jdk

Форк
0
2004 строки · 65.4 Кб
1
/*
2
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
 *
4
 * This code is free software; you can redistribute it and/or modify it
5
 * under the terms of the GNU General Public License version 2 only, as
6
 * published by the Free Software Foundation.  Oracle designates this
7
 * particular file as subject to the "Classpath" exception as provided
8
 * by Oracle in the LICENSE file that accompanied this code.
9
 *
10
 * This code is distributed in the hope that it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
 * version 2 for more details (a copy is included in the LICENSE file that
14
 * accompanied this code).
15
 *
16
 * You should have received a copy of the GNU General Public License version
17
 * 2 along with this work; if not, write to the Free Software Foundation,
18
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
 *
20
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
 * or visit www.oracle.com if you need additional information or have any
22
 * questions.
23
 */
24

25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
//  Little Color Management System
33
//  Copyright (c) 1998-2023 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55

56
#include "lcms2_internal.h"
57

58

59
//----------------------------------------------------------------------------------
60

61
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
62
typedef struct {
63

64
    cmsContext ContextID;
65

66
    const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
67

68
    cmsUInt16Number rx[256], ry[256], rz[256];
69
    cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
70

71

72
} Prelin8Data;
73

74

75
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
76
typedef struct {
77

78
    cmsContext ContextID;
79

80
    // Number of channels
81
    cmsUInt32Number nInputs;
82
    cmsUInt32Number nOutputs;
83

84
    _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
85
    cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
86

87
    _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
88
    const cmsInterpParams* CLUTparams;  // (not-owned pointer)
89

90

91
    _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
92
    cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
93

94

95
} Prelin16Data;
96

97

98
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
99

100
typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
101

102
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
103

104
typedef struct {
105

106
    cmsContext ContextID;
107

108
    cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
109
    cmsS1Fixed14Number Shaper1G[256];
110
    cmsS1Fixed14Number Shaper1B[256];
111

112
    cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
113
    cmsS1Fixed14Number Off[3];
114

115
    cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
116
    cmsUInt16Number Shaper2G[16385];
117
    cmsUInt16Number Shaper2B[16385];
118

119
} MatShaper8Data;
120

121
// Curves, optimization is shared between 8 and 16 bits
122
typedef struct {
123

124
    cmsContext ContextID;
125

126
    cmsUInt32Number nCurves;      // Number of curves
127
    cmsUInt32Number nElements;    // Elements in curves
128
    cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
129

130
} Curves16Data;
131

132

133
// Simple optimizations ----------------------------------------------------------------------------------------------------------
134

135

136
// Remove an element in linked chain
137
static
138
void _RemoveElement(cmsStage** head)
139
{
140
    cmsStage* mpe = *head;
141
    cmsStage* next = mpe ->Next;
142
    *head = next;
143
    cmsStageFree(mpe);
144
}
145

146
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
147
static
148
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
149
{
150
    cmsStage** pt = &Lut ->Elements;
151
    cmsBool AnyOpt = FALSE;
152

153
    while (*pt != NULL) {
154

155
        if ((*pt) ->Implements == UnaryOp) {
156
            _RemoveElement(pt);
157
            AnyOpt = TRUE;
158
        }
159
        else
160
            pt = &((*pt) -> Next);
161
    }
162

163
    return AnyOpt;
164
}
165

166
// Same, but only if two adjacent elements are found
167
static
168
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
169
{
170
    cmsStage** pt1;
171
    cmsStage** pt2;
172
    cmsBool AnyOpt = FALSE;
173

174
    pt1 = &Lut ->Elements;
175
    if (*pt1 == NULL) return AnyOpt;
176

177
    while (*pt1 != NULL) {
178

179
        pt2 = &((*pt1) -> Next);
180
        if (*pt2 == NULL) return AnyOpt;
181

182
        if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
183
            _RemoveElement(pt2);
184
            _RemoveElement(pt1);
185
            AnyOpt = TRUE;
186
        }
187
        else
188
            pt1 = &((*pt1) -> Next);
189
    }
190

191
    return AnyOpt;
192
}
193

194

195
static
196
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
197
{
198
       return fabs(b - a) < 0.00001f;
199
}
200

201
static
202
cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
203
{
204
       cmsMAT3 Identity;
205
       int i, j;
206

207
       _cmsMAT3identity(&Identity);
208

209
       for (i = 0; i < 3; i++)
210
              for (j = 0; j < 3; j++)
211
                     if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
212

