length; int32_t values[length]; };
3406
///
3407
/// The values in the array are stored in host-endian format, with the least
3408
/// significant bit being assumed to come first in the bitfield.  Therefore, a
3409
/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3410
/// bitfield / with the 63rd bit set will be 1<<64.
3411
llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3412
  int bitCount = bits.size();
3413
  int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3414
  if (bitCount < ptrBits) {
3415
    uint64_t val = 1;
3416
    for (int i=0 ; i<bitCount ; ++i) {
3417
      if (bits[i]) val |= 1ULL<<(i+1);
3418
    }
3419
    return llvm::ConstantInt::get(IntPtrTy, val);
3420
  }
3421
  SmallVector<llvm::Constant *, 8> values;
3422
  int v=0;
3423
  while (v < bitCount) {
3424
    int32_t word = 0;
3425
    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
3426
      if (bits[v]) word |= 1<<i;
3427
      v++;
3428
    }
3429
    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3430
  }
3431

3432
  ConstantInitBuilder builder(CGM);
3433
  auto fields = builder.beginStruct();
3434
  fields.addInt(Int32Ty, values.size());
3435
  auto array = fields.beginArray();
3436
  for (auto *v : values) array.add(v);
3437
  array.finishAndAddTo(fields);
3438

3439
  llvm::Constant *GS =
3440
    fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3441
  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3442
  return ptr;
3443
}
3444

3445
llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3446
    ObjCCategoryDecl *OCD) {
3447
  const auto &RefPro = OCD->getReferencedProtocols();
3448
  const auto RuntimeProtos =
3449
      GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3450
  SmallVector<std::string, 16> Protocols;
3451
  for (const auto *PD : RuntimeProtos)
3452
    Protocols.push_back(PD->getNameAsString());
3453
  return GenerateProtocolList(Protocols);
3454
}
3455

3456
void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3457
  const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3458
  std::string ClassName = Class->getNameAsString();
3459
  std::string CategoryName = OCD->getNameAsString();
3460

3461
  // Collect the names of referenced protocols
3462
  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3463

3464
  ConstantInitBuilder Builder(CGM);
3465
  auto Elements = Builder.beginStruct();
3466
  Elements.add(MakeConstantString(CategoryName));
3467
  Elements.add(MakeConstantString(ClassName));
3468
  // Instance method list
3469
  SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3470
  InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3471
      OCD->instmeth_end());
3472
  Elements.add(
3473
      GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3474

3475
  // Class method list
3476

3477
  SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3478
  ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3479
      OCD->classmeth_end());
3480
  Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3481

3482
  // Protocol list
3483
  Elements.add(GenerateCategoryProtocolList(CatDecl));
3484
  if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3485
    const ObjCCategoryDecl *Category =
3486
      Class->FindCategoryDeclaration(OCD->getIdentifier());
3487
    if (Category) {
3488
      // Instance properties
3489
      Elements.add(GeneratePropertyList(OCD, Category, false));
3490
      // Class properties
3491
      Elements.add(GeneratePropertyList(OCD, Category, true));
3492
    } else {
3493
      Elements.addNullPointer(PtrTy);
3494
      Elements.addNullPointer(PtrTy);
3495
    }
3496
  }
3497

3498
  Categories.push_back(Elements.finishAndCreateGlobal(
3499
      std::string(".objc_category_") + ClassName + CategoryName,
3500
      CGM.getPointerAlign()));
3501
}
3502

3503
llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3504
    const ObjCContainerDecl *OCD,
3505
    bool isClassProperty,
3506
    bool protocolOptionalProperties) {
3507

3508
  SmallVector<const ObjCPropertyDecl *, 16> Properties;
3509
  llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3510
  bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3511
  ASTContext &Context = CGM.getContext();
3512

3513
  std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3514
    = [&](const ObjCProtocolDecl *Proto) {
3515
      for (const auto *P : Proto->protocols())
3516
        collectProtocolProperties(P);
3517
      for (const auto *PD : Proto->properties()) {
3518
        if (isClassProperty != PD->isClassProperty())
3519
          continue;
3520
        // Skip any properties that are declared in protocols that this class
3521
        // conforms to but are not actually implemented by this class.
3522
        if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3523
          continue;
3524
        if (!PropertySet.insert(PD->getIdentifier()).second)
3525
          continue;
3526
        Properties.push_back(PD);
3527
      }
3528
    };
3529

