llvm-project

Форк
0
1802 строки · 63.5 Кб
1
//===- bolt/runtime/instr.cpp ---------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does
10
// not support linking modules with dependencies on one another into the final
11
// binary (TODO?), which means this library has to be self-contained in a single
12
// module.
13
//
14
// All extern declarations here need to be defined by BOLT itself. Those will be
15
// undefined symbols that BOLT needs to resolve by emitting these symbols with
16
// MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible
17
// for defining the symbols here and these two files have a tight coupling: one
18
// working statically when you run BOLT and another during program runtime when
19
// you run an instrumented binary. The main goal here is to output an fdata file
20
// (BOLT profile) with the instrumentation counters inserted by the static pass.
21
// Counters for indirect calls are an exception, as we can't know them
22
// statically. These counters are created and managed here. To allow this, we
23
// need a minimal framework for allocating memory dynamically. We provide this
24
// with the BumpPtrAllocator class (not LLVM's, but our own version of it).
25
//
26
// Since this code is intended to be inserted into any executable, we decided to
27
// make it standalone and do not depend on any external libraries (i.e. language
28
// support libraries, such as glibc or stdc++). To allow this, we provide a few
29
// light implementations of common OS interacting functionalities using direct
30
// syscall wrappers. Our simple allocator doesn't manage deallocations that
31
// fragment the memory space, so it's stack based. This is the minimal framework
32
// provided here to allow processing instrumented counters and writing fdata.
33
//
34
// In the C++ idiom used here, we never use or rely on constructors or
35
// destructors for global objects. That's because those need support from the
36
// linker in initialization/finalization code, and we want to keep our linker
37
// very simple. Similarly, we don't create any global objects that are zero
38
// initialized, since those would need to go .bss, which our simple linker also
39
// don't support (TODO?).
40
//
41
//===----------------------------------------------------------------------===//
42

43
#include "common.h"
44

45
// Enables a very verbose logging to stderr useful when debugging
46
//#define ENABLE_DEBUG
47

48
#ifdef ENABLE_DEBUG
49
#define DEBUG(X)                                                               \
50
  { X; }
51
#else
52
#define DEBUG(X)                                                               \
53
  {}
54
#endif
55

56
#pragma GCC visibility push(hidden)
57

58
extern "C" {
59

60
#if defined(__APPLE__)
61
extern uint64_t* _bolt_instr_locations_getter();
62
extern uint32_t _bolt_num_counters_getter();
63

64
extern uint8_t* _bolt_instr_tables_getter();
65
extern uint32_t _bolt_instr_num_funcs_getter();
66

67
#else
68

69
// Main counters inserted by instrumentation, incremented during runtime when
70
// points of interest (locations) in the program are reached. Those are direct
71
// calls and direct and indirect branches (local ones). There are also counters
72
// for basic block execution if they are a spanning tree leaf and need to be
73
// counted in order to infer the execution count of other edges of the CFG.
74
extern uint64_t __bolt_instr_locations[];
75
extern uint32_t __bolt_num_counters;
76
// Descriptions are serialized metadata about binary functions written by BOLT,
77
// so we have a minimal understanding about the program structure. For a
78
// reference on the exact format of this metadata, see *Description structs,
79
// Location, IntrumentedNode and EntryNode.
80
// Number of indirect call site descriptions
81
extern uint32_t __bolt_instr_num_ind_calls;
82
// Number of indirect call target descriptions
83
extern uint32_t __bolt_instr_num_ind_targets;
84
// Number of function descriptions
85
extern uint32_t __bolt_instr_num_funcs;
86
// Time to sleep across dumps (when we write the fdata profile to disk)
87
extern uint32_t __bolt_instr_sleep_time;
88
// Do not clear counters across dumps, rewrite file with the updated values
89
extern bool __bolt_instr_no_counters_clear;
90
// Wait until all forks of instrumented process will finish
91
extern bool __bolt_instr_wait_forks;
92
// Filename to dump data to
93
extern char __bolt_instr_filename[];
94
// Instumented binary file path
95
extern char __bolt_instr_binpath[];
96
// If true, append current PID to the fdata filename when creating it so
97
// different invocations of the same program can be differentiated.
98
extern bool __bolt_instr_use_pid;
99
// Functions that will be used to instrument indirect calls. BOLT static pass
100
// will identify indirect calls and modify them to load the address in these
101
// trampolines and call this address instead. BOLT can't use direct calls to
102
// our handlers because our addresses here are not known at analysis time. We
103
// only support resolving dependencies from this file to the output of BOLT,
104
// *not* the other way around.
105
// TODO: We need better linking support to make that happen.
106
extern void (*__bolt_ind_call_counter_func_pointer)();
107
extern void (*__bolt_ind_tailcall_counter_func_pointer)();
108
// Function pointers to init/fini trampoline routines in the binary, so we can
109
// resume regular execution of these functions that we hooked
110
extern void __bolt_start_trampoline();
111
extern void __bolt_fini_trampoline();
112

113
#endif
114
}
115

116
namespace {
117

118
/// A simple allocator that mmaps a fixed size region and manages this space
119
/// in a stack fashion, meaning you always deallocate the last element that
120
/// was allocated. In practice, we don't need to deallocate individual elements.
121
/// We monotonically increase our usage and then deallocate everything once we
122
/// are done processing something.
123
class BumpPtrAllocator {
124
  /// This is written before each allocation and act as a canary to detect when
125
  /// a bug caused our program to cross allocation boundaries.
126
  struct EntryMetadata {
127
    uint64_t Magic;
128
    uint64_t AllocSize;
129
  };
130

131
public:
132
  void *allocate(size_t Size) {
133
    Lock L(M);
134

135
    if (StackBase == nullptr) {
136
      StackBase = reinterpret_cast<uint8_t *>(
137
          __mmap(0, MaxSize, PROT_READ | PROT_WRITE,
138
                 (Shared ? MAP_SHARED : MAP_PRIVATE) | MAP_ANONYMOUS, -1, 0));
139
      assert(StackBase != MAP_FAILED,
140
             "BumpPtrAllocator: failed to mmap stack!");
141
      StackSize = 0;
142
    }
143

144
    Size = alignTo(Size + sizeof(EntryMetadata), 16);
145
    uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata);
146
    auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize);
147
    M->Magic = Magic;
148
    M->AllocSize = Size;
149
    StackSize += Size;
150
    assert(StackSize < MaxSize, "allocator ran out of memory");
151
    return AllocAddress;
152
  }
153

154
#ifdef DEBUG
155
  /// Element-wise deallocation is only used for debugging to catch memory
156
  /// bugs by checking magic bytes. Ordinarily, we reset the allocator once
157
  /// we are done with it. Reset is done with clear(). There's no need
158
  /// to deallocate each element individually.
159
  void deallocate(void *Ptr) {
160
    Lock L(M);
161
    uint8_t MetadataOffset = sizeof(EntryMetadata);
162
    auto *M = reinterpret_cast<EntryMetadata *>(
163
        reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset);
164
    const uint8_t *StackTop = StackBase + StackSize + MetadataOffset;
165
    // Validate size
166
    if (Ptr != StackTop - M->AllocSize) {
167
      // Failed validation, check if it is a pointer returned by operator new []
168
      MetadataOffset +=
169
          sizeof(uint64_t); // Space for number of elements alloc'ed
170
      M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) -
171
                                            MetadataOffset);
172
      // Ok, it failed both checks if this assertion fails. Stop the program, we
173
      // have a memory bug.
174
      assert(Ptr == StackTop - M->AllocSize,
175
             "must deallocate the last element alloc'ed");
176
    }
177
    assert(M->Magic == Magic, "allocator magic is corrupt");
178
    StackSize -= M->AllocSize;
179
  }
180
#else
181
  void deallocate(void *) {}
182
#endif
183

184
  void clear() {
185
    Lock L(M);
186
    StackSize = 0;
187
  }
188

189
  /// Set mmap reservation size (only relevant before first allocation)
190
  void setMaxSize(uint64_t Size) { MaxSize = Size; }
191

192
  /// Set mmap reservation privacy (only relevant before first allocation)
193
  void setShared(bool S) { Shared = S; }
194

195
  void destroy() {
196
    if (StackBase == nullptr)
197
      return;
198
    __munmap(StackBase, MaxSize);
199
  }
200

201
  // Placement operator to construct allocator in possibly shared mmaped memory
202
  static void *operator new(size_t, void *Ptr) { return Ptr; };
203

204
private:
205
  static constexpr uint64_t Magic = 0x1122334455667788ull;
206
  uint64_t MaxSize = 0xa00000;
207
  uint8_t *StackBase{nullptr};
208
  uint64_t StackSize{0};
209
  bool Shared{false};
210
  Mutex M;
211
};
212

213
/// Used for allocating indirect call instrumentation counters. Initialized by
214
/// __bolt_instr_setup, our initialization routine.
215
BumpPtrAllocator *GlobalAlloc;
216