213
       return TRUE;
214
}
215

216
// if two adjacent matrices are found, multiply them.
217
static
218
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
219
{
220
       cmsStage** pt1;
221
       cmsStage** pt2;
222
       cmsStage*  chain;
223
       cmsBool AnyOpt = FALSE;
224

225
       pt1 = &Lut->Elements;
226
       if (*pt1 == NULL) return AnyOpt;
227

228
       while (*pt1 != NULL) {
229

230
              pt2 = &((*pt1)->Next);
231
              if (*pt2 == NULL) return AnyOpt;
232

233
              if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
234

235
                     // Get both matrices
236
                     _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
237
                     _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
238
                     cmsMAT3 res;
239

240
                     // Input offset and output offset should be zero to use this optimization
241
                     if (m1->Offset != NULL || m2 ->Offset != NULL ||
242
                            cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
243
                            cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
244
                            return FALSE;
245

246
                     // Multiply both matrices to get the result
247
                     _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
248

249
                     // Get the next in chain after the matrices
250
                     chain = (*pt2)->Next;
251

252
                     // Remove both matrices
253
                     _RemoveElement(pt2);
254
                     _RemoveElement(pt1);
255

256
                     // Now what if the result is a plain identity?
257
                     if (!isFloatMatrixIdentity(&res)) {
258

259
                            // We can not get rid of full matrix
260
                            cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
261
                            if (Multmat == NULL) return FALSE;  // Should never happen
262

263
                            // Recover the chain
264
                            Multmat->Next = chain;
265
                            *pt1 = Multmat;
266
                     }
267

268
                     AnyOpt = TRUE;
269
              }
270
              else
271
                     pt1 = &((*pt1)->Next);
272
       }
273

274
       return AnyOpt;
275
}
276

277

278
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
279
// by a v4 to v2 and vice-versa. The elements are then discarded.
280
static
281
cmsBool PreOptimize(cmsPipeline* Lut)
282
{
283
    cmsBool AnyOpt = FALSE, Opt;
284

285
    do {
286

287
        Opt = FALSE;
288

289
        // Remove all identities
290
        Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
291

292
        // Remove XYZ2Lab followed by Lab2XYZ
293
        Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
294

295
        // Remove Lab2XYZ followed by XYZ2Lab
296
        Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
297

298
        // Remove V4 to V2 followed by V2 to V4
299
        Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
300

301
        // Remove V2 to V4 followed by V4 to V2
302
        Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
303

304
        // Remove float pcs Lab conversions
305
        Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
306

307
        // Remove float pcs Lab conversions
308
        Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
309

310
        // Simplify matrix.
311
        Opt |= _MultiplyMatrix(Lut);
312

313
        if (Opt) AnyOpt = TRUE;
314

315
    } while (Opt);
316

317
    return AnyOpt;
318
}
319

320
static
321
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
322
                 CMSREGISTER cmsUInt16Number Output[],
323
                 CMSREGISTER const struct _cms_interp_struc* p)
324
{
325
    Output[0] = Input[0];
326

327
    cmsUNUSED_PARAMETER(p);
328
}
329

330
static
331
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
332
                  CMSREGISTER cmsUInt16Number Output[],
333
                  CMSREGISTER const void* D)
334
{
335
    Prelin16Data* p16 = (Prelin16Data*) D;
336
    cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
337
    cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
338
    cmsUInt32Number i;
339

340
    for (i=0; i < p16 ->nInputs; i++) {
341

342
        p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
343
    }
344

345
    p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
346

347
    for (i=0; i < p16 ->nOutputs; i++) {
348

349
        p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
350
    }
351
}
352

353

354
static
355
void PrelinOpt16free(cmsContext ContextID, void* ptr)
356
{
357
    Prelin16Data* p16 = (Prelin16Data*) ptr;
358

359
    _cmsFree(ContextID, p16 ->EvalCurveOut16);
360
    _cmsFree(ContextID, p16 ->ParamsCurveOut16);
361

362
    _cmsFree(ContextID, p16);
363
}
364

365
static
366
void* Prelin16dup(cmsContext ContextID, const void* ptr)
367
{
368
    Prelin16Data* p16 = (Prelin16Data*) ptr;
369
    Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
370

371
    if (Duped == NULL) return NULL;
372

373
    Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
374
    Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
375