3530
  if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3531
    for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3532
      for (auto *PD : ClassExt->properties()) {
3533
        if (isClassProperty != PD->isClassProperty())
3534
          continue;
3535
        PropertySet.insert(PD->getIdentifier());
3536
        Properties.push_back(PD);
3537
      }
3538

3539
  for (const auto *PD : OCD->properties()) {
3540
    if (isClassProperty != PD->isClassProperty())
3541
      continue;
3542
    // If we're generating a list for a protocol, skip optional / required ones
3543
    // when generating the other list.
3544
    if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3545
      continue;
3546
    // Don't emit duplicate metadata for properties that were already in a
3547
    // class extension.
3548
    if (!PropertySet.insert(PD->getIdentifier()).second)
3549
      continue;
3550

3551
    Properties.push_back(PD);
3552
  }
3553

3554
  if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3555
    for (const auto *P : OID->all_referenced_protocols())
3556
      collectProtocolProperties(P);
3557
  else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3558
    for (const auto *P : CD->protocols())
3559
      collectProtocolProperties(P);
3560

3561
  auto numProperties = Properties.size();
3562

3563
  if (numProperties == 0)
3564
    return NULLPtr;
3565

3566
  ConstantInitBuilder builder(CGM);
3567
  auto propertyList = builder.beginStruct();
3568
  auto properties = PushPropertyListHeader(propertyList, numProperties);
3569

3570
  // Add all of the property methods need adding to the method list and to the
3571
  // property metadata list.
3572
  for (auto *property : Properties) {
3573
    bool isSynthesized = false;
3574
    bool isDynamic = false;
3575
    if (!isProtocol) {
3576
      auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3577
      if (propertyImpl) {
3578
        isSynthesized = (propertyImpl->getPropertyImplementation() ==
3579
            ObjCPropertyImplDecl::Synthesize);
3580
        isDynamic = (propertyImpl->getPropertyImplementation() ==
3581
            ObjCPropertyImplDecl::Dynamic);
3582
      }
3583
    }
3584
    PushProperty(properties, property, Container, isSynthesized, isDynamic);
3585
  }
3586
  properties.finishAndAddTo(propertyList);
3587

3588
  return propertyList.finishAndCreateGlobal(".objc_property_list",
3589
                                            CGM.getPointerAlign());
3590
}
3591

3592
void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3593
  // Get the class declaration for which the alias is specified.
3594
  ObjCInterfaceDecl *ClassDecl =
3595
    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3596
  ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3597
                            OAD->getNameAsString());
3598
}
3599

3600
void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3601
  ASTContext &Context = CGM.getContext();
3602

3603
  // Get the superclass name.
3604
  const ObjCInterfaceDecl * SuperClassDecl =
3605
    OID->getClassInterface()->getSuperClass();
3606
  std::string SuperClassName;
3607
  if (SuperClassDecl) {
3608
    SuperClassName = SuperClassDecl->getNameAsString();
3609
    EmitClassRef(SuperClassName);
3610
  }
3611

3612
  // Get the class name
3613
  ObjCInterfaceDecl *ClassDecl =
3614
      const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3615
  std::string ClassName = ClassDecl->getNameAsString();
3616

3617
  // Emit the symbol that is used to generate linker errors if this class is
3618
  // referenced in other modules but not declared.
3619
  std::string classSymbolName = "__objc_class_name_" + ClassName;
3620
  if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3621
    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3622
  } else {
3623
    new llvm::GlobalVariable(TheModule, LongTy, false,
3624
                             llvm::GlobalValue::ExternalLinkage,
3625
                             llvm::ConstantInt::get(LongTy, 0),
3626
                             classSymbolName);
3627
  }
3628

3629
  // Get the size of instances.
3630
  int instanceSize =
3631
    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3632

3633
  // Collect information about instance variables.
3634
  SmallVector<llvm::Constant*, 16> IvarNames;
3635
  SmallVector<llvm::Constant*, 16> IvarTypes;
3636
  SmallVector<llvm::Constant*, 16> IvarOffsets;
3637
  SmallVector<llvm::Constant*, 16> IvarAligns;
3638
  SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3639

3640
  ConstantInitBuilder IvarOffsetBuilder(CGM);
3641
  auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3642
  SmallVector<bool, 16> WeakIvars;
3643
  SmallVector<bool, 16> StrongIvars;
3644