217
// Base address which we substract from recorded PC values when searching for
218
// indirect call description entries. Needed because indCall descriptions are
219
// mapped read-only and contain static addresses. Initialized in
220
// __bolt_instr_setup.
221
uint64_t TextBaseAddress = 0;
222

223
// Storage for GlobalAlloc which can be shared if not using
224
// instrumentation-file-append-pid.
225
void *GlobalMetadataStorage;
226

227
} // anonymous namespace
228

229
// User-defined placement new operators. We only use those (as opposed to
230
// overriding the regular operator new) so we can keep our allocator in the
231
// stack instead of in a data section (global).
232
void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); }
233
void *operator new(size_t Sz, BumpPtrAllocator &A, char C) {
234
  auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
235
  memset(Ptr, C, Sz);
236
  return Ptr;
237
}
238
void *operator new[](size_t Sz, BumpPtrAllocator &A) {
239
  return A.allocate(Sz);
240
}
241
void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) {
242
  auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz));
243
  memset(Ptr, C, Sz);
244
  return Ptr;
245
}
246
// Only called during exception unwinding (useless). We must manually dealloc.
247
// C++ language weirdness
248
void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); }
249

250
namespace {
251

252
// Disable instrumentation optimizations that sacrifice profile accuracy
253
extern "C" bool __bolt_instr_conservative;
254

255
/// Basic key-val atom stored in our hash
256
struct SimpleHashTableEntryBase {
257
  uint64_t Key;
258
  uint64_t Val;
259
  void dump(const char *Msg = nullptr) {
260
    // TODO: make some sort of formatting function
261
    // Currently we have to do it the ugly way because
262
    // we want every message to be printed atomically via a single call to
263
    // __write. If we use reportNumber() and others nultiple times, we'll get
264
    // garbage in mulithreaded environment
265
    char Buf[BufSize];
266
    char *Ptr = Buf;
267
    Ptr = intToStr(Ptr, __getpid(), 10);
268
    *Ptr++ = ':';
269
    *Ptr++ = ' ';
270
    if (Msg)
271
      Ptr = strCopy(Ptr, Msg, strLen(Msg));
272
    *Ptr++ = '0';
273
    *Ptr++ = 'x';
274
    Ptr = intToStr(Ptr, (uint64_t)this, 16);
275
    *Ptr++ = ':';
276
    *Ptr++ = ' ';
277
    Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1);
278
    Ptr = intToStr(Ptr, Key, 16);
279
    *Ptr++ = ',';
280
    *Ptr++ = ' ';
281
    *Ptr++ = '0';
282
    *Ptr++ = 'x';
283
    Ptr = intToStr(Ptr, Val, 16);
284
    *Ptr++ = ')';
285
    *Ptr++ = '\n';
286
    assert(Ptr - Buf < BufSize, "Buffer overflow!");
287
    // print everything all at once for atomicity
288
    __write(2, Buf, Ptr - Buf);
289
  }
290
};
291

292
/// This hash table implementation starts by allocating a table of size
293
/// InitialSize. When conflicts happen in this main table, it resolves
294
/// them by chaining a new table of size IncSize. It never reallocs as our
295
/// allocator doesn't support it. The key is intended to be function pointers.
296
/// There's no clever hash function (it's just x mod size, size being prime).
297
/// I never tuned the coefficientes in the modular equation (TODO)
298
/// This is used for indirect calls (each call site has one of this, so it
299
/// should have a small footprint) and for tallying call counts globally for
300
/// each target to check if we missed the origin of some calls (this one is a
301
/// large instantiation of this template, since it is global for all call sites)
302
template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7,
303
          uint32_t IncSize = 7>
304
class SimpleHashTable {
305
public:
306
  using MapEntry = T;
307

308
  /// Increment by 1 the value of \p Key. If it is not in this table, it will be
309
  /// added to the table and its value set to 1.
310
  void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) {
311
    if (!__bolt_instr_conservative) {
312
      TryLock L(M);
313
      if (!L.isLocked())
314
        return;
315
      auto &E = getOrAllocEntry(Key, Alloc);
316
      ++E.Val;
317
      return;
318
    }
319
    Lock L(M);
320
    auto &E = getOrAllocEntry(Key, Alloc);
321
    ++E.Val;
322
  }
323

324
  /// Basic member accessing interface. Here we pass the allocator explicitly to
325
  /// avoid storing a pointer to it as part of this table (remember there is one
326
  /// hash for each indirect call site, so we want to minimize our footprint).
327
  MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) {
328
    if (!__bolt_instr_conservative) {
329
      TryLock L(M);
330
      if (!L.isLocked())
331
        return NoEntry;
332
      return getOrAllocEntry(Key, Alloc);
333
    }
334
    Lock L(M);
335
    return getOrAllocEntry(Key, Alloc);
336
  }
337

338
  /// Traverses all elements in the table
339
  template <typename... Args>
340
  void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) {
341
    Lock L(M);
342
    if (!TableRoot)
343
      return;
344
    return forEachElement(Callback, InitialSize, TableRoot, args...);
345
  }
346

347
  void resetCounters();
348

349
private:
350
  constexpr static uint64_t VacantMarker = 0;
351
  constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull;
352

353
  MapEntry *TableRoot{nullptr};
354
  MapEntry NoEntry;
355
  Mutex M;
356

357
  template <typename... Args>
358
  void forEachElement(void (*Callback)(MapEntry &, Args...),
359
                      uint32_t NumEntries, MapEntry *Entries, Args... args) {
360
    for (uint32_t I = 0; I < NumEntries; ++I) {
361
      MapEntry &Entry = Entries[I];
362
      if (Entry.Key == VacantMarker)
363
        continue;
364
      if (Entry.Key & FollowUpTableMarker) {
365
        MapEntry *Next =
366
            reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker);
367
        assert(Next != Entries, "Circular reference!");
368
        forEachElement(Callback, IncSize, Next, args...);
369
        continue;
370
      }
371
      Callback(Entry, args...);
372
    }
373
  }
374

375
  MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) {
376
    TableRoot = new (Alloc, 0) MapEntry[InitialSize];
377
    MapEntry &Entry = TableRoot[Key % InitialSize];
378
    Entry.Key = Key;
379
    // DEBUG(Entry.dump("Created root entry: "));
380
    return Entry;
381
  }
382

383
  MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector,
384
                     BumpPtrAllocator &Alloc, int CurLevel) {
385
    // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10));
386
    const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize;
387
    uint64_t Remainder = Selector / NumEntries;
388
    Selector = Selector % NumEntries;
389
    MapEntry &Entry = Entries[Selector];
390

391
    // A hit
392
    if (Entry.Key == Key) {
393
      // DEBUG(Entry.dump("Hit: "));
394
      return Entry;
395
    }
396

397
    // Vacant - add new entry
398
    if (Entry.Key == VacantMarker) {
399
      Entry.Key = Key;
400
      // DEBUG(Entry.dump("Adding new entry: "));
401
      return Entry;
402
    }
403

404
    // Defer to the next level
405
    if (Entry.Key & FollowUpTableMarker) {
406
      return getEntry(
407
          reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker),
408
          Key, Remainder, Alloc, CurLevel + 1);
409
    }
410

411
    // Conflict - create the next level
412
    // DEBUG(Entry.dump("Creating new level: "));
413

414
    MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize];
415
    // DEBUG(
416
    //     reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl),
417
    //     16));
418
    uint64_t CurEntrySelector = Entry.Key / InitialSize;
419
    for (int I = 0; I < CurLevel; ++I)
420
      CurEntrySelector /= IncSize;
421
    CurEntrySelector = CurEntrySelector % IncSize;
422
    NextLevelTbl[CurEntrySelector] = Entry;
423
    Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker;
424
    assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) !=
425
               uint64_t(Entries),
426
           "circular reference created!\n");
427
    // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: "));
428
    // DEBUG(Entry.dump("Updated old entry: "));
429
    return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1);
430
  }
431

432
  MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) {
433
    if (TableRoot) {
434
      MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0);
435
      assert(!(E.Key & FollowUpTableMarker), "Invalid entry!");
436
      return E;
437
    }
438
    return firstAllocation(Key, Alloc);
439
  }
440
};
441

442
template <typename T> void resetIndCallCounter(T &Entry) {
443
  Entry.Val = 0;
444
}
445

446
template <typename T, uint32_t X, uint32_t Y>
447
void SimpleHashTable<T, X, Y>::resetCounters() {
448
  forEachElement(resetIndCallCounter);
449
}
450

451
/// Represents a hash table mapping a function target address to its counter.
452
using IndirectCallHashTable = SimpleHashTable<>;
453

454
/// Initialize with number 1 instead of 0 so we don't go into .bss. This is the
455
/// global array of all hash tables storing indirect call destinations happening
456
/// during runtime, one table per call site.
457
IndirectCallHashTable *GlobalIndCallCounters{
458
    reinterpret_cast<IndirectCallHashTable *>(1)};
459

