llvm-project

Форк
0
/
CloneDetection.cpp 
624 строки · 22.1 Кб
1
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// This file implements classes for searching and analyzing source code clones.
10
///
11
//===----------------------------------------------------------------------===//
12

13
#include "clang/Analysis/CloneDetection.h"
14
#include "clang/AST/Attr.h"
15
#include "clang/AST/DataCollection.h"
16
#include "clang/AST/DeclTemplate.h"
17
#include "clang/Basic/SourceManager.h"
18
#include "llvm/Support/MD5.h"
19
#include "llvm/Support/Path.h"
20

21
using namespace clang;
22

23
StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24
                           unsigned StartIndex, unsigned EndIndex)
25
    : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26
  assert(Stmt && "Stmt must not be a nullptr");
27
  assert(StartIndex < EndIndex && "Given array should not be empty");
28
  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29
}
30

31
StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32
    : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33

34
StmtSequence::StmtSequence()
35
    : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36

37
bool StmtSequence::contains(const StmtSequence &Other) const {
38
  // If both sequences reside in different declarations, they can never contain
39
  // each other.
40
  if (D != Other.D)
41
    return false;
42

43
  const SourceManager &SM = getASTContext().getSourceManager();
44

45
  // Otherwise check if the start and end locations of the current sequence
46
  // surround the other sequence.
47
  bool StartIsInBounds =
48
      SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49
      getBeginLoc() == Other.getBeginLoc();
50
  if (!StartIsInBounds)
51
    return false;
52

53
  bool EndIsInBounds =
54
      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55
      Other.getEndLoc() == getEndLoc();
56
  return EndIsInBounds;
57
}
58

59
StmtSequence::iterator StmtSequence::begin() const {
60
  if (!holdsSequence()) {
61
    return &S;
62
  }
63
  auto CS = cast<CompoundStmt>(S);
64
  return CS->body_begin() + StartIndex;
65
}
66

67
StmtSequence::iterator StmtSequence::end() const {
68
  if (!holdsSequence()) {
69
    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70
  }
71
  auto CS = cast<CompoundStmt>(S);
72
  return CS->body_begin() + EndIndex;
73
}
74

75
ASTContext &StmtSequence::getASTContext() const {
76
  assert(D);
77
  return D->getASTContext();
78
}
79

80
SourceLocation StmtSequence::getBeginLoc() const {
81
  return front()->getBeginLoc();
82
}
83

84
SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85

86
SourceRange StmtSequence::getSourceRange() const {
87
  return SourceRange(getBeginLoc(), getEndLoc());
88
}
89

90
void CloneDetector::analyzeCodeBody(const Decl *D) {
91
  assert(D);
92
  assert(D->hasBody());
93

94
  Sequences.push_back(StmtSequence(D->getBody(), D));
95
}
96

97
/// Returns true if and only if \p Stmt contains at least one other
98
/// sequence in the \p Group.
99
static bool containsAnyInGroup(StmtSequence &Seq,
100
                               CloneDetector::CloneGroup &Group) {
101
  for (StmtSequence &GroupSeq : Group) {
102
    if (Seq.contains(GroupSeq))
103
      return true;
104
  }
105
  return false;
106
}
107

108
/// Returns true if and only if all sequences in \p OtherGroup are
109
/// contained by a sequence in \p Group.
110
static bool containsGroup(CloneDetector::CloneGroup &Group,
111
                          CloneDetector::CloneGroup &OtherGroup) {
112
  // We have less sequences in the current group than we have in the other,
113
  // so we will never fulfill the requirement for returning true. This is only
114
  // possible because we know that a sequence in Group can contain at most
115
  // one sequence in OtherGroup.
116
  if (Group.size() < OtherGroup.size())
117
    return false;
118

119
  for (StmtSequence &Stmt : Group) {
120
    if (!containsAnyInGroup(Stmt, OtherGroup))
121
      return false;
122
  }
123
  return true;
124
}
125

126
void OnlyLargestCloneConstraint::constrain(
127
    std::vector<CloneDetector::CloneGroup> &Result) {
128
  std::vector<unsigned> IndexesToRemove;
129

130
  // Compare every group in the result with the rest. If one groups contains
131
  // another group, we only need to return the bigger group.
132
  // Note: This doesn't scale well, so if possible avoid calling any heavy
133
  // function from this loop to minimize the performance impact.
134
  for (unsigned i = 0; i < Result.size(); ++i) {
135
    for (unsigned j = 0; j < Result.size(); ++j) {
136
      // Don't compare a group with itself.
137
      if (i == j)
138
        continue;
139