376
    return Duped;
377
}
378

379

380
static
381
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
382
                               const cmsInterpParams* ColorMap,
383
                               cmsUInt32Number nInputs, cmsToneCurve** In,
384
                               cmsUInt32Number nOutputs, cmsToneCurve** Out )
385
{
386
    cmsUInt32Number i;
387
    Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
388
    if (p16 == NULL) return NULL;
389

390
    p16 ->nInputs = nInputs;
391
    p16 ->nOutputs = nOutputs;
392

393

394
    for (i=0; i < nInputs; i++) {
395

396
        if (In == NULL) {
397
            p16 -> ParamsCurveIn16[i] = NULL;
398
            p16 -> EvalCurveIn16[i] = Eval16nop1D;
399

400
        }
401
        else {
402
            p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
403
            p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
404
        }
405
    }
406

407
    p16 ->CLUTparams = ColorMap;
408
    p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
409

410

411
    p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
412
    if (p16->EvalCurveOut16 == NULL)
413
    {
414
        _cmsFree(ContextID, p16);
415
        return NULL;
416
    }
417

418
    p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
419
    if (p16->ParamsCurveOut16 == NULL)
420
    {
421

422
        _cmsFree(ContextID, p16->EvalCurveOut16);
423
        _cmsFree(ContextID, p16);
424
        return NULL;
425
    }
426

427
    for (i=0; i < nOutputs; i++) {
428

429
        if (Out == NULL) {
430
            p16 ->ParamsCurveOut16[i] = NULL;
431
            p16 -> EvalCurveOut16[i] = Eval16nop1D;
432
        }
433
        else {
434

435
            p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
436
            p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
437
        }
438
    }
439

440
    return p16;
441
}
442

443

444

445
// Resampling ---------------------------------------------------------------------------------
446

447
#define PRELINEARIZATION_POINTS 4096
448

449
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
450
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
451
static
452
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
453
                              CMSREGISTER cmsUInt16Number Out[],
454
                              CMSREGISTER void* Cargo)
455
{
456
    cmsPipeline* Lut = (cmsPipeline*) Cargo;
457
    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
458
    cmsUInt32Number i;
459

460
    _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
461
    _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
462

463
    // From 16 bit to floating point
464
    for (i=0; i < Lut ->InputChannels; i++)
465
        InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
466

467
    // Evaluate in floating point
468
    cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
469

470
    // Back to 16 bits representation
471
    for (i=0; i < Lut ->OutputChannels; i++)
472
        Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
473

474
    // Always succeed
475
    return TRUE;
476
}
477

478
// Try to see if the curves of a given MPE are linear
479
static
480
cmsBool AllCurvesAreLinear(cmsStage* mpe)
481
{
482
    cmsToneCurve** Curves;
483
    cmsUInt32Number i, n;
484

485
    Curves = _cmsStageGetPtrToCurveSet(mpe);
486
    if (Curves == NULL) return FALSE;
487

488
    n = cmsStageOutputChannels(mpe);
489

490
    for (i=0; i < n; i++) {
491
        if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
492
    }
493

494
    return TRUE;
495
}
496

497
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
498
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
499
static
500
cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
501
                  cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
502
{
503
    _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
504
    cmsInterpParams* p16  = Grid ->Params;
505
    cmsFloat64Number px, py, pz, pw;
506
    int        x0, y0, z0, w0;
507
    int        i, index;
508

509
    if (CLUT -> Type != cmsSigCLutElemType) {
510
        cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
511
        return FALSE;
512
    }
513

514
    if (nChannelsIn == 4) {
515

516
        px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
517
        py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
518
        pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
519
        pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
520

521
        x0 = (int) floor(px);
522
        y0 = (int) floor(py);
523
        z0 = (int) floor(pz);
524
        w0 = (int) floor(pw);
525

526
        if (((px - x0) != 0) ||
527
            ((py - y0) != 0) ||
528
            ((pz - z0) != 0) ||
529
            ((pw - w0) != 0)) return FALSE; // Not on exact node
530

531
        index = (int) p16 -> opta[3] * x0 +
532
                (int) p16 -> opta[2] * y0 +
533
                (int) p16 -> opta[1] * z0 +
534
                (int) p16 -> opta[0] * w0;
535
    }
536
    else
537
        if (nChannelsIn == 3) {
538

539
            px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
540
            py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
541
            pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
542

543
            x0 = (int) floor(px);
544
            y0 = (int) floor(py);
545
            z0 = (int) floor(pz);
546