460
/// Don't allow reentrancy in the fdata writing phase - only one thread writes
461
/// it
462
Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)};
463

464
/// Store number of calls in additional to target address (Key) and frequency
465
/// as perceived by the basic block counter (Val).
466
struct CallFlowEntryBase : public SimpleHashTableEntryBase {
467
  uint64_t Calls;
468
};
469

470
using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>;
471

472
/// This is a large table indexing all possible call targets (indirect and
473
/// direct ones). The goal is to find mismatches between number of calls (for
474
/// those calls we were able to track) and the entry basic block counter of the
475
/// callee. In most cases, these two should be equal. If not, there are two
476
/// possible scenarios here:
477
///
478
///  * Entry BB has higher frequency than all known calls to this function.
479
///    In this case, we have dynamic library code or any uninstrumented code
480
///    calling this function. We will write the profile for these untracked
481
///    calls as having source "0 [unknown] 0" in the fdata file.
482
///
483
///  * Number of known calls is higher than the frequency of entry BB
484
///    This only happens when there is no counter for the entry BB / callee
485
///    function is not simple (in BOLT terms). We don't do anything special
486
///    here and just ignore those (we still report all calls to the non-simple
487
///    function, though).
488
///
489
class CallFlowHashTable : public CallFlowHashTableBase {
490
public:
491
  CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {}
492

493
  MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); }
494

495
private:
496
  // Different than the hash table for indirect call targets, we do store the
497
  // allocator here since there is only one call flow hash and space overhead
498
  // is negligible.
499
  BumpPtrAllocator &Alloc;
500
};
501

502
///
503
/// Description metadata emitted by BOLT to describe the program - refer to
504
/// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote()
505
///
506
struct Location {
507
  uint32_t FunctionName;
508
  uint32_t Offset;
509
};
510

511
struct CallDescription {
512
  Location From;
513
  uint32_t FromNode;
514
  Location To;
515
  uint32_t Counter;
516
  uint64_t TargetAddress;
517
};
518

519
using IndCallDescription = Location;
520

521
struct IndCallTargetDescription {
522
  Location Loc;
523
  uint64_t Address;
524
};
525

526
struct EdgeDescription {
527
  Location From;
528
  uint32_t FromNode;
529
  Location To;
530
  uint32_t ToNode;
531
  uint32_t Counter;
532
};
533

534
struct InstrumentedNode {
535
  uint32_t Node;
536
  uint32_t Counter;
537
};
538

539
struct EntryNode {
540
  uint64_t Node;
541
  uint64_t Address;
542
};
543

544
struct FunctionDescription {
545
  uint32_t NumLeafNodes;
546
  const InstrumentedNode *LeafNodes;
547
  uint32_t NumEdges;
548
  const EdgeDescription *Edges;
549
  uint32_t NumCalls;
550
  const CallDescription *Calls;
551
  uint32_t NumEntryNodes;
552
  const EntryNode *EntryNodes;
553

554
  /// Constructor will parse the serialized function metadata written by BOLT
555
  FunctionDescription(const uint8_t *FuncDesc);
556

557
  uint64_t getSize() const {
558
    return 16 + NumLeafNodes * sizeof(InstrumentedNode) +
559
           NumEdges * sizeof(EdgeDescription) +
560
           NumCalls * sizeof(CallDescription) +
561
           NumEntryNodes * sizeof(EntryNode);
562
  }
563
};
564

565
/// The context is created when the fdata profile needs to be written to disk
566
/// and we need to interpret our runtime counters. It contains pointers to the
567
/// mmaped binary (only the BOLT written metadata section). Deserialization
568
/// should be straightforward as most data is POD or an array of POD elements.
569
/// This metadata is used to reconstruct function CFGs.
570
struct ProfileWriterContext {
571
  IndCallDescription *IndCallDescriptions;
572
  IndCallTargetDescription *IndCallTargets;
573
  uint8_t *FuncDescriptions;
574
  char *Strings;  // String table with function names used in this binary
575
  int FileDesc;   // File descriptor for the file on disk backing this
576
                  // information in memory via mmap
577
  void *MMapPtr;  // The mmap ptr
578
  int MMapSize;   // The mmap size
579

580
  /// Hash table storing all possible call destinations to detect untracked
581
  /// calls and correctly report them as [unknown] in output fdata.
582
  CallFlowHashTable *CallFlowTable;
583

584
  /// Lookup the sorted indirect call target vector to fetch function name and
585
  /// offset for an arbitrary function pointer.
586
  const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const;
587
};
588

589
/// Perform a string comparison and returns zero if Str1 matches Str2. Compares
590
/// at most Size characters.
591
int compareStr(const char *Str1, const char *Str2, int Size) {
592
  while (*Str1 == *Str2) {
593
    if (*Str1 == '\0' || --Size == 0)
594
      return 0;
595
    ++Str1;
596
    ++Str2;
597
  }
598
  return 1;
599
}
600

601
/// Output Location to the fdata file
602
char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf,
603
                   const Location Loc, uint32_t BufSize) {
604
  // fdata location format: Type Name Offset
605
  // Type 1 - regular symbol
606
  OutBuf = strCopy(OutBuf, "1 ");
607
  const char *Str = Ctx.Strings + Loc.FunctionName;
608
  uint32_t Size = 25;
609
  while (*Str) {
610
    *OutBuf++ = *Str++;
611
    if (++Size >= BufSize)
612
      break;
613
  }
614
  assert(!*Str, "buffer overflow, function name too large");
615
  *OutBuf++ = ' ';
616
  OutBuf = intToStr(OutBuf, Loc.Offset, 16);
617
  *OutBuf++ = ' ';
618
  return OutBuf;
619
}
620

621
/// Read and deserialize a function description written by BOLT. \p FuncDesc
622
/// points at the beginning of the function metadata structure in the file.
623
/// See Instrumentation::emitTablesAsELFNote()
624
FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) {
625
  NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc);
626
  DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10));
627
  LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4);
628

629
  NumEdges = *reinterpret_cast<const uint32_t *>(
630
      FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode));
631
  DEBUG(reportNumber("NumEdges = ", NumEdges, 10));
632
  Edges = reinterpret_cast<const EdgeDescription *>(
633
      FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode));
634

635
  NumCalls = *reinterpret_cast<const uint32_t *>(
636
      FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) +
637
      NumEdges * sizeof(EdgeDescription));
638
  DEBUG(reportNumber("NumCalls = ", NumCalls, 10));
639
  Calls = reinterpret_cast<const CallDescription *>(
640
      FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
641
      NumEdges * sizeof(EdgeDescription));
642
  NumEntryNodes = *reinterpret_cast<const uint32_t *>(
643
      FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) +
644
      NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
645
  DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10));
646
  EntryNodes = reinterpret_cast<const EntryNode *>(
647
      FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) +
648
      NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription));
649
}
650

651
/// Read and mmap descriptions written by BOLT from the executable's notes
652
/// section
653
#if defined(HAVE_ELF_H) and !defined(__APPLE__)
654

655
void *__attribute__((noinline)) __get_pc() {
656
  return __builtin_extract_return_addr(__builtin_return_address(0));
657
}
658

659
/// Get string with address and parse it to hex pair <StartAddress, EndAddress>
660
bool parseAddressRange(const char *Str, uint64_t &StartAddress,
661
                       uint64_t &EndAddress) {
662
  if (!Str)
663
    return false;
664
  // Parsed string format: <hex1>-<hex2>
665
  StartAddress = hexToLong(Str, '-');
666
  while (*Str && *Str != '-')
667
    ++Str;
668
  if (!*Str)
669
    return false;
670
  ++Str; // swallow '-'
671
  EndAddress = hexToLong(Str);
672
  return true;
673
}
674

675
/// Get full path to the real binary by getting current virtual address
676
/// and searching for the appropriate link in address range in
677
/// /proc/self/map_files
678
static char *getBinaryPath() {
679
  const uint32_t BufSize = 1024;
680
  const uint32_t NameMax = 4096;
681
  const char DirPath[] = "/proc/self/map_files/";
682
  static char TargetPath[NameMax] = {};
683
  char Buf[BufSize];
684

685
  if (__bolt_instr_binpath[0] != '\0')
686
    return __bolt_instr_binpath;
687

688
  if (TargetPath[0] != '\0')
689
    return TargetPath;
690

691
  unsigned long CurAddr = (unsigned long)__get_pc();
692
  uint64_t FDdir = __open(DirPath, O_RDONLY,
693
                          /*mode=*/0666);
694
  assert(static_cast<int64_t>(FDdir) >= 0,
695
         "failed to open /proc/self/map_files");
696

697
  while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) {
698
    assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries");
699

700
    struct dirent64 *d;
701
    for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) {
702
      d = (struct dirent64 *)(Buf + Bpos);
703