3645
  int superInstanceSize = !SuperClassDecl ? 0 :
3646
    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3647
  // For non-fragile ivars, set the instance size to 0 - {the size of just this
3648
  // class}.  The runtime will then set this to the correct value on load.
3649
  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3650
    instanceSize = 0 - (instanceSize - superInstanceSize);
3651
  }
3652

3653
  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3654
       IVD = IVD->getNextIvar()) {
3655
      // Store the name
3656
      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3657
      // Get the type encoding for this ivar
3658
      std::string TypeStr;
3659
      Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3660
      IvarTypes.push_back(MakeConstantString(TypeStr));
3661
      IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3662
            Context.getTypeSize(IVD->getType())));
3663
      // Get the offset
3664
      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3665
      uint64_t Offset = BaseOffset;
3666
      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3667
        Offset = BaseOffset - superInstanceSize;
3668
      }
3669
      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3670
      // Create the direct offset value
3671
      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3672
          IVD->getNameAsString();
3673

3674
      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3675
      if (OffsetVar) {
3676
        OffsetVar->setInitializer(OffsetValue);
3677
        // If this is the real definition, change its linkage type so that
3678
        // different modules will use this one, rather than their private
3679
        // copy.
3680
        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3681
      } else
3682
        OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3683
          false, llvm::GlobalValue::ExternalLinkage,
3684
          OffsetValue, OffsetName);
3685
      IvarOffsets.push_back(OffsetValue);
3686
      IvarOffsetValues.add(OffsetVar);
3687
      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3688
      IvarOwnership.push_back(lt);
3689
      switch (lt) {
3690
        case Qualifiers::OCL_Strong:
3691
          StrongIvars.push_back(true);
3692
          WeakIvars.push_back(false);
3693
          break;
3694
        case Qualifiers::OCL_Weak:
3695
          StrongIvars.push_back(false);
3696
          WeakIvars.push_back(true);
3697
          break;
3698
        default:
3699
          StrongIvars.push_back(false);
3700
          WeakIvars.push_back(false);
3701
      }
3702
  }
3703
  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3704
  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3705
  llvm::GlobalVariable *IvarOffsetArray =
3706
    IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3707
                                           CGM.getPointerAlign());
3708

3709
  // Collect information about instance methods
3710
  SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3711
  InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3712
      OID->instmeth_end());
3713

3714
  SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3715
  ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3716
      OID->classmeth_end());
3717

3718
  llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3719

3720
  // Collect the names of referenced protocols
3721
  auto RefProtocols = ClassDecl->protocols();
3722
  auto RuntimeProtocols =
3723
      GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3724
  SmallVector<std::string, 16> Protocols;
3725
  for (const auto *I : RuntimeProtocols)
3726
    Protocols.push_back(I->getNameAsString());
3727

3728
  // Get the superclass pointer.
3729
  llvm::Constant *SuperClass;
3730
  if (!SuperClassName.empty()) {
3731
    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3732
  } else {
3733
    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3734
  }
3735
  // Empty vector used to construct empty method lists
3736
  SmallVector<llvm::Constant*, 1>  empty;
3737
  // Generate the method and instance variable lists
3738
  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3739
      InstanceMethods, false);
3740
  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3741
      ClassMethods, true);
3742
  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3743
      IvarOffsets, IvarAligns, IvarOwnership);
3744
  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3745
  // we emit a symbol containing the offset for each ivar in the class.  This
3746
  // allows code compiled for the non-Fragile ABI to inherit from code compiled
3747
  // for the legacy ABI, without causing problems.  The converse is also
3748
  // possible, but causes all ivar accesses to be fragile.
3749

3750
  // Offset pointer for getting at the correct field in the ivar list when
3751
  // setting up the alias.  These are: The base address for the global, the
3752
  // ivar array (second field), the ivar in this list (set for each ivar), and
3753
  // the offset (third field in ivar structure)
3754
  llvm::Type *IndexTy = Int32Ty;
3755
  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3756
      llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3757
      llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3758

3759
  unsigned ivarIndex = 0;
3760
  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3761
       IVD = IVD->getNextIvar()) {
3762
      const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3763
      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3764
      // Get the correct ivar field
3765
      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3766
          cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3767
          offsetPointerIndexes);
3768
      // Get the existing variable, if one exists.
3769
      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3770
      if (offset) {
3771
        offset->setInitializer(offsetValue);
3772
        // If this is the real definition, change its linkage type so that
3773
        // different modules will use this one, rather than their private
3774
        // copy.
3775
        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3776
      } else
3777
        // Add a new alias if there isn't one already.
3778
        new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3779
                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3780
      ++ivarIndex;
3781
  }
3782
  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3783