140
      if (containsGroup(Result[j], Result[i])) {
141
        IndexesToRemove.push_back(i);
142
        break;
143
      }
144
    }
145
  }
146

147
  // Erasing a list of indexes from the vector should be done with decreasing
148
  // indexes. As IndexesToRemove is constructed with increasing values, we just
149
  // reverse iterate over it to get the desired order.
150
  for (unsigned I : llvm::reverse(IndexesToRemove))
151
    Result.erase(Result.begin() + I);
152
}
153

154
bool FilenamePatternConstraint::isAutoGenerated(
155
    const CloneDetector::CloneGroup &Group) {
156
  if (IgnoredFilesPattern.empty() || Group.empty() ||
157
      !IgnoredFilesRegex->isValid())
158
    return false;
159

160
  for (const StmtSequence &S : Group) {
161
    const SourceManager &SM = S.getASTContext().getSourceManager();
162
    StringRef Filename = llvm::sys::path::filename(
163
        SM.getFilename(S.getContainingDecl()->getLocation()));
164
    if (IgnoredFilesRegex->match(Filename))
165
      return true;
166
  }
167

168
  return false;
169
}
170

171
/// This class defines what a type II code clone is: If it collects for two
172
/// statements the same data, then those two statements are considered to be
173
/// clones of each other.
174
///
175
/// All collected data is forwarded to the given data consumer of the type T.
176
/// The data consumer class needs to provide a member method with the signature:
177
///   update(StringRef Str)
178
namespace {
179
template <class T>
180
class CloneTypeIIStmtDataCollector
181
    : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
182
  ASTContext &Context;
183
  /// The data sink to which all data is forwarded.
184
  T &DataConsumer;
185

186
  template <class Ty> void addData(const Ty &Data) {
187
    data_collection::addDataToConsumer(DataConsumer, Data);
188
  }
189

190
public:
191
  CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
192
                               T &DataConsumer)
193
      : Context(Context), DataConsumer(DataConsumer) {
194
    this->Visit(S);
195
  }
196

197
// Define a visit method for each class to collect data and subsequently visit
198
// all parent classes. This uses a template so that custom visit methods by us
199
// take precedence.
200
#define DEF_ADD_DATA(CLASS, CODE)                                              \
201
  template <class = void> void Visit##CLASS(const CLASS *S) {                  \
202
    CODE;                                                                      \
203
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
204
  }
205

206
#include "clang/AST/StmtDataCollectors.inc"
207

208
// Type II clones ignore variable names and literals, so let's skip them.
209
#define SKIP(CLASS)                                                            \
210
  void Visit##CLASS(const CLASS *S) {                                          \
211
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
212
  }
213
  SKIP(DeclRefExpr)
214
  SKIP(MemberExpr)
215
  SKIP(IntegerLiteral)
216
  SKIP(FloatingLiteral)
217
  SKIP(StringLiteral)
218
  SKIP(CXXBoolLiteralExpr)
219
  SKIP(CharacterLiteral)
220
#undef SKIP
221
};
222
} // end anonymous namespace
223

224
static size_t createHash(llvm::MD5 &Hash) {
225
  size_t HashCode;
226

227
  // Create the final hash code for the current Stmt.
228
  llvm::MD5::MD5Result HashResult;
229
  Hash.final(HashResult);
230

231
  // Copy as much as possible of the generated hash code to the Stmt's hash
232
  // code.
233
  std::memcpy(&HashCode, &HashResult,
234
              std::min(sizeof(HashCode), sizeof(HashResult)));
235

236
  return HashCode;
237
}
238

239
/// Generates and saves a hash code for the given Stmt.
240
/// \param S The given Stmt.
241
/// \param D The Decl containing S.
242
/// \param StmtsByHash Output parameter that will contain the hash codes for
243
///                    each StmtSequence in the given Stmt.
244
/// \return The hash code of the given Stmt.
245
///
246
/// If the given Stmt is a CompoundStmt, this method will also generate
247
/// hashes for all possible StmtSequences in the children of this Stmt.
248
static size_t
249
saveHash(const Stmt *S, const Decl *D,
250
         std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
251
  llvm::MD5 Hash;
252
  ASTContext &Context = D->getASTContext();
253

254
  CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
255

256
  auto CS = dyn_cast<CompoundStmt>(S);
257
  SmallVector<size_t, 8> ChildHashes;
258