704
      uint64_t StartAddress, EndAddress;
705
      if (!parseAddressRange(d->d_name, StartAddress, EndAddress))
706
        continue;
707
      if (CurAddr < StartAddress || CurAddr > EndAddress)
708
        continue;
709
      char FindBuf[NameMax];
710
      char *C = strCopy(FindBuf, DirPath, NameMax);
711
      C = strCopy(C, d->d_name, NameMax - (C - FindBuf));
712
      *C = '\0';
713
      uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath));
714
      assert(Ret != -1 && Ret != BufSize, "readlink error");
715
      TargetPath[Ret] = '\0';
716
      return TargetPath;
717
    }
718
  }
719
  return nullptr;
720
}
721

722
ProfileWriterContext readDescriptions() {
723
  ProfileWriterContext Result;
724
  char *BinPath = getBinaryPath();
725
  assert(BinPath && BinPath[0] != '\0', "failed to find binary path");
726

727
  uint64_t FD = __open(BinPath, O_RDONLY,
728
                       /*mode=*/0666);
729
  assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path");
730

731
  Result.FileDesc = FD;
732

733
  // mmap our binary to memory
734
  uint64_t Size = __lseek(FD, 0, SEEK_END);
735
  uint8_t *BinContents = reinterpret_cast<uint8_t *>(
736
      __mmap(0, Size, PROT_READ, MAP_PRIVATE, FD, 0));
737
  assert(BinContents != MAP_FAILED, "readDescriptions: Failed to mmap self!");
738
  Result.MMapPtr = BinContents;
739
  Result.MMapSize = Size;
740
  Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents);
741
  Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff);
742
  Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>(
743
      BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize);
744

745
  // Find .bolt.instr.tables with the data we need and set pointers to it
746
  for (int I = 0; I < Hdr->e_shnum; ++I) {
747
    char *SecName = reinterpret_cast<char *>(
748
        BinContents + StringTblHeader->sh_offset + Shdr->sh_name);
749
    if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) {
750
      Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff +
751
                                            (I + 1) * Hdr->e_shentsize);
752
      continue;
753
    }
754
    // Actual contents of the ELF note start after offset 20 decimal:
755
    // Offset 0: Producer name size (4 bytes)
756
    // Offset 4: Contents size (4 bytes)
757
    // Offset 8: Note type (4 bytes)
758
    // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary)
759
    // Offset 20: Contents
760
    uint32_t IndCallDescSize =
761
        *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20);
762
    uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>(
763
        BinContents + Shdr->sh_offset + 24 + IndCallDescSize);
764
    uint32_t FuncDescSize =
765
        *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 +
766
                                      IndCallDescSize + IndCallTargetDescSize);
767
    Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>(
768
        BinContents + Shdr->sh_offset + 24);
769
    Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
770
        BinContents + Shdr->sh_offset + 28 + IndCallDescSize);
771
    Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 +
772
                              IndCallDescSize + IndCallTargetDescSize;
773
    Result.Strings = reinterpret_cast<char *>(
774
        BinContents + Shdr->sh_offset + 32 + IndCallDescSize +
775
        IndCallTargetDescSize + FuncDescSize);
776
    return Result;
777
  }
778
  const char ErrMsg[] =
779
      "BOLT instrumentation runtime error: could not find section "
780
      ".bolt.instr.tables\n";
781
  reportError(ErrMsg, sizeof(ErrMsg));
782
  return Result;
783
}
784

785
#else
786

787
ProfileWriterContext readDescriptions() {
788
  ProfileWriterContext Result;
789
  uint8_t *Tables = _bolt_instr_tables_getter();
790
  uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables);
791
  uint32_t IndCallTargetDescSize =
792
      *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize);
793
  uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>(
794
      Tables + 8 + IndCallDescSize + IndCallTargetDescSize);
795
  Result.IndCallDescriptions =
796
      reinterpret_cast<IndCallDescription *>(Tables + 4);
797
  Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>(
798
      Tables + 8 + IndCallDescSize);
799
  Result.FuncDescriptions =
800
      Tables + 12 + IndCallDescSize + IndCallTargetDescSize;
801
  Result.Strings = reinterpret_cast<char *>(
802
      Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize);
803
  return Result;
804
}
805

806
#endif
807

808
#if !defined(__APPLE__)
809
/// Debug by printing overall metadata global numbers to check it is sane
810
void printStats(const ProfileWriterContext &Ctx) {
811
  char StatMsg[BufSize];
812
  char *StatPtr = StatMsg;
813
  StatPtr =
814
      strCopy(StatPtr,
815
              "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: ");
816
  StatPtr = intToStr(StatPtr,
817
                     Ctx.FuncDescriptions -
818
                         reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions),
819
                     10);
820
  StatPtr = strCopy(StatPtr, "\nFuncDescSize: ");
821
  StatPtr = intToStr(
822
      StatPtr,
823
      reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10);
824
  StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: ");
825
  StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10);
826
  StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: ");
827
  StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10);
828
  StatPtr = strCopy(StatPtr, "\n");
829
  __write(2, StatMsg, StatPtr - StatMsg);
830
}
831
#endif
832

833

834
/// This is part of a simple CFG representation in memory, where we store
835
/// a dynamically sized array of input and output edges per node, and store
836
/// a dynamically sized array of nodes per graph. We also store the spanning
837
/// tree edges for that CFG in a separate array of nodes in
838
/// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes.
839
struct Edge {
840
  uint32_t Node; // Index in nodes array regarding the destination of this edge
841
  uint32_t ID;   // Edge index in an array comprising all edges of the graph
842
};
843

844
/// A regular graph node or a spanning tree node
845
struct Node {
846
  uint32_t NumInEdges{0};  // Input edge count used to size InEdge
847
  uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges
848
  Edge *InEdges{nullptr};  // Created and managed by \p Graph
849
  Edge *OutEdges{nullptr}; // ditto
850
};
851

852
/// Main class for CFG representation in memory. Manages object creation and
853
/// destruction, populates an array of CFG nodes as well as corresponding
854
/// spanning tree nodes.
855
struct Graph {
856
  uint32_t NumNodes;
857
  Node *CFGNodes;
858
  Node *SpanningTreeNodes;
859
  uint64_t *EdgeFreqs;
860
  uint64_t *CallFreqs;
861
  BumpPtrAllocator &Alloc;
862
  const FunctionDescription &D;
863

864
  /// Reads a list of edges from function description \p D and builds
865
  /// the graph from it. Allocates several internal dynamic structures that are
866
  /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all
867
  /// spanning tree leaf nodes descriptions (their counters). They are the seed
868
  /// used to compute the rest of the missing edge counts in a bottom-up
869
  /// traversal of the spanning tree.
870
  Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
871
        const uint64_t *Counters, ProfileWriterContext &Ctx);
872
  ~Graph();
873
  void dump() const;
874

875
private:
876
  void computeEdgeFrequencies(const uint64_t *Counters,
877
                              ProfileWriterContext &Ctx);
878
  void dumpEdgeFreqs() const;
879
};
880

881
Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D,
882
             const uint64_t *Counters, ProfileWriterContext &Ctx)
883
    : Alloc(Alloc), D(D) {
884
  DEBUG(reportNumber("G = 0x", (uint64_t)this, 16));
885
  // First pass to determine number of nodes
886
  int32_t MaxNodes = -1;
887
  CallFreqs = nullptr;
888
  EdgeFreqs = nullptr;
889
  for (int I = 0; I < D.NumEdges; ++I) {
890
    if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes)
891
      MaxNodes = D.Edges[I].FromNode;
892
    if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes)
893
      MaxNodes = D.Edges[I].ToNode;
894
  }
895

896
  for (int I = 0; I < D.NumLeafNodes; ++I)
897
    if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes)
898
      MaxNodes = D.LeafNodes[I].Node;
899

900
  for (int I = 0; I < D.NumCalls; ++I)
901
    if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes)
902
      MaxNodes = D.Calls[I].FromNode;
903

904
  // No nodes? Nothing to do
905
  if (MaxNodes < 0) {
906
    DEBUG(report("No nodes!\n"));
907
    CFGNodes = nullptr;
908
    SpanningTreeNodes = nullptr;
909
    NumNodes = 0;
910
    return;
911
  }
912
  ++MaxNodes;
913
  DEBUG(reportNumber("NumNodes = ", MaxNodes, 10));
914
  NumNodes = static_cast<uint32_t>(MaxNodes);
915

916
  // Initial allocations
917
  CFGNodes = new (Alloc) Node[MaxNodes];
918

919
  DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16));
920
  SpanningTreeNodes = new (Alloc) Node[MaxNodes];
921
  DEBUG(reportNumber("G->SpanningTreeNodes = 0x",
922
                     (uint64_t)SpanningTreeNodes, 16));
923