547
            if (((px - x0) != 0) ||
548
                ((py - y0) != 0) ||
549
                ((pz - z0) != 0)) return FALSE;  // Not on exact node
550

551
            index = (int) p16 -> opta[2] * x0 +
552
                    (int) p16 -> opta[1] * y0 +
553
                    (int) p16 -> opta[0] * z0;
554
        }
555
        else
556
            if (nChannelsIn == 1) {
557

558
                px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
559

560
                x0 = (int) floor(px);
561

562
                if (((px - x0) != 0)) return FALSE; // Not on exact node
563

564
                index = (int) p16 -> opta[0] * x0;
565
            }
566
            else {
567
                cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
568
                return FALSE;
569
            }
570

571
    for (i = 0; i < (int) nChannelsOut; i++)
572
        Grid->Tab.T[index + i] = Value[i];
573

574
    return TRUE;
575
}
576

577
// Auxiliary, to see if two values are equal or very different
578
static
579
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
580
{
581
    cmsUInt32Number i;
582

583
    for (i=0; i < n; i++) {
584

585
        if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
586
        if (White1[i] != White2[i]) return FALSE;
587
    }
588
    return TRUE;
589
}
590

591

592
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
593
static
594
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
595
{
596
    cmsUInt16Number *WhitePointIn, *WhitePointOut;
597
    cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
598
    cmsUInt32Number i, nOuts, nIns;
599
    cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
600

601
    if (!_cmsEndPointsBySpace(EntryColorSpace,
602
        &WhitePointIn, NULL, &nIns)) return FALSE;
603

604
    if (!_cmsEndPointsBySpace(ExitColorSpace,
605
        &WhitePointOut, NULL, &nOuts)) return FALSE;
606

607
    // It needs to be fixed?
608
    if (Lut ->InputChannels != nIns) return FALSE;
609
    if (Lut ->OutputChannels != nOuts) return FALSE;
610

611
    cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
612

613
    if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
614

615
    // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
616
    if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
617
        if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
618
            if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
619
                if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
620
                    return FALSE;
621

622
    // We need to interpolate white points of both, pre and post curves
623
    if (PreLin) {
624

625
        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
626

627
        for (i=0; i < nIns; i++) {
628
            WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
629
        }
630
    }
631
    else {
632
        for (i=0; i < nIns; i++)
633
            WhiteIn[i] = WhitePointIn[i];
634
    }
635

636
    // If any post-linearization, we need to find how is represented white before the curve, do
637
    // a reverse interpolation in this case.
638
    if (PostLin) {
639

640
        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
641

642
        for (i=0; i < nOuts; i++) {
643

644
            cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
645
            if (InversePostLin == NULL) {
646
                WhiteOut[i] = WhitePointOut[i];
647

648
            } else {
649

650
                WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
651
                cmsFreeToneCurve(InversePostLin);
652
            }
653
        }
654
    }
655
    else {
656
        for (i=0; i < nOuts; i++)
657
            WhiteOut[i] = WhitePointOut[i];
658
    }
659

660
    // Ok, proceed with patching. May fail and we don't care if it fails
661
    PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
662

663
    return TRUE;
664
}
665

666
// -----------------------------------------------------------------------------------------------------------------------------------------------
667
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
668
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
669
// These curves have to exist in the original LUT in order to be used in the simplified output.
670
// Caller may also use the flags to allow this feature.
671
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
672
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
673
// -----------------------------------------------------------------------------------------------------------------------------------------------
674

675
static
676
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
677
{
678
    cmsPipeline* Src = NULL;
679
    cmsPipeline* Dest = NULL;
680
    cmsStage* CLUT;
681
    cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
682
    cmsUInt32Number nGridPoints;
683
    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
684
    cmsStage *NewPreLin = NULL;
685
    cmsStage *NewPostLin = NULL;
686
    _cmsStageCLutData* DataCLUT;
687
    cmsToneCurve** DataSetIn;
688
    cmsToneCurve** DataSetOut;
689
    Prelin16Data* p16;
690

691
    // This is a lossy optimization! does not apply in floating-point cases
692
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
693

694
    ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
695
    OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
696

697
    // Color space must be specified
698
    if (ColorSpace == (cmsColorSpaceSignature)0 ||
699
        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
700

701
    nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
702

703
    // For empty LUTs, 2 points are enough
704
    if (cmsPipelineStageCount(*Lut) == 0)
705
        nGridPoints = 2;
706