259
  for (const Stmt *Child : S->children()) {
260
    if (Child == nullptr) {
261
      ChildHashes.push_back(0);
262
      continue;
263
    }
264
    size_t ChildHash = saveHash(Child, D, StmtsByHash);
265
    Hash.update(
266
        StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
267
    ChildHashes.push_back(ChildHash);
268
  }
269

270
  if (CS) {
271
    // If we're in a CompoundStmt, we hash all possible combinations of child
272
    // statements to find clones in those subsequences.
273
    // We first go through every possible starting position of a subsequence.
274
    for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
275
      // Then we try all possible lengths this subsequence could have and
276
      // reuse the same hash object to make sure we only hash every child
277
      // hash exactly once.
278
      llvm::MD5 Hash;
279
      for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
280
        // Grab the current child hash and put it into our hash. We do
281
        // -1 on the index because we start counting the length at 1.
282
        size_t ChildHash = ChildHashes[Pos + Length - 1];
283
        Hash.update(
284
            StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
285
        // If we have at least two elements in our subsequence, we can start
286
        // saving it.
287
        if (Length > 1) {
288
          llvm::MD5 SubHash = Hash;
289
          StmtsByHash.push_back(std::make_pair(
290
              createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
291
        }
292
      }
293
    }
294
  }
295

296
  size_t HashCode = createHash(Hash);
297
  StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
298
  return HashCode;
299
}
300

301
namespace {
302
/// Wrapper around FoldingSetNodeID that it can be used as the template
303
/// argument of the StmtDataCollector.
304
class FoldingSetNodeIDWrapper {
305

306
  llvm::FoldingSetNodeID &FS;
307

308
public:
309
  FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
310

311
  void update(StringRef Str) { FS.AddString(Str); }
312
};
313
} // end anonymous namespace
314

315
/// Writes the relevant data from all statements and child statements
316
/// in the given StmtSequence into the given FoldingSetNodeID.
317
static void CollectStmtSequenceData(const StmtSequence &Sequence,
318
                                    FoldingSetNodeIDWrapper &OutputData) {
319
  for (const Stmt *S : Sequence) {
320
    CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
321
        S, Sequence.getASTContext(), OutputData);
322

323
    for (const Stmt *Child : S->children()) {
324
      if (!Child)
325
        continue;
326

327
      CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
328
                              OutputData);
329
    }
330
  }
331
}
332

333
/// Returns true if both sequences are clones of each other.
334
static bool areSequencesClones(const StmtSequence &LHS,
335
                               const StmtSequence &RHS) {
336
  // We collect the data from all statements in the sequence as we did before
337
  // when generating a hash value for each sequence. But this time we don't
338
  // hash the collected data and compare the whole data set instead. This
339
  // prevents any false-positives due to hash code collisions.
340
  llvm::FoldingSetNodeID DataLHS, DataRHS;
341
  FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
342
  FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
343

344
  CollectStmtSequenceData(LHS, LHSWrapper);
345
  CollectStmtSequenceData(RHS, RHSWrapper);
346

347
  return DataLHS == DataRHS;
348
}
349

350
void RecursiveCloneTypeIIHashConstraint::constrain(
351
    std::vector<CloneDetector::CloneGroup> &Sequences) {
352
  // FIXME: Maybe we can do this in-place and don't need this additional vector.
353
  std::vector<CloneDetector::CloneGroup> Result;
354

355
  for (CloneDetector::CloneGroup &Group : Sequences) {
356
    // We assume in the following code that the Group is non-empty, so we
357
    // skip all empty groups.
358
    if (Group.empty())
359
      continue;
360

361
    std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
362

363
    // Generate hash codes for all children of S and save them in StmtsByHash.
364
    for (const StmtSequence &S : Group) {
365
      saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
366
    }
367

368
    // Sort hash_codes in StmtsByHash.
369
    llvm::stable_sort(StmtsByHash, llvm::less_first());
370

371
    // Check for each StmtSequence if its successor has the same hash value.
372
    // We don't check the last StmtSequence as it has no successor.
373
    // Note: The 'size - 1 ' in the condition is safe because we check for an
374
    // empty Group vector at the beginning of this function.
375
    for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
376
      const auto Current = StmtsByHash[i];
377

378
      // It's likely that we just found a sequence of StmtSequences that
379
      // represent a CloneGroup, so we create a new group and start checking and
380
      // adding the StmtSequences in this sequence.
381
      CloneDetector::CloneGroup NewGroup;
382