924
  // Figure out how much to allocate to each vector (in/out edge sets)
925
  for (int I = 0; I < D.NumEdges; ++I) {
926
    CFGNodes[D.Edges[I].FromNode].NumOutEdges++;
927
    CFGNodes[D.Edges[I].ToNode].NumInEdges++;
928
    if (D.Edges[I].Counter != 0xffffffff)
929
      continue;
930

931
    SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++;
932
    SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++;
933
  }
934

935
  // Allocate in/out edge sets
936
  for (int I = 0; I < MaxNodes; ++I) {
937
    if (CFGNodes[I].NumInEdges > 0)
938
      CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges];
939
    if (CFGNodes[I].NumOutEdges > 0)
940
      CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges];
941
    if (SpanningTreeNodes[I].NumInEdges > 0)
942
      SpanningTreeNodes[I].InEdges =
943
          new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges];
944
    if (SpanningTreeNodes[I].NumOutEdges > 0)
945
      SpanningTreeNodes[I].OutEdges =
946
          new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges];
947
    CFGNodes[I].NumInEdges = 0;
948
    CFGNodes[I].NumOutEdges = 0;
949
    SpanningTreeNodes[I].NumInEdges = 0;
950
    SpanningTreeNodes[I].NumOutEdges = 0;
951
  }
952

953
  // Fill in/out edge sets
954
  for (int I = 0; I < D.NumEdges; ++I) {
955
    const uint32_t Src = D.Edges[I].FromNode;
956
    const uint32_t Dst = D.Edges[I].ToNode;
957
    Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++];
958
    E->Node = Dst;
959
    E->ID = I;
960

961
    E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++];
962
    E->Node = Src;
963
    E->ID = I;
964

965
    if (D.Edges[I].Counter != 0xffffffff)
966
      continue;
967

968
    E = &SpanningTreeNodes[Src]
969
             .OutEdges[SpanningTreeNodes[Src].NumOutEdges++];
970
    E->Node = Dst;
971
    E->ID = I;
972

973
    E = &SpanningTreeNodes[Dst]
974
             .InEdges[SpanningTreeNodes[Dst].NumInEdges++];
975
    E->Node = Src;
976
    E->ID = I;
977
  }
978

979
  computeEdgeFrequencies(Counters, Ctx);
980
}
981

982
Graph::~Graph() {
983
  if (CallFreqs)
984
    Alloc.deallocate(CallFreqs);
985
  if (EdgeFreqs)
986
    Alloc.deallocate(EdgeFreqs);
987
  for (int I = NumNodes - 1; I >= 0; --I) {
988
    if (SpanningTreeNodes[I].OutEdges)
989
      Alloc.deallocate(SpanningTreeNodes[I].OutEdges);
990
    if (SpanningTreeNodes[I].InEdges)
991
      Alloc.deallocate(SpanningTreeNodes[I].InEdges);
992
    if (CFGNodes[I].OutEdges)
993
      Alloc.deallocate(CFGNodes[I].OutEdges);
994
    if (CFGNodes[I].InEdges)
995
      Alloc.deallocate(CFGNodes[I].InEdges);
996
  }
997
  if (SpanningTreeNodes)
998
    Alloc.deallocate(SpanningTreeNodes);
999
  if (CFGNodes)
1000
    Alloc.deallocate(CFGNodes);
1001
}
1002

1003
void Graph::dump() const {
1004
  reportNumber("Dumping graph with number of nodes: ", NumNodes, 10);
1005
  report("  Full graph:\n");
1006
  for (int I = 0; I < NumNodes; ++I) {
1007
    const Node *N = &CFGNodes[I];
1008
    reportNumber("    Node #", I, 10);
1009
    reportNumber("      InEdges total ", N->NumInEdges, 10);
1010
    for (int J = 0; J < N->NumInEdges; ++J)
1011
      reportNumber("        ", N->InEdges[J].Node, 10);
1012
    reportNumber("      OutEdges total ", N->NumOutEdges, 10);
1013
    for (int J = 0; J < N->NumOutEdges; ++J)
1014
      reportNumber("        ", N->OutEdges[J].Node, 10);
1015
    report("\n");
1016
  }
1017
  report("  Spanning tree:\n");
1018
  for (int I = 0; I < NumNodes; ++I) {
1019
    const Node *N = &SpanningTreeNodes[I];
1020
    reportNumber("    Node #", I, 10);
1021
    reportNumber("      InEdges total ", N->NumInEdges, 10);
1022
    for (int J = 0; J < N->NumInEdges; ++J)
1023
      reportNumber("        ", N->InEdges[J].Node, 10);
1024
    reportNumber("      OutEdges total ", N->NumOutEdges, 10);
1025
    for (int J = 0; J < N->NumOutEdges; ++J)
1026
      reportNumber("        ", N->OutEdges[J].Node, 10);
1027
    report("\n");
1028
  }
1029
}
1030

1031
void Graph::dumpEdgeFreqs() const {
1032
  reportNumber(
1033
      "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10);
1034
  for (int I = 0; I < D.NumEdges; ++I) {
1035
    reportNumber("* Src: ", D.Edges[I].FromNode, 10);
1036
    reportNumber("  Dst: ", D.Edges[I].ToNode, 10);
1037
    reportNumber("    Cnt: ", EdgeFreqs[I], 10);
1038
  }
1039
}
1040

1041
/// Auxiliary map structure for fast lookups of which calls map to each node of
1042
/// the function CFG
1043
struct NodeToCallsMap {
1044
  struct MapEntry {
1045
    uint32_t NumCalls;
1046
    uint32_t *Calls;
1047
  };
1048
  MapEntry *Entries;
1049
  BumpPtrAllocator &Alloc;
1050
  const uint32_t NumNodes;
1051

1052
  NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D,
1053
                 uint32_t NumNodes)
1054
      : Alloc(Alloc), NumNodes(NumNodes) {
1055
    Entries = new (Alloc, 0) MapEntry[NumNodes];
1056
    for (int I = 0; I < D.NumCalls; ++I) {
1057
      DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10));
1058
      ++Entries[D.Calls[I].FromNode].NumCalls;
1059
    }
1060
    for (int I = 0; I < NumNodes; ++I) {
1061
      Entries[I].Calls = Entries[I].NumCalls ? new (Alloc)
1062
                                                   uint32_t[Entries[I].NumCalls]
1063
                                             : nullptr;
1064
      Entries[I].NumCalls = 0;
1065
    }
1066
    for (int I = 0; I < D.NumCalls; ++I) {
1067
      MapEntry &Entry = Entries[D.Calls[I].FromNode];
1068
      Entry.Calls[Entry.NumCalls++] = I;
1069
    }
1070
  }
1071

1072
  /// Set the frequency of all calls in node \p NodeID to Freq. However, if
1073
  /// the calls have their own counters and do not depend on the basic block
1074
  /// counter, this means they have landing pads and throw exceptions. In this
1075
  /// case, set their frequency with their counters and return the maximum
1076
  /// value observed in such counters. This will be used as the new frequency
1077
  /// at basic block entry. This is used to fix the CFG edge frequencies in the
1078
  /// presence of exceptions.
1079
  uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs,
1080
                           const FunctionDescription &D,
1081
                           const uint64_t *Counters,
1082
                           ProfileWriterContext &Ctx) const {
1083
    const MapEntry &Entry = Entries[NodeID];
1084
    uint64_t MaxValue = 0ull;
1085
    for (int I = 0, E = Entry.NumCalls; I != E; ++I) {
1086
      const uint32_t CallID = Entry.Calls[I];
1087
      DEBUG(reportNumber("  Setting freq for call ID: ", CallID, 10));
1088
      const CallDescription &CallDesc = D.Calls[CallID];
1089
      if (CallDesc.Counter == 0xffffffff) {
1090
        CallFreqs[CallID] = Freq;
1091
        DEBUG(reportNumber("  with : ", Freq, 10));
1092
      } else {
1093
        const uint64_t CounterVal = Counters[CallDesc.Counter];
1094
        CallFreqs[CallID] = CounterVal;
1095
        MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue;
1096
        DEBUG(reportNumber("  with (private counter) : ", CounterVal, 10));
1097
      }
1098
      DEBUG(reportNumber("  Address: 0x", CallDesc.TargetAddress, 16));
1099
      if (CallFreqs[CallID] > 0)
1100
        Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls +=
1101
            CallFreqs[CallID];
1102
    }
1103
    return MaxValue;
1104
  }
1105

1106
  ~NodeToCallsMap() {
1107
    for (int I = NumNodes - 1; I >= 0; --I)
1108
      if (Entries[I].Calls)
1109
        Alloc.deallocate(Entries[I].Calls);
1110
    Alloc.deallocate(Entries);
1111
  }
1112
};
1113

1114
/// Fill an array with the frequency of each edge in the function represented
1115
/// by G, as well as another array for each call.
1116
void Graph::computeEdgeFrequencies(const uint64_t *Counters,
1117
                                   ProfileWriterContext &Ctx) {
1118
  if (NumNodes == 0)
1119
    return;
1120