3784
  //Generate metaclass for class methods
3785
  llvm::Constant *MetaClassStruct = GenerateClassStructure(
3786
      NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3787
      NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3788
      GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3789
  CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3790
                      OID->getClassInterface());
3791

3792
  // Generate the class structure
3793
  llvm::Constant *ClassStruct = GenerateClassStructure(
3794
      MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3795
      llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3796
      GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3797
      StrongIvarBitmap, WeakIvarBitmap);
3798
  CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3799
                      OID->getClassInterface());
3800

3801
  // Resolve the class aliases, if they exist.
3802
  if (ClassPtrAlias) {
3803
    ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3804
    ClassPtrAlias->eraseFromParent();
3805
    ClassPtrAlias = nullptr;
3806
  }
3807
  if (MetaClassPtrAlias) {
3808
    MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3809
    MetaClassPtrAlias->eraseFromParent();
3810
    MetaClassPtrAlias = nullptr;
3811
  }
3812

3813
  // Add class structure to list to be added to the symtab later
3814
  Classes.push_back(ClassStruct);
3815
}
3816

3817
llvm::Function *CGObjCGNU::ModuleInitFunction() {
3818
  // Only emit an ObjC load function if no Objective-C stuff has been called
3819
  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3820
      ExistingProtocols.empty() && SelectorTable.empty())
3821
    return nullptr;
3822

3823
  // Add all referenced protocols to a category.
3824
  GenerateProtocolHolderCategory();
3825

3826
  llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3827
  if (!selStructTy) {
3828
    selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3829
                                        { PtrToInt8Ty, PtrToInt8Ty });
3830
  }
3831

3832
  // Generate statics list:
3833
  llvm::Constant *statics = NULLPtr;
3834
  if (!ConstantStrings.empty()) {
3835
    llvm::GlobalVariable *fileStatics = [&] {
3836
      ConstantInitBuilder builder(CGM);
3837
      auto staticsStruct = builder.beginStruct();
3838

3839
      StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3840
      if (stringClass.empty()) stringClass = "NXConstantString";
3841
      staticsStruct.add(MakeConstantString(stringClass,
3842
                                           ".objc_static_class_name"));
3843

3844
      auto array = staticsStruct.beginArray();
3845
      array.addAll(ConstantStrings);
3846
      array.add(NULLPtr);
3847
      array.finishAndAddTo(staticsStruct);
3848

3849
      return staticsStruct.finishAndCreateGlobal(".objc_statics",
3850
                                                 CGM.getPointerAlign());
3851
    }();
3852

3853
    ConstantInitBuilder builder(CGM);
3854
    auto allStaticsArray = builder.beginArray(fileStatics->getType());
3855
    allStaticsArray.add(fileStatics);
3856
    allStaticsArray.addNullPointer(fileStatics->getType());
3857

3858
    statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3859
                                                    CGM.getPointerAlign());
3860
  }
3861

3862
  // Array of classes, categories, and constant objects.
3863

3864
  SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3865
  unsigned selectorCount;
3866

3867
  // Pointer to an array of selectors used in this module.
3868
  llvm::GlobalVariable *selectorList = [&] {
3869
    ConstantInitBuilder builder(CGM);
3870
    auto selectors = builder.beginArray(selStructTy);
3871
    auto &table = SelectorTable; // MSVC workaround
3872
    std::vector<Selector> allSelectors;
3873
    for (auto &entry : table)
3874
      allSelectors.push_back(entry.first);
3875
    llvm::sort(allSelectors);
3876

3877
    for (auto &untypedSel : allSelectors) {
3878
      std::string selNameStr = untypedSel.getAsString();
3879
      llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3880

3881
      for (TypedSelector &sel : table[untypedSel]) {
3882
        llvm::Constant *selectorTypeEncoding = NULLPtr;
3883
        if (!sel.first.empty())
3884
          selectorTypeEncoding =
3885
            MakeConstantString(sel.first, ".objc_sel_types");
3886