383
      size_t PrototypeHash = Current.first;
384

385
      for (; i < StmtsByHash.size(); ++i) {
386
        // A different hash value means we have reached the end of the sequence.
387
        if (PrototypeHash != StmtsByHash[i].first) {
388
          // The current sequence could be the start of a new CloneGroup. So we
389
          // decrement i so that we visit it again in the outer loop.
390
          // Note: i can never be 0 at this point because we are just comparing
391
          // the hash of the Current StmtSequence with itself in the 'if' above.
392
          assert(i != 0);
393
          --i;
394
          break;
395
        }
396
        // Same hash value means we should add the StmtSequence to the current
397
        // group.
398
        NewGroup.push_back(StmtsByHash[i].second);
399
      }
400

401
      // We created a new clone group with matching hash codes and move it to
402
      // the result vector.
403
      Result.push_back(NewGroup);
404
    }
405
  }
406
  // Sequences is the output parameter, so we copy our result into it.
407
  Sequences = Result;
408
}
409

410
void RecursiveCloneTypeIIVerifyConstraint::constrain(
411
    std::vector<CloneDetector::CloneGroup> &Sequences) {
412
  CloneConstraint::splitCloneGroups(
413
      Sequences, [](const StmtSequence &A, const StmtSequence &B) {
414
        return areSequencesClones(A, B);
415
      });
416
}
417

418
size_t MinComplexityConstraint::calculateStmtComplexity(
419
    const StmtSequence &Seq, std::size_t Limit,
420
    const std::string &ParentMacroStack) {
421
  if (Seq.empty())
422
    return 0;
423

424
  size_t Complexity = 1;
425

426
  ASTContext &Context = Seq.getASTContext();
427

428
  // Look up what macros expanded into the current statement.
429
  std::string MacroStack =
430
      data_collection::getMacroStack(Seq.getBeginLoc(), Context);
431

432
  // First, check if ParentMacroStack is not empty which means we are currently
433
  // dealing with a parent statement which was expanded from a macro.
434
  // If this parent statement was expanded from the same macros as this
435
  // statement, we reduce the initial complexity of this statement to zero.
436
  // This causes that a group of statements that were generated by a single
437
  // macro expansion will only increase the total complexity by one.
438
  // Note: This is not the final complexity of this statement as we still
439
  // add the complexity of the child statements to the complexity value.
440
  if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
441
    Complexity = 0;
442
  }
443

444
  // Iterate over the Stmts in the StmtSequence and add their complexity values
445
  // to the current complexity value.
446
  if (Seq.holdsSequence()) {
447
    for (const Stmt *S : Seq) {
448
      Complexity += calculateStmtComplexity(
449
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
450
      if (Complexity >= Limit)
451
        return Limit;
452
    }
453
  } else {
454
    for (const Stmt *S : Seq.front()->children()) {
455
      Complexity += calculateStmtComplexity(
456
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
457
      if (Complexity >= Limit)
458
        return Limit;
459
    }
460
  }
461
  return Complexity;
462
}
463

464
void MatchingVariablePatternConstraint::constrain(
465
    std::vector<CloneDetector::CloneGroup> &CloneGroups) {
466
  CloneConstraint::splitCloneGroups(
467
      CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
468
        VariablePattern PatternA(A);
469
        VariablePattern PatternB(B);
470
        return PatternA.countPatternDifferences(PatternB) == 0;
471
      });
472
}
473

474
void CloneConstraint::splitCloneGroups(
475
    std::vector<CloneDetector::CloneGroup> &CloneGroups,
476
    llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
477
        Compare) {
478
  std::vector<CloneDetector::CloneGroup> Result;
479
  for (auto &HashGroup : CloneGroups) {
480
    // Contains all indexes in HashGroup that were already added to a
481
    // CloneGroup.
482
    std::vector<char> Indexes;
483
    Indexes.resize(HashGroup.size());
484

485
    for (unsigned i = 0; i < HashGroup.size(); ++i) {
486
      // Skip indexes that are already part of a CloneGroup.
487
      if (Indexes[i])
488
        continue;
489

490
      // Pick the first unhandled StmtSequence and consider it as the
491
      // beginning
492
      // of a new CloneGroup for now.
493
      // We don't add i to Indexes because we never iterate back.
494
      StmtSequence Prototype = HashGroup[i];
495
      CloneDetector::CloneGroup PotentialGroup = {Prototype};
496
      ++Indexes[i];
497

498
      // Check all following StmtSequences for clones.
499
      for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
500
        // Skip indexes that are already part of a CloneGroup.
501
        if (Indexes[j])
502
          continue;
503