1121
  EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr;
1122
  CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr;
1123

1124
  // Setup a lookup for calls present in each node (BB)
1125
  NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes);
1126

1127
  // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the
1128
  // spanning tree don't have explicit counters. We must infer their value using
1129
  // a linear combination of other counters (sum of counters of the outgoing
1130
  // edges minus sum of counters of the incoming edges).
1131
  uint32_t *Stack = new (Alloc) uint32_t [NumNodes];
1132
  uint32_t StackTop = 0;
1133
  enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED };
1134
  Status *Visited = new (Alloc, 0) Status[NumNodes];
1135
  uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes];
1136
  uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes];
1137

1138
  // Setup a fast lookup for frequency of leaf nodes, which have special
1139
  // basic block frequency instrumentation (they are not edge profiled).
1140
  for (int I = 0; I < D.NumLeafNodes; ++I) {
1141
    LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter];
1142
    DEBUG({
1143
      if (Counters[D.LeafNodes[I].Counter] > 0) {
1144
        reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);
1145
        reportNumber("     Counter: ", Counters[D.LeafNodes[I].Counter], 10);
1146
      }
1147
    });
1148
  }
1149
  for (int I = 0; I < D.NumEntryNodes; ++I) {
1150
    EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address;
1151
    DEBUG({
1152
        reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);
1153
        reportNumber("      Address: ", D.EntryNodes[I].Address, 16);
1154
    });
1155
  }
1156
  // Add all root nodes to the stack
1157
  for (int I = 0; I < NumNodes; ++I)
1158
    if (SpanningTreeNodes[I].NumInEdges == 0)
1159
      Stack[StackTop++] = I;
1160

1161
  // Empty stack?
1162
  if (StackTop == 0) {
1163
    DEBUG(report("Empty stack!\n"));
1164
    Alloc.deallocate(EntryAddress);
1165
    Alloc.deallocate(LeafFrequency);
1166
    Alloc.deallocate(Visited);
1167
    Alloc.deallocate(Stack);
1168
    CallMap->~NodeToCallsMap();
1169
    Alloc.deallocate(CallMap);
1170
    if (CallFreqs)
1171
      Alloc.deallocate(CallFreqs);
1172
    if (EdgeFreqs)
1173
      Alloc.deallocate(EdgeFreqs);
1174
    EdgeFreqs = nullptr;
1175
    CallFreqs = nullptr;
1176
    return;
1177
  }
1178
  // Add all known edge counts, will infer the rest
1179
  for (int I = 0; I < D.NumEdges; ++I) {
1180
    const uint32_t C = D.Edges[I].Counter;
1181
    if (C == 0xffffffff) // inferred counter - we will compute its value
1182
      continue;
1183
    EdgeFreqs[I] = Counters[C];
1184
  }
1185

1186
  while (StackTop > 0) {
1187
    const uint32_t Cur = Stack[--StackTop];
1188
    DEBUG({
1189
      if (Visited[Cur] == S_VISITING)
1190
        report("(visiting) ");
1191
      else
1192
        report("(new) ");
1193
      reportNumber("Cur: ", Cur, 10);
1194
    });
1195

1196
    // This shouldn't happen in a tree
1197
    assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack");
1198
    if (Visited[Cur] == S_NEW) {
1199
      Visited[Cur] = S_VISITING;
1200
      Stack[StackTop++] = Cur;
1201
      assert(StackTop <= NumNodes, "stack grew too large");
1202
      for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) {
1203
        const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node;
1204
        Stack[StackTop++] = Succ;
1205
        assert(StackTop <= NumNodes, "stack grew too large");
1206
      }
1207
      continue;
1208
    }
1209
    Visited[Cur] = S_VISITED;
1210

1211
    // Establish our node frequency based on outgoing edges, which should all be
1212
    // resolved by now.
1213
    int64_t CurNodeFreq = LeafFrequency[Cur];
1214
    // Not a leaf?
1215
    if (!CurNodeFreq) {
1216
      for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) {
1217
        const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID;
1218
        CurNodeFreq += EdgeFreqs[SuccEdge];
1219
      }
1220
    }
1221
    if (CurNodeFreq < 0)
1222
      CurNodeFreq = 0;
1223

1224
    const uint64_t CallFreq = CallMap->visitAllCallsIn(
1225
        Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx);
1226

1227
    // Exception handling affected our output flow? Fix with calls info
1228
    DEBUG({
1229
      if (CallFreq > CurNodeFreq)
1230
        report("Bumping node frequency with call info\n");
1231
    });
1232
    CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq;
1233

1234
    if (CurNodeFreq > 0) {
1235
      if (uint64_t Addr = EntryAddress[Cur]) {
1236
        DEBUG(
1237
            reportNumber("  Setting flow at entry point address 0x", Addr, 16));
1238
        DEBUG(reportNumber("  with: ", CurNodeFreq, 10));
1239
        Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq;
1240
      }
1241
    }
1242

1243
    // No parent? Reached a tree root, limit to call frequency updating.
1244
    if (SpanningTreeNodes[Cur].NumInEdges == 0)
1245
      continue;
1246

1247
    assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent");
1248
    const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID;
1249

1250
    // Calculate parent edge freq.
1251
    int64_t ParentEdgeFreq = CurNodeFreq;
1252
    for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) {
1253
      const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID;
1254
      ParentEdgeFreq -= EdgeFreqs[PredEdge];
1255
    }
1256

1257
    // Sometimes the conservative CFG that BOLT builds will lead to incorrect
1258
    // flow computation. For example, in a BB that transitively calls the exit
1259
    // syscall, BOLT will add a fall-through successor even though it should not
1260
    // have any successors. So this block execution will likely be wrong. We
1261
    // tolerate this imperfection since this case should be quite infrequent.
1262
    if (ParentEdgeFreq < 0) {
1263
      DEBUG(dumpEdgeFreqs());
1264
      DEBUG(report("WARNING: incorrect flow"));
1265
      ParentEdgeFreq = 0;
1266
    }
1267
    DEBUG(reportNumber("  Setting freq for ParentEdge: ", ParentEdge, 10));
1268
    DEBUG(reportNumber("  with ParentEdgeFreq: ", ParentEdgeFreq, 10));
1269
    EdgeFreqs[ParentEdge] = ParentEdgeFreq;
1270
  }
1271

1272
  Alloc.deallocate(EntryAddress);
1273
  Alloc.deallocate(LeafFrequency);
1274
  Alloc.deallocate(Visited);
1275
  Alloc.deallocate(Stack);
1276
  CallMap->~NodeToCallsMap();
1277
  Alloc.deallocate(CallMap);
1278
  DEBUG(dumpEdgeFreqs());
1279
}
1280

1281
/// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses
1282
/// \p Alloc to allocate helper dynamic structures used to compute profile for
1283
/// edges that we do not explicitly instrument.
1284
const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx,
1285
                                    const uint8_t *FuncDesc,
1286
                                    BumpPtrAllocator &Alloc) {
1287
  const FunctionDescription F(FuncDesc);
1288
  const uint8_t *next = FuncDesc + F.getSize();
1289

1290
#if !defined(__APPLE__)
1291
  uint64_t *bolt_instr_locations = __bolt_instr_locations;
1292
#else
1293
  uint64_t *bolt_instr_locations = _bolt_instr_locations_getter();
1294
#endif
1295

1296
  // Skip funcs we know are cold
1297
#ifndef ENABLE_DEBUG
1298
  uint64_t CountersFreq = 0;
1299
  for (int I = 0; I < F.NumLeafNodes; ++I)
1300
    CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter];
1301

1302
  if (CountersFreq == 0) {
1303
    for (int I = 0; I < F.NumEdges; ++I) {
1304
      const uint32_t C = F.Edges[I].Counter;
1305
      if (C == 0xffffffff)
1306
        continue;
1307
      CountersFreq += bolt_instr_locations[C];
1308
    }
1309
    if (CountersFreq == 0) {
1310
      for (int I = 0; I < F.NumCalls; ++I) {
1311
        const uint32_t C = F.Calls[I].Counter;
1312
        if (C == 0xffffffff)
1313
          continue;
1314
        CountersFreq += bolt_instr_locations[C];
1315
      }
1316
      if (CountersFreq == 0)
1317
        return next;
1318
    }
1319
  }
1320
#endif
1321

1322
  Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx);
1323
  DEBUG(G->dump());
1324

1325
  if (!G->EdgeFreqs && !G->CallFreqs) {
1326
    G->~Graph();
1327
    Alloc.deallocate(G);
1328
    return next;
1329
  }
1330