707
    Src = *Lut;
708

709
    // Allocate an empty LUT
710
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
711
    if (!Dest) return FALSE;
712

713
    // Prelinearization tables are kept unless indicated by flags
714
    if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
715

716
        // Get a pointer to the prelinearization element
717
        cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
718

719
        // Check if suitable
720
        if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
721

722
            // Maybe this is a linear tram, so we can avoid the whole stuff
723
            if (!AllCurvesAreLinear(PreLin)) {
724

725
                // All seems ok, proceed.
726
                NewPreLin = cmsStageDup(PreLin);
727
                if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
728
                    goto Error;
729

730
                // Remove prelinearization. Since we have duplicated the curve
731
                // in destination LUT, the sampling should be applied after this stage.
732
                cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
733
            }
734
        }
735
    }
736

737
    // Allocate the CLUT
738
    CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
739
    if (CLUT == NULL) goto Error;
740

741
    // Add the CLUT to the destination LUT
742
    if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
743
        goto Error;
744
    }
745

746
    // Postlinearization tables are kept unless indicated by flags
747
    if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
748

749
        // Get a pointer to the postlinearization if present
750
        cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
751

752
        // Check if suitable
753
        if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
754

755
            // Maybe this is a linear tram, so we can avoid the whole stuff
756
            if (!AllCurvesAreLinear(PostLin)) {
757

758
                // All seems ok, proceed.
759
                NewPostLin = cmsStageDup(PostLin);
760
                if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
761
                    goto Error;
762

763
                // In destination LUT, the sampling should be applied after this stage.
764
                cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
765
            }
766
        }
767
    }
768

769
    // Now its time to do the sampling. We have to ignore pre/post linearization
770
    // The source LUT without pre/post curves is passed as parameter.
771
    if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
772
Error:
773
        // Ops, something went wrong, Restore stages
774
        if (KeepPreLin != NULL) {
775
            if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
776
                _cmsAssert(0); // This never happens
777
            }
778
        }
779
        if (KeepPostLin != NULL) {
780
            if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
781
                _cmsAssert(0); // This never happens
782
            }
783
        }
784
        cmsPipelineFree(Dest);
785
        return FALSE;
786
    }
787

788
    // Done.
789

790
    if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
791
    if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
792
    cmsPipelineFree(Src);
793

794
    DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
795

796
    if (NewPreLin == NULL) DataSetIn = NULL;
797
    else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
798

799
    if (NewPostLin == NULL) DataSetOut = NULL;
800
    else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
801

802

803
    if (DataSetIn == NULL && DataSetOut == NULL) {
804

805
        _cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
806
    }
807
    else {
808

809
        p16 = PrelinOpt16alloc(Dest ->ContextID,
810
            DataCLUT ->Params,
811
            Dest ->InputChannels,
812
            DataSetIn,
813
            Dest ->OutputChannels,
814
            DataSetOut);
815

816
        _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
817
    }
818

819

820
    // Don't fix white on absolute colorimetric
821
    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
822
        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
823

824
    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
825

826
        FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
827
    }
828

829
    *Lut = Dest;
830
    return TRUE;
831

832
    cmsUNUSED_PARAMETER(Intent);
833
}
834

835

836
// -----------------------------------------------------------------------------------------------------------------------------------------------
837
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
838
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
839
// for RGB transforms. See the paper for more details
840
// -----------------------------------------------------------------------------------------------------------------------------------------------
841

842

843
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
844
// Descending curves are handled as well.
845
static
846
void SlopeLimiting(cmsToneCurve* g)
847
{
848
    int BeginVal, EndVal;
849
    int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
850
    int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98%
851
    cmsFloat64Number Val, Slope, beta;
852
    int i;
853

854
    if (cmsIsToneCurveDescending(g)) {
855
        BeginVal = 0xffff; EndVal = 0;
856
    }
857
    else {
858
        BeginVal = 0; EndVal = 0xffff;
859
    }
860

861
    // Compute slope and offset for begin of curve
862
    Val   = g ->Table16[AtBegin];
863
    Slope = (Val - BeginVal) / AtBegin;
864
    beta  = Val - Slope * AtBegin;
865

866
    for (i=0; i < AtBegin; i++)
867
        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
868

869
    // Compute slope and offset for the end
870
    Val   = g ->Table16[AtEnd];
871
    Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
872
    beta  = Val - Slope * AtEnd;
873