3887
        auto selStruct = selectors.beginStruct(selStructTy);
3888
        selStruct.add(selName);
3889
        selStruct.add(selectorTypeEncoding);
3890
        selStruct.finishAndAddTo(selectors);
3891

3892
        // Store the selector alias for later replacement
3893
        selectorAliases.push_back(sel.second);
3894
      }
3895
    }
3896

3897
    // Remember the number of entries in the selector table.
3898
    selectorCount = selectors.size();
3899

3900
    // NULL-terminate the selector list.  This should not actually be required,
3901
    // because the selector list has a length field.  Unfortunately, the GCC
3902
    // runtime decides to ignore the length field and expects a NULL terminator,
3903
    // and GCC cooperates with this by always setting the length to 0.
3904
    auto selStruct = selectors.beginStruct(selStructTy);
3905
    selStruct.add(NULLPtr);
3906
    selStruct.add(NULLPtr);
3907
    selStruct.finishAndAddTo(selectors);
3908

3909
    return selectors.finishAndCreateGlobal(".objc_selector_list",
3910
                                           CGM.getPointerAlign());
3911
  }();
3912

3913
  // Now that all of the static selectors exist, create pointers to them.
3914
  for (unsigned i = 0; i < selectorCount; ++i) {
3915
    llvm::Constant *idxs[] = {
3916
      Zeros[0],
3917
      llvm::ConstantInt::get(Int32Ty, i)
3918
    };
3919
    // FIXME: We're generating redundant loads and stores here!
3920
    llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3921
        selectorList->getValueType(), selectorList, idxs);
3922
    selectorAliases[i]->replaceAllUsesWith(selPtr);
3923
    selectorAliases[i]->eraseFromParent();
3924
  }
3925

3926
  llvm::GlobalVariable *symtab = [&] {
3927
    ConstantInitBuilder builder(CGM);
3928
    auto symtab = builder.beginStruct();
3929

3930
    // Number of static selectors
3931
    symtab.addInt(LongTy, selectorCount);
3932

3933
    symtab.add(selectorList);
3934

3935
    // Number of classes defined.
3936
    symtab.addInt(CGM.Int16Ty, Classes.size());
3937
    // Number of categories defined
3938
    symtab.addInt(CGM.Int16Ty, Categories.size());
3939

3940
    // Create an array of classes, then categories, then static object instances
3941
    auto classList = symtab.beginArray(PtrToInt8Ty);
3942
    classList.addAll(Classes);
3943
    classList.addAll(Categories);
3944
    //  NULL-terminated list of static object instances (mainly constant strings)
3945
    classList.add(statics);
3946
    classList.add(NULLPtr);
3947
    classList.finishAndAddTo(symtab);
3948

3949
    // Construct the symbol table.
3950
    return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3951
  }();
3952

3953
  // The symbol table is contained in a module which has some version-checking
3954
  // constants
3955
  llvm::Constant *module = [&] {
3956
    llvm::Type *moduleEltTys[] = {
3957
      LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3958
    };
3959
    llvm::StructType *moduleTy = llvm::StructType::get(
3960
        CGM.getLLVMContext(),
3961
        ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3962

3963
    ConstantInitBuilder builder(CGM);
3964
    auto module = builder.beginStruct(moduleTy);
3965
    // Runtime version, used for ABI compatibility checking.
3966
    module.addInt(LongTy, RuntimeVersion);
3967
    // sizeof(ModuleTy)
3968
    module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3969

3970
    // The path to the source file where this module was declared
3971
    SourceManager &SM = CGM.getContext().getSourceManager();
3972
    OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3973
    std::string path =
3974
        (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3975
    module.add(MakeConstantString(path, ".objc_source_file_name"));
3976
    module.add(symtab);
3977

3978
    if (RuntimeVersion >= 10) {
3979
      switch (CGM.getLangOpts().getGC()) {
3980
      case LangOptions::GCOnly:
3981
        module.addInt(IntTy, 2);
3982
        break;
3983
      case LangOptions::NonGC:
3984
        if (CGM.getLangOpts().ObjCAutoRefCount)
3985
          module.addInt(IntTy, 1);
3986
        else
3987
          module.addInt(IntTy, 0);
3988
        break;
3989
      case LangOptions::HybridGC:
3990
        module.addInt(IntTy, 1);
3991
        break;
3992
      }
3993
    }
3994

3995
    return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3996
  }();
3997