1331
  for (int I = 0; I < F.NumEdges; ++I) {
1332
    const uint64_t Freq = G->EdgeFreqs[I];
1333
    if (Freq == 0)
1334
      continue;
1335
    const EdgeDescription *Desc = &F.Edges[I];
1336
    char LineBuf[BufSize];
1337
    char *Ptr = LineBuf;
1338
    Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1339
    Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1340
    Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22);
1341
    Ptr = intToStr(Ptr, Freq, 10);
1342
    *Ptr++ = '\n';
1343
    __write(FD, LineBuf, Ptr - LineBuf);
1344
  }
1345

1346
  for (int I = 0; I < F.NumCalls; ++I) {
1347
    const uint64_t Freq = G->CallFreqs[I];
1348
    if (Freq == 0)
1349
      continue;
1350
    char LineBuf[BufSize];
1351
    char *Ptr = LineBuf;
1352
    const CallDescription *Desc = &F.Calls[I];
1353
    Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize);
1354
    Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf));
1355
    Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1356
    Ptr = intToStr(Ptr, Freq, 10);
1357
    *Ptr++ = '\n';
1358
    __write(FD, LineBuf, Ptr - LineBuf);
1359
  }
1360

1361
  G->~Graph();
1362
  Alloc.deallocate(G);
1363
  return next;
1364
}
1365

1366
#if !defined(__APPLE__)
1367
const IndCallTargetDescription *
1368
ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const {
1369
  uint32_t B = 0;
1370
  uint32_t E = __bolt_instr_num_ind_targets;
1371
  if (E == 0)
1372
    return nullptr;
1373
  do {
1374
    uint32_t I = (E - B) / 2 + B;
1375
    if (IndCallTargets[I].Address == Target)
1376
      return &IndCallTargets[I];
1377
    if (IndCallTargets[I].Address < Target)
1378
      B = I + 1;
1379
    else
1380
      E = I;
1381
  } while (B < E);
1382
  return nullptr;
1383
}
1384

1385
/// Write a single indirect call <src, target> pair to the fdata file
1386
void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry,
1387
                         int FD, int CallsiteID,
1388
                         ProfileWriterContext *Ctx) {
1389
  if (Entry.Val == 0)
1390
    return;
1391
  DEBUG(reportNumber("Target func 0x", Entry.Key, 16));
1392
  DEBUG(reportNumber("Target freq: ", Entry.Val, 10));
1393
  const IndCallDescription *CallsiteDesc =
1394
      &Ctx->IndCallDescriptions[CallsiteID];
1395
  const IndCallTargetDescription *TargetDesc =
1396
      Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress);
1397
  if (!TargetDesc) {
1398
    DEBUG(report("Failed to lookup indirect call target\n"));
1399
    char LineBuf[BufSize];
1400
    char *Ptr = LineBuf;
1401
    Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1402
    Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40);
1403
    Ptr = intToStr(Ptr, Entry.Val, 10);
1404
    *Ptr++ = '\n';
1405
    __write(FD, LineBuf, Ptr - LineBuf);
1406
    return;
1407
  }
1408
  Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val;
1409
  char LineBuf[BufSize];
1410
  char *Ptr = LineBuf;
1411
  Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize);
1412
  Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1413
  Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1414
  Ptr = intToStr(Ptr, Entry.Val, 10);
1415
  *Ptr++ = '\n';
1416
  __write(FD, LineBuf, Ptr - LineBuf);
1417
}
1418

1419
/// Write to \p FD all of the indirect call profiles.
1420
void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) {
1421
  for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) {
1422
    DEBUG(reportNumber("IndCallsite #", I, 10));
1423
    GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx);
1424
  }
1425
}
1426

1427
/// Check a single call flow for a callee versus all known callers. If there are
1428
/// less callers than what the callee expects, write the difference with source
1429
/// [unknown] in the profile.
1430
void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD,
1431
                        ProfileWriterContext *Ctx) {
1432
  DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16));
1433
  DEBUG(reportNumber("Calls: ", Entry.Calls, 10));
1434
  DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10));
1435
  DEBUG({
1436
    if (Entry.Calls > Entry.Val)
1437
      report("  More calls than expected!\n");
1438
  });
1439
  if (Entry.Val <= Entry.Calls)
1440
    return;
1441
  DEBUG(reportNumber(
1442
      "  Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10));
1443
  const IndCallTargetDescription *TargetDesc =
1444
      Ctx->lookupIndCallTarget(Entry.Key);
1445
  if (!TargetDesc) {
1446
    // There is probably something wrong with this callee and this should be
1447
    // investigated, but I don't want to assert and lose all data collected.
1448
    DEBUG(report("WARNING: failed to look up call target!\n"));
1449
    return;
1450
  }
1451
  char LineBuf[BufSize];
1452
  char *Ptr = LineBuf;
1453
  Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize);
1454
  Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf));
1455
  Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25);
1456
  Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10);
1457
  *Ptr++ = '\n';
1458
  __write(FD, LineBuf, Ptr - LineBuf);
1459
}
1460

1461
/// Open fdata file for writing and return a valid file descriptor, aborting
1462
/// program upon failure.
1463
int openProfile() {
1464
  // Build the profile name string by appending our PID
1465
  char Buf[BufSize];
1466
  uint64_t PID = __getpid();
1467
  char *Ptr = strCopy(Buf, __bolt_instr_filename, BufSize);
1468
  if (__bolt_instr_use_pid) {
1469
    Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1));
1470
    Ptr = intToStr(Ptr, PID, 10);
1471
    Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1));
1472
  }
1473
  *Ptr++ = '\0';
1474
  uint64_t FD = __open(Buf, O_WRONLY | O_TRUNC | O_CREAT,
1475
                       /*mode=*/0666);
1476
  if (static_cast<int64_t>(FD) < 0) {
1477
    report("Error while trying to open profile file for writing: ");
1478
    report(Buf);
1479
    reportNumber("\nFailed with error number: 0x",
1480
                 0 - static_cast<int64_t>(FD), 16);
1481
    __exit(1);
1482
  }
1483
  return FD;
1484
}
1485

1486
#endif
1487

1488
} // anonymous namespace
1489

1490
#if !defined(__APPLE__)
1491

1492
/// Reset all counters in case you want to start profiling a new phase of your
1493
/// program independently of prior phases.
1494
/// The address of this function is printed by BOLT and this can be called by
1495
/// any attached debugger during runtime. There is a useful oneliner for gdb:
1496
///
1497
///   gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \
1498
///     -ex 'set confirm off' -ex quit
1499
///
1500
/// Where 0xdeadbeef is this function address and PROCESSNAME your binary file
1501
/// name.
1502
extern "C" void __bolt_instr_clear_counters() {
1503
  memset(reinterpret_cast<char *>(__bolt_instr_locations), 0,
1504
         __bolt_num_counters * 8);
1505
  for (int I = 0; I < __bolt_instr_num_ind_calls; ++I)
1506
    GlobalIndCallCounters[I].resetCounters();
1507
}
1508

1509
/// This is the entry point for profile writing.
1510
/// There are three ways of getting here:
1511
///
1512
///  * Program execution ended, finalization methods are running and BOLT
1513
///    hooked into FINI from your binary dynamic section;
1514
///  * You used the sleep timer option and during initialization we forked
1515
///    a separate process that will call this function periodically;
1516
///  * BOLT prints this function address so you can attach a debugger and
1517
///    call this function directly to get your profile written to disk
1518
///    on demand.
1519
///
1520
extern "C" void __attribute((force_align_arg_pointer))
1521
__bolt_instr_data_dump(int FD) {
1522
  // Already dumping
1523
  if (!GlobalWriteProfileMutex->acquire())
1524
    return;
1525

1526
  int ret = __lseek(FD, 0, SEEK_SET);
1527
  assert(ret == 0, "Failed to lseek!");
1528
  ret = __ftruncate(FD, 0);
1529
  assert(ret == 0, "Failed to ftruncate!");
1530
  BumpPtrAllocator HashAlloc;
1531
  HashAlloc.setMaxSize(0x6400000);
1532
  ProfileWriterContext Ctx = readDescriptions();
1533
  Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc);
1534

1535
  DEBUG(printStats(Ctx));
1536

1537
  BumpPtrAllocator Alloc;
1538
  Alloc.setMaxSize(0x6400000);
1539
  const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1540
  for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) {
1541
    FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1542
    Alloc.clear();
1543
    DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1544
  }
1545
  assert(FuncDesc == (void *)Ctx.Strings,
1546
         "FuncDesc ptr must be equal to stringtable");
1547

1548
  writeIndirectCallProfile(FD, Ctx);
1549
  Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx);
1550

1551
  __fsync(FD);
1552
  __munmap(Ctx.MMapPtr, Ctx.MMapSize);
1553
  __close(Ctx.FileDesc);
1554
  HashAlloc.destroy();
1555
  GlobalWriteProfileMutex->release();
1556
  DEBUG(report("Finished writing profile.\n"));
1557
}
1558