874
    for (i = AtEnd; i < (int) g ->nEntries; i++)
875
        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
876
}
877

878

879
// Precomputes tables for 8-bit on input devicelink.
880
static
881
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
882
{
883
    int i;
884
    cmsUInt16Number Input[3];
885
    cmsS15Fixed16Number v1, v2, v3;
886
    Prelin8Data* p8;
887

888
    p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
889
    if (p8 == NULL) return NULL;
890

891
    // Since this only works for 8 bit input, values comes always as x * 257,
892
    // we can safely take msb byte (x << 8 + x)
893

894
    for (i=0; i < 256; i++) {
895

896
        if (G != NULL) {
897

898
            // Get 16-bit representation
899
            Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
900
            Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
901
            Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
902
        }
903
        else {
904
            Input[0] = FROM_8_TO_16(i);
905
            Input[1] = FROM_8_TO_16(i);
906
            Input[2] = FROM_8_TO_16(i);
907
        }
908

909

910
        // Move to 0..1.0 in fixed domain
911
        v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
912
        v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
913
        v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
914

915
        // Store the precalculated table of nodes
916
        p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
917
        p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
918
        p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
919

920
        // Store the precalculated table of offsets
921
        p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
922
        p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
923
        p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
924
    }
925

926
    p8 ->ContextID = ContextID;
927
    p8 ->p = p;
928

929
    return p8;
930
}
931

932
static
933
void Prelin8free(cmsContext ContextID, void* ptr)
934
{
935
    _cmsFree(ContextID, ptr);
936
}
937

938
static
939
void* Prelin8dup(cmsContext ContextID, const void* ptr)
940
{
941
    return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
942
}
943

944

945

946
// A optimized interpolation for 8-bit input.
947
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
948
static CMS_NO_SANITIZE
949
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
950
                 CMSREGISTER cmsUInt16Number Output[],
951
                 CMSREGISTER const void* D)
952
{
953

954
    cmsUInt8Number         r, g, b;
955
    cmsS15Fixed16Number    rx, ry, rz;
956
    cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
957
    int                    OutChan;
958
    CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
959
    Prelin8Data* p8 = (Prelin8Data*) D;
960
    CMSREGISTER const cmsInterpParams* p = p8 ->p;
961
    int                    TotalOut = (int) p -> nOutputs;
962
    const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
963

964
    r = (cmsUInt8Number) (Input[0] >> 8);
965
    g = (cmsUInt8Number) (Input[1] >> 8);
966
    b = (cmsUInt8Number) (Input[2] >> 8);
967

968
    X0 = (cmsS15Fixed16Number) p8->X0[r];
969
    Y0 = (cmsS15Fixed16Number) p8->Y0[g];
970
    Z0 = (cmsS15Fixed16Number) p8->Z0[b];
971

972
    rx = p8 ->rx[r];
973
    ry = p8 ->ry[g];
974
    rz = p8 ->rz[b];
975

976
    X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]);
977
    Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]);
978
    Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]);
979

980

981
    // These are the 6 Tetrahedral
982
    for (OutChan=0; OutChan < TotalOut; OutChan++) {
983

984
        c0 = DENS(X0, Y0, Z0);
985

986
        if (rx >= ry && ry >= rz)
987
        {
988
            c1 = DENS(X1, Y0, Z0) - c0;
989
            c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
990
            c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
991
        }
992
        else
993
            if (rx >= rz && rz >= ry)
994
            {
995
                c1 = DENS(X1, Y0, Z0) - c0;
996
                c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
997
                c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
998
            }
999
            else
1000
                if (rz >= rx && rx >= ry)
1001
                {
1002
                    c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
1003
                    c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1004
                    c3 = DENS(X0, Y0, Z1) - c0;
1005
                }
1006
                else
1007
                    if (ry >= rx && rx >= rz)
1008
                    {
1009
                        c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1010
                        c2 = DENS(X0, Y1, Z0) - c0;
1011
                        c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1012
                    }
1013
                    else
1014
                        if (ry >= rz && rz >= rx)
1015
                        {
1016
                            c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1017
                            c2 = DENS(X0, Y1, Z0) - c0;
1018
                            c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1019
                        }
1020
                        else
1021
                            if (rz >= ry && ry >= rx)
1022
                            {
1023
                                c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1024
                                c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1025
                                c3 = DENS(X0, Y0, Z1) - c0;
1026
                            }
1027
                            else  {
1028
                                c1 = c2 = c3 = 0;
1029
                            }
1030