3998
  // Create the load function calling the runtime entry point with the module
3999
  // structure
4000
  llvm::Function * LoadFunction = llvm::Function::Create(
4001
      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
4002
      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
4003
      &TheModule);
4004
  llvm::BasicBlock *EntryBB =
4005
      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
4006
  CGBuilderTy Builder(CGM, VMContext);
4007
  Builder.SetInsertPoint(EntryBB);
4008

4009
  llvm::FunctionType *FT =
4010
    llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
4011
  llvm::FunctionCallee Register =
4012
      CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
4013
  Builder.CreateCall(Register, module);
4014

4015
  if (!ClassAliases.empty()) {
4016
    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
4017
    llvm::FunctionType *RegisterAliasTy =
4018
      llvm::FunctionType::get(Builder.getVoidTy(),
4019
                              ArgTypes, false);
4020
    llvm::Function *RegisterAlias = llvm::Function::Create(
4021
      RegisterAliasTy,
4022
      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
4023
      &TheModule);
4024
    llvm::BasicBlock *AliasBB =
4025
      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
4026
    llvm::BasicBlock *NoAliasBB =
4027
      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
4028

4029
    // Branch based on whether the runtime provided class_registerAlias_np()
4030
    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
4031
            llvm::Constant::getNullValue(RegisterAlias->getType()));
4032
    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
4033

4034
    // The true branch (has alias registration function):
4035
    Builder.SetInsertPoint(AliasBB);
4036
    // Emit alias registration calls:
4037
    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
4038
       iter != ClassAliases.end(); ++iter) {
4039
       llvm::Constant *TheClass =
4040
          TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
4041
       if (TheClass) {
4042
         Builder.CreateCall(RegisterAlias,
4043
                            {TheClass, MakeConstantString(iter->second)});
4044
       }
4045
    }
4046
    // Jump to end:
4047
    Builder.CreateBr(NoAliasBB);
4048

4049
    // Missing alias registration function, just return from the function:
4050
    Builder.SetInsertPoint(NoAliasBB);
4051
  }
4052
  Builder.CreateRetVoid();
4053

4054
  return LoadFunction;
4055
}
4056

4057
llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
4058
                                          const ObjCContainerDecl *CD) {
4059
  CodeGenTypes &Types = CGM.getTypes();
4060
  llvm::FunctionType *MethodTy =
4061
    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4062

4063
  bool isDirect = OMD->isDirectMethod();
4064
  std::string FunctionName =
4065
      getSymbolNameForMethod(OMD, /*include category*/ !isDirect);
4066

4067
  if (!isDirect)
4068
    return llvm::Function::Create(MethodTy,
4069
                                  llvm::GlobalVariable::InternalLinkage,
4070
                                  FunctionName, &TheModule);
4071

4072
  auto *COMD = OMD->getCanonicalDecl();
4073
  auto I = DirectMethodDefinitions.find(COMD);
4074
  llvm::Function *OldFn = nullptr, *Fn = nullptr;
4075

4076
  if (I == DirectMethodDefinitions.end()) {
4077
    auto *F =
4078
        llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage,
4079
                               FunctionName, &TheModule);
4080
    DirectMethodDefinitions.insert(std::make_pair(COMD, F));
4081
    return F;
4082
  }
4083

4084
  // Objective-C allows for the declaration and implementation types
4085
  // to differ slightly.
4086
  //
4087
  // If we're being asked for the Function associated for a method
4088
  // implementation, a previous value might have been cached
4089
  // based on the type of the canonical declaration.
4090
  //
4091
  // If these do not match, then we'll replace this function with
4092
  // a new one that has the proper type below.
4093
  if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
4094
    return I->second;
4095

4096
  OldFn = I->second;
4097
  Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "",
4098
                              &CGM.getModule());
4099
  Fn->takeName(OldFn);
4100
  OldFn->replaceAllUsesWith(Fn);
4101
  OldFn->eraseFromParent();
4102

4103
  // Replace the cached function in the map.
4104
  I->second = Fn;
4105
  return Fn;
4106
}
4107

4108
void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
4109
                                             llvm::Function *Fn,
4110
                                             const ObjCMethodDecl *OMD,
4111
                                             const ObjCContainerDecl *CD) {
4112
  // GNU runtime doesn't support direct calls at this time
4113
}
4114

4115
llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
4116
  return GetPropertyFn;
4117
}
4118

4119
llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
4120
  return SetPropertyFn;
4121
}
4122