504
        // If a following StmtSequence belongs to our CloneGroup, we add it.
505
        const StmtSequence &Candidate = HashGroup[j];
506

507
        if (!Compare(Prototype, Candidate))
508
          continue;
509

510
        PotentialGroup.push_back(Candidate);
511
        // Make sure we never visit this StmtSequence again.
512
        ++Indexes[j];
513
      }
514

515
      // Otherwise, add it to the result and continue searching for more
516
      // groups.
517
      Result.push_back(PotentialGroup);
518
    }
519

520
    assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
521
  }
522
  CloneGroups = Result;
523
}
524

525
void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
526
                                           const Stmt *Mention) {
527
  // First check if we already reference this variable
528
  for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
529
    if (Variables[KindIndex] == VarDecl) {
530
      // If yes, add a new occurrence that points to the existing entry in
531
      // the Variables vector.
532
      Occurences.emplace_back(KindIndex, Mention);
533
      return;
534
    }
535
  }
536
  // If this variable wasn't already referenced, add it to the list of
537
  // referenced variables and add a occurrence that points to this new entry.
538
  Occurences.emplace_back(Variables.size(), Mention);
539
  Variables.push_back(VarDecl);
540
}
541

542
void VariablePattern::addVariables(const Stmt *S) {
543
  // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
544
  // children). We skip such statements as they don't reference any
545
  // variables.
546
  if (!S)
547
    return;
548

549
  // Check if S is a reference to a variable. If yes, add it to the pattern.
550
  if (auto D = dyn_cast<DeclRefExpr>(S)) {
551
    if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
552
      addVariableOccurence(VD, D);
553
  }
554

555
  // Recursively check all children of the given statement.
556
  for (const Stmt *Child : S->children()) {
557
    addVariables(Child);
558
  }
559
}
560

561
unsigned VariablePattern::countPatternDifferences(
562
    const VariablePattern &Other,
563
    VariablePattern::SuspiciousClonePair *FirstMismatch) {
564
  unsigned NumberOfDifferences = 0;
565

566
  assert(Other.Occurences.size() == Occurences.size());
567
  for (unsigned i = 0; i < Occurences.size(); ++i) {
568
    auto ThisOccurence = Occurences[i];
569
    auto OtherOccurence = Other.Occurences[i];
570
    if (ThisOccurence.KindID == OtherOccurence.KindID)
571
      continue;
572

573
    ++NumberOfDifferences;
574

575
    // If FirstMismatch is not a nullptr, we need to store information about
576
    // the first difference between the two patterns.
577
    if (FirstMismatch == nullptr)
578
      continue;
579

580
    // Only proceed if we just found the first difference as we only store
581
    // information about the first difference.
582
    if (NumberOfDifferences != 1)
583
      continue;
584

585
    const VarDecl *FirstSuggestion = nullptr;
586
    // If there is a variable available in the list of referenced variables
587
    // which wouldn't break the pattern if it is used in place of the
588
    // current variable, we provide this variable as the suggested fix.
589
    if (OtherOccurence.KindID < Variables.size())
590
      FirstSuggestion = Variables[OtherOccurence.KindID];
591

592
    // Store information about the first clone.
593
    FirstMismatch->FirstCloneInfo =
594
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
595
            Variables[ThisOccurence.KindID], ThisOccurence.Mention,
596
            FirstSuggestion);
597

598
    // Same as above but with the other clone. We do this for both clones as
599
    // we don't know which clone is the one containing the unintended
600
    // pattern error.
601
    const VarDecl *SecondSuggestion = nullptr;
602
    if (ThisOccurence.KindID < Other.Variables.size())
603
      SecondSuggestion = Other.Variables[ThisOccurence.KindID];
604

605
    // Store information about the second clone.
606
    FirstMismatch->SecondCloneInfo =
607
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
608
            Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
609
            SecondSuggestion);
610

611
    // SuspiciousClonePair guarantees that the first clone always has a
612
    // suggested variable associated with it. As we know that one of the two
613
    // clones in the pair always has suggestion, we swap the two clones
614
    // in case the first clone has no suggested variable which means that
615
    // the second clone has a suggested variable and should be first.
616
    if (!FirstMismatch->FirstCloneInfo.Suggestion)
617
      std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
618

619
    // This ensures that we always have at least one suggestion in a pair.
620
    assert(FirstMismatch->FirstCloneInfo.Suggestion);
621
  }
622

623
  return NumberOfDifferences;
624
}
625

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.