1031
        Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1032
        Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1033

1034
    }
1035
}
1036

1037
#undef DENS
1038

1039

1040
// Curves that contain wide empty areas are not optimizeable
1041
static
1042
cmsBool IsDegenerated(const cmsToneCurve* g)
1043
{
1044
    cmsUInt32Number i, Zeros = 0, Poles = 0;
1045
    cmsUInt32Number nEntries = g ->nEntries;
1046

1047
    for (i=0; i < nEntries; i++) {
1048

1049
        if (g ->Table16[i] == 0x0000) Zeros++;
1050
        if (g ->Table16[i] == 0xffff) Poles++;
1051
    }
1052

1053
    if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1054
    if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1055
    if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1056

1057
    return FALSE;
1058
}
1059

1060
// --------------------------------------------------------------------------------------------------------------
1061
// We need xput over here
1062

1063
static
1064
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1065
{
1066
    cmsPipeline* OriginalLut;
1067
    cmsUInt32Number nGridPoints;
1068
    cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1069
    cmsUInt32Number t, i;
1070
    cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1071
    cmsBool lIsSuitable, lIsLinear;
1072
    cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1073
    cmsStage* OptimizedCLUTmpe;
1074
    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1075
    cmsStage* OptimizedPrelinMpe;
1076
    cmsToneCurve** OptimizedPrelinCurves;
1077
    _cmsStageCLutData* OptimizedPrelinCLUT;
1078

1079

1080
    // This is a lossy optimization! does not apply in floating-point cases
1081
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1082

1083
    // Only on chunky RGB
1084
    if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1085
    if (T_PLANAR(*InputFormat)) return FALSE;
1086

1087
    if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1088
    if (T_PLANAR(*OutputFormat)) return FALSE;
1089

1090
    // On 16 bits, user has to specify the feature
1091
    if (!_cmsFormatterIs8bit(*InputFormat)) {
1092
        if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1093
    }
1094

1095
    OriginalLut = *Lut;
1096

1097
    ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1098
    OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1099

1100
    // Color space must be specified
1101
    if (ColorSpace == (cmsColorSpaceSignature)0 ||
1102
        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1103

1104
    nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1105

1106
    // Empty gamma containers
1107
    memset(Trans, 0, sizeof(Trans));
1108
    memset(TransReverse, 0, sizeof(TransReverse));
1109

1110
    // If the last stage of the original lut are curves, and those curves are
1111
    // degenerated, it is likely the transform is squeezing and clipping
1112
    // the output from previous CLUT. We cannot optimize this case
1113
    {
1114
        cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1115

1116
        if (last == NULL) goto Error;
1117
        if (cmsStageType(last) == cmsSigCurveSetElemType) {
1118

1119
            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1120
            for (i = 0; i < Data->nCurves; i++) {
1121
                if (IsDegenerated(Data->TheCurves[i]))
1122
                    goto Error;
1123
            }
1124
        }
1125
    }
1126

1127
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1128
        Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1129
        if (Trans[t] == NULL) goto Error;
1130
    }
1131

1132
    // Populate the curves
1133
    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1134

1135
        v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1136

1137
        // Feed input with a gray ramp
1138
        for (t=0; t < OriginalLut ->InputChannels; t++)
1139
            In[t] = v;
1140

1141
        // Evaluate the gray value
1142
        cmsPipelineEvalFloat(In, Out, OriginalLut);
1143

1144
        // Store result in curve
1145
        for (t=0; t < OriginalLut ->InputChannels; t++)
1146
        {
1147
            if (Trans[t]->Table16 != NULL)
1148
                Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1149
        }
1150
    }
1151

1152
    // Slope-limit the obtained curves
1153
    for (t = 0; t < OriginalLut ->InputChannels; t++)
1154
        SlopeLimiting(Trans[t]);
1155

1156
    // Check for validity. lIsLinear is here for debug purposes
1157
    lIsSuitable = TRUE;
1158
    lIsLinear   = TRUE;
1159
    for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1160

1161
        // Exclude if already linear
1162
        if (!cmsIsToneCurveLinear(Trans[t]))
1163
            lIsLinear = FALSE;
1164

1165
        // Exclude if non-monotonic
1166
        if (!cmsIsToneCurveMonotonic(Trans[t]))
1167
            lIsSuitable = FALSE;
1168

1169
        if (IsDegenerated(Trans[t]))
1170
            lIsSuitable = FALSE;
1171
    }
1172