1559
/// Event loop for our child process spawned during setup to dump profile data
1560
/// at user-specified intervals
1561
void watchProcess() {
1562
  timespec ts, rem;
1563
  uint64_t Ellapsed = 0ull;
1564
  int FD = openProfile();
1565
  uint64_t ppid;
1566
  if (__bolt_instr_wait_forks) {
1567
    // Store parent pgid
1568
    ppid = -__getpgid(0);
1569
    // And leave parent process group
1570
    __setpgid(0, 0);
1571
  } else {
1572
    // Store parent pid
1573
    ppid = __getppid();
1574
    if (ppid == 1) {
1575
      // Parent already dead
1576
      __bolt_instr_data_dump(FD);
1577
      goto out;
1578
    }
1579
  }
1580

1581
  ts.tv_sec = 1;
1582
  ts.tv_nsec = 0;
1583
  while (1) {
1584
    __nanosleep(&ts, &rem);
1585
    // This means our parent process or all its forks are dead,
1586
    // so no need for us to keep dumping.
1587
    if (__kill(ppid, 0) < 0) {
1588
      if (__bolt_instr_no_counters_clear)
1589
        __bolt_instr_data_dump(FD);
1590
      break;
1591
    }
1592

1593
    if (++Ellapsed < __bolt_instr_sleep_time)
1594
      continue;
1595

1596
    Ellapsed = 0;
1597
    __bolt_instr_data_dump(FD);
1598
    if (__bolt_instr_no_counters_clear == false)
1599
      __bolt_instr_clear_counters();
1600
  }
1601

1602
out:;
1603
  DEBUG(report("My parent process is dead, bye!\n"));
1604
  __close(FD);
1605
  __exit(0);
1606
}
1607

1608
extern "C" void __bolt_instr_indirect_call();
1609
extern "C" void __bolt_instr_indirect_tailcall();
1610

1611
/// Initialization code
1612
extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() {
1613
  __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call;
1614
  __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall;
1615
  TextBaseAddress = getTextBaseAddress();
1616

1617
  const uint64_t CountersStart =
1618
      reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]);
1619
  const uint64_t CountersEnd = alignTo(
1620
      reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]),
1621
      0x1000);
1622
  DEBUG(reportNumber("replace mmap start: ", CountersStart, 16));
1623
  DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16));
1624
  assert(CountersEnd > CountersStart, "no counters");
1625

1626
  const bool Shared = !__bolt_instr_use_pid;
1627
  const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED : MAP_PRIVATE;
1628

1629
  void *Ret =
1630
      __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ | PROT_WRITE,
1631
             MAP_ANONYMOUS | MapPrivateOrShared | MAP_FIXED, -1, 0);
1632
  assert(Ret != MAP_FAILED, "__bolt_instr_setup: Failed to mmap counters!");
1633

1634
  GlobalMetadataStorage = __mmap(0, 4096, PROT_READ | PROT_WRITE,
1635
                                 MapPrivateOrShared | MAP_ANONYMOUS, -1, 0);
1636
  assert(GlobalMetadataStorage != MAP_FAILED,
1637
         "__bolt_instr_setup: failed to mmap page for metadata!");
1638

1639
  GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator;
1640
  // Conservatively reserve 100MiB
1641
  GlobalAlloc->setMaxSize(0x6400000);
1642
  GlobalAlloc->setShared(Shared);
1643
  GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex();
1644
  if (__bolt_instr_num_ind_calls > 0)
1645
    GlobalIndCallCounters =
1646
        new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls];
1647

1648
  if (__bolt_instr_sleep_time != 0) {
1649
    // Separate instrumented process to the own process group
1650
    if (__bolt_instr_wait_forks)
1651
      __setpgid(0, 0);
1652

1653
    if (long PID = __fork())
1654
      return;
1655
    watchProcess();
1656
  }
1657
}
1658

1659
extern "C" __attribute((force_align_arg_pointer)) void
1660
instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) {
1661
  GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc);
1662
}
1663

1664
/// We receive as in-stack arguments the identifier of the indirect call site
1665
/// as well as the target address for the call
1666
extern "C" __attribute((naked)) void __bolt_instr_indirect_call()
1667
{
1668
#if defined(__aarch64__)
1669
  // clang-format off
1670
  __asm__ __volatile__(SAVE_ALL
1671
                       "ldp x0, x1, [sp, #288]\n"
1672
                       "bl instrumentIndirectCall\n"
1673
                       RESTORE_ALL
1674
                       "ret\n"
1675
                       :::);
1676
  // clang-format on
1677
#else
1678
  // clang-format off
1679
  __asm__ __volatile__(SAVE_ALL
1680
                       "mov 0xa0(%%rsp), %%rdi\n"
1681
                       "mov 0x98(%%rsp), %%rsi\n"
1682
                       "call instrumentIndirectCall\n"
1683
                       RESTORE_ALL
1684
                       "ret\n"
1685
                       :::);
1686
  // clang-format on
1687
#endif
1688
}
1689

1690
extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall()
1691
{
1692
#if defined(__aarch64__)
1693
  // clang-format off
1694
  __asm__ __volatile__(SAVE_ALL
1695
                       "ldp x0, x1, [sp, #288]\n"
1696
                       "bl instrumentIndirectCall\n"
1697
                       RESTORE_ALL
1698
                       "ret\n"
1699
                       :::);
1700
  // clang-format on
1701
#else
1702
  // clang-format off
1703
  __asm__ __volatile__(SAVE_ALL
1704
                       "mov 0x98(%%rsp), %%rdi\n"
1705
                       "mov 0x90(%%rsp), %%rsi\n"
1706
                       "call instrumentIndirectCall\n"
1707
                       RESTORE_ALL
1708
                       "ret\n"
1709
                       :::);
1710
  // clang-format on
1711
#endif
1712
}
1713

1714
/// This is hooking ELF's entry, it needs to save all machine state.
1715
extern "C" __attribute((naked)) void __bolt_instr_start()
1716
{
1717
#if defined(__aarch64__)
1718
  // clang-format off
1719
  __asm__ __volatile__(SAVE_ALL
1720
                       "bl __bolt_instr_setup\n"
1721
                       RESTORE_ALL
1722
                       "adrp x16, __bolt_start_trampoline\n"
1723
                       "add x16, x16, #:lo12:__bolt_start_trampoline\n"
1724
                       "br x16\n"
1725
                       :::);
1726
  // clang-format on
1727
#else
1728
  // clang-format off
1729
  __asm__ __volatile__(SAVE_ALL
1730
                       "call __bolt_instr_setup\n"
1731
                       RESTORE_ALL
1732
                       "jmp __bolt_start_trampoline\n"
1733
                       :::);
1734
  // clang-format on
1735
#endif
1736
}
1737

1738
/// This is hooking into ELF's DT_FINI
1739
extern "C" void __bolt_instr_fini() {
1740
#if defined(__aarch64__)
1741
  // clang-format off
1742
  __asm__ __volatile__(SAVE_ALL
1743
                       "adrp x16, __bolt_fini_trampoline\n"
1744
                       "add x16, x16, #:lo12:__bolt_fini_trampoline\n"
1745
                       "blr x16\n"
1746
                       RESTORE_ALL
1747
                       :::);
1748
  // clang-format on
1749
#else
1750
  __asm__ __volatile__("call __bolt_fini_trampoline\n" :::);
1751
#endif
1752
  if (__bolt_instr_sleep_time == 0) {
1753
    int FD = openProfile();
1754
    __bolt_instr_data_dump(FD);
1755
    __close(FD);
1756
  }
1757
  DEBUG(report("Finished.\n"));
1758
}
1759

1760
#endif
1761

1762
#if defined(__APPLE__)
1763

1764
extern "C" void __bolt_instr_data_dump() {
1765
  ProfileWriterContext Ctx = readDescriptions();
1766

1767
  int FD = 2;
1768
  BumpPtrAllocator Alloc;
1769
  const uint8_t *FuncDesc = Ctx.FuncDescriptions;
1770
  uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter();
1771

1772
  for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) {
1773
    FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc);
1774
    Alloc.clear();
1775
    DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16));
1776
  }
1777
  assert(FuncDesc == (void *)Ctx.Strings,
1778
         "FuncDesc ptr must be equal to stringtable");
1779
}
1780

1781
// On OSX/iOS the final symbol name of an extern "C" function/variable contains
1782
// one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup.
1783
extern "C"
1784
__attribute__((section("__TEXT,__setup")))
1785
__attribute__((force_align_arg_pointer))
1786
void _bolt_instr_setup() {
1787
  __asm__ __volatile__(SAVE_ALL :::);
1788

1789
  report("Hello!\n");
1790

1791
  __asm__ __volatile__(RESTORE_ALL :::);
1792
}
1793

1794
extern "C"
1795
__attribute__((section("__TEXT,__fini")))
1796
__attribute__((force_align_arg_pointer))
1797
void _bolt_instr_fini() {
1798
  report("Bye!\n");
1799
  __bolt_instr_data_dump();
1800
}
1801

1802
#endif
1803

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.