4123
llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
4124
                                                                bool copy) {
4125
  return nullptr;
4126
}
4127

4128
llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
4129
  return GetStructPropertyFn;
4130
}
4131

4132
llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
4133
  return SetStructPropertyFn;
4134
}
4135

4136
llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
4137
  return nullptr;
4138
}
4139

4140
llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
4141
  return nullptr;
4142
}
4143

4144
llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4145
  return EnumerationMutationFn;
4146
}
4147

4148
void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4149
                                     const ObjCAtSynchronizedStmt &S) {
4150
  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4151
}
4152

4153

4154
void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4155
                            const ObjCAtTryStmt &S) {
4156
  // Unlike the Apple non-fragile runtimes, which also uses
4157
  // unwind-based zero cost exceptions, the GNU Objective C runtime's
4158
  // EH support isn't a veneer over C++ EH.  Instead, exception
4159
  // objects are created by objc_exception_throw and destroyed by
4160
  // the personality function; this avoids the need for bracketing
4161
  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
4162
  // (or even _Unwind_DeleteException), but probably doesn't
4163
  // interoperate very well with foreign exceptions.
4164
  //
4165
  // In Objective-C++ mode, we actually emit something equivalent to the C++
4166
  // exception handler.
4167
  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4168
}
4169

4170
void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4171
                              const ObjCAtThrowStmt &S,
4172
                              bool ClearInsertionPoint) {
4173
  llvm::Value *ExceptionAsObject;
4174
  bool isRethrow = false;
4175

4176
  if (const Expr *ThrowExpr = S.getThrowExpr()) {
4177
    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4178
    ExceptionAsObject = Exception;
4179
  } else {
4180
    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4181
           "Unexpected rethrow outside @catch block.");
4182
    ExceptionAsObject = CGF.ObjCEHValueStack.back();
4183
    isRethrow = true;
4184
  }
4185
  if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4186
    // For SEH, ExceptionAsObject may be undef, because the catch handler is
4187
    // not passed it for catchalls and so it is not visible to the catch
4188
    // funclet.  The real thrown object will still be live on the stack at this
4189
    // point and will be rethrown.  If we are explicitly rethrowing the object
4190
    // that was passed into the `@catch` block, then this code path is not
4191
    // reached and we will instead call `objc_exception_throw` with an explicit
4192
    // argument.
4193
    llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4194
    Throw->setDoesNotReturn();
4195
  } else {
4196
    ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4197
    llvm::CallBase *Throw =
4198
        CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4199
    Throw->setDoesNotReturn();
4200
  }
4201
  CGF.Builder.CreateUnreachable();
4202
  if (ClearInsertionPoint)
4203
    CGF.Builder.ClearInsertionPoint();
4204
}
4205

4206
llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4207
                                          Address AddrWeakObj) {
4208
  CGBuilderTy &B = CGF.Builder;
4209
  return B.CreateCall(
4210
      WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy));
4211
}
4212

4213
void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4214
                                   llvm::Value *src, Address dst) {
4215
  CGBuilderTy &B = CGF.Builder;
4216
  src = EnforceType(B, src, IdTy);
4217
  llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4218
  B.CreateCall(WeakAssignFn, {src, dstVal});
4219
}
4220

4221
void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4222
                                     llvm::Value *src, Address dst,
4223
                                     bool threadlocal) {
4224
  CGBuilderTy &B = CGF.Builder;
4225
  src = EnforceType(B, src, IdTy);
4226
  llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4227
  // FIXME. Add threadloca assign API
4228
  assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4229
  B.CreateCall(GlobalAssignFn, {src, dstVal});
4230
}
4231

4232
void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4233
                                   llvm::Value *src, Address dst,
4234
                                   llvm::Value *ivarOffset) {
4235
  CGBuilderTy &B = CGF.Builder;
4236
  src = EnforceType(B, src, IdTy);
4237
  llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy);
4238
  B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4239
}
4240

4241
void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4242
                                         llvm::Value *src, Address dst) {
4243
  CGBuilderTy &B = CGF.Builder;
4244
  src = EnforceType(B, src, IdTy);
4245
  llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4246
  B.CreateCall(StrongCastAssignFn, {src, dstVal});
4247
}
4248

4249
void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4250
                                         Address DestPtr,
4251
                                         Address SrcPtr,
4252
                                         llvm::Value *Size) {
4253
  CGBuilderTy &B = CGF.Builder;
4254
  llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy);
4255
  llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy);
4256

4257
  B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4258
}
4259

4260
llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4261
                              const ObjCInterfaceDecl *ID,
4262
                              const ObjCIvarDecl *Ivar) {
4263
  const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4264
  // Emit the variable and initialize it with what we think the correct value
4265
  // is.  This allows code compiled with non-fragile ivars to work correctly
4266
  // when linked against code which isn't (most of the time).
4267
  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4268
  if (!IvarOffsetPointer)
4269
    IvarOffsetPointer = new llvm::GlobalVariable(
4270
        TheModule, llvm::PointerType::getUnqual(VMContext), false,
4271
        llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4272
  return IvarOffsetPointer;
4273
}
4274

4275
LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4276
                                       QualType ObjectTy,
4277
                                       llvm::Value *BaseValue,
4278
                                       const ObjCIvarDecl *Ivar,
4279
                                       unsigned CVRQualifiers) {
4280
  const ObjCInterfaceDecl *ID =
4281
    ObjectTy->castAs<ObjCObjectType>()->getInterface();
4282
  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4283
                                  EmitIvarOffset(CGF, ID, Ivar));
4284
}
4285

4286
static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4287
                                                  const ObjCInterfaceDecl *OID,
4288
                                                  const ObjCIvarDecl *OIVD) {
4289
  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4290
       next = next->getNextIvar()) {
4291
    if (OIVD == next)
4292
      return OID;
4293
  }
4294

4295
  // Otherwise check in the super class.
4296
  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4297
    return FindIvarInterface(Context, Super, OIVD);
4298

4299
  return nullptr;
4300
}
4301

4302
llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4303
                         const ObjCInterfaceDecl *Interface,
4304
                         const ObjCIvarDecl *Ivar) {
4305
  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4306
    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4307

4308
    // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4309
    // and ExternalLinkage, so create a reference to the ivar global and rely on
4310
    // the definition being created as part of GenerateClass.
4311
    if (RuntimeVersion < 10 ||
4312
        CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4313
      return CGF.Builder.CreateZExtOrBitCast(
4314
          CGF.Builder.CreateAlignedLoad(
4315
              Int32Ty,
4316
              CGF.Builder.CreateAlignedLoad(
4317
                  llvm::PointerType::getUnqual(VMContext),
4318
                  ObjCIvarOffsetVariable(Interface, Ivar),
4319
                  CGF.getPointerAlign(), "ivar"),
4320
              CharUnits::fromQuantity(4)),
4321
          PtrDiffTy);
4322
    std::string name = "__objc_ivar_offset_value_" +
4323
      Interface->getNameAsString() +"." + Ivar->getNameAsString();
4324
    CharUnits Align = CGM.getIntAlign();
4325
    llvm::Value *Offset = TheModule.getGlobalVariable(name);
4326
    if (!Offset) {
4327
      auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4328
          false, llvm::GlobalValue::LinkOnceAnyLinkage,
4329
          llvm::Constant::getNullValue(IntTy), name);
4330
      GV->setAlignment(Align.getAsAlign());
4331
      Offset = GV;
4332
    }
4333
    Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4334
    if (Offset->getType() != PtrDiffTy)
4335
      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4336
    return Offset;
4337
  }
4338
  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4339
  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4340
}
4341

4342
CGObjCRuntime *
4343
clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4344
  auto Runtime = CGM.getLangOpts().ObjCRuntime;
4345
  switch (Runtime.getKind()) {
4346
  case ObjCRuntime::GNUstep:
4347
    if (Runtime.getVersion() >= VersionTuple(2, 0))
4348
      return new CGObjCGNUstep2(CGM);
4349
    return new CGObjCGNUstep(CGM);
4350

4351
  case ObjCRuntime::GCC:
4352
    return new CGObjCGCC(CGM);
4353

4354
  case ObjCRuntime::ObjFW:
4355
    return new CGObjCObjFW(CGM);
4356

4357
  case ObjCRuntime::FragileMacOSX:
4358
  case ObjCRuntime::MacOSX:
4359
  case ObjCRuntime::iOS:
4360
  case ObjCRuntime::WatchOS:
4361
    llvm_unreachable("these runtimes are not GNU runtimes");
4362
  }
4363
  llvm_unreachable("bad runtime");
4364
}
4365

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.