1173
    // If it is not suitable, just quit
1174
    if (!lIsSuitable) goto Error;
1175

1176
    // Invert curves if possible
1177
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1178
        TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1179
        if (TransReverse[t] == NULL) goto Error;
1180
    }
1181

1182
    // Now inset the reversed curves at the begin of transform
1183
    LutPlusCurves = cmsPipelineDup(OriginalLut);
1184
    if (LutPlusCurves == NULL) goto Error;
1185

1186
    if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1187
        goto Error;
1188

1189
    // Create the result LUT
1190
    OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1191
    if (OptimizedLUT == NULL) goto Error;
1192

1193
    OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1194

1195
    // Create and insert the curves at the beginning
1196
    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1197
        goto Error;
1198

1199
    // Allocate the CLUT for result
1200
    OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1201

1202
    // Add the CLUT to the destination LUT
1203
    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1204
        goto Error;
1205

1206
    // Resample the LUT
1207
    if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1208

1209
    // Free resources
1210
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1211

1212
        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1213
        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1214
    }
1215

1216
    cmsPipelineFree(LutPlusCurves);
1217

1218

1219
    OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1220
    OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1221

1222
    // Set the evaluator if 8-bit
1223
    if (_cmsFormatterIs8bit(*InputFormat)) {
1224

1225
        Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1226
                                                OptimizedPrelinCLUT ->Params,
1227
                                                OptimizedPrelinCurves);
1228
        if (p8 == NULL) return FALSE;
1229

1230
        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1231

1232
    }
1233
    else
1234
    {
1235
        Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1236
            OptimizedPrelinCLUT ->Params,
1237
            3, OptimizedPrelinCurves, 3, NULL);
1238
        if (p16 == NULL) return FALSE;
1239

1240
        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1241

1242
    }
1243

1244
    // Don't fix white on absolute colorimetric
1245
    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1246
        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1247

1248
    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1249

1250
        if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1251

1252
            return FALSE;
1253
        }
1254
    }
1255

1256
    // And return the obtained LUT
1257

1258
    cmsPipelineFree(OriginalLut);
1259
    *Lut = OptimizedLUT;
1260
    return TRUE;
1261

1262
Error:
1263

1264
    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1265

1266
        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1267
        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1268
    }
1269

1270
    if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1271
    if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1272

1273
    return FALSE;
1274

1275
    cmsUNUSED_PARAMETER(Intent);
1276
    cmsUNUSED_PARAMETER(lIsLinear);
1277
}
1278

1279

1280
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1281

1282
static
1283
void CurvesFree(cmsContext ContextID, void* ptr)
1284
{
1285
     Curves16Data* Data = (Curves16Data*) ptr;
1286
     cmsUInt32Number i;
1287

1288
     for (i=0; i < Data -> nCurves; i++) {
1289

1290
         _cmsFree(ContextID, Data ->Curves[i]);
1291
     }
1292

1293
     _cmsFree(ContextID, Data ->Curves);
1294
     _cmsFree(ContextID, ptr);
1295
}
1296

1297
static
1298
void* CurvesDup(cmsContext ContextID, const void* ptr)
1299
{
1300
    Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1301
    cmsUInt32Number i;
1302

1303
    if (Data == NULL) return NULL;
1304

1305
    Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1306

1307
    for (i=0; i < Data -> nCurves; i++) {
1308
        Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1309
    }
1310

1311
    return (void*) Data;
1312
}
1313

1314
// Precomputes tables for 8-bit on input devicelink.
1315
static
1316
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1317
{
1318
    cmsUInt32Number i, j;
1319
    Curves16Data* c16;
1320

1321
    c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1322
    if (c16 == NULL) return NULL;
1323

1324
    c16 ->nCurves = nCurves;
1325
    c16 ->nElements = nElements;
1326

1327
    c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1328
    if (c16->Curves == NULL) {
1329
        _cmsFree(ContextID, c16);
1330
        return NULL;
1331
    }
1332

1333
    for (i=0; i < nCurves; i++) {
1334

1335
        c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1336

1337
        if (c16->Curves[i] == NULL) {
1338

1339
            for (j=0; j < i; j++) {
1340
                _cmsFree(ContextID, c16->Curves[j]);
1341
            }
1342
            _cmsFree(ContextID, c16->Curves);
1343
            _cmsFree(ContextID, c16);
1344
            return NULL;
1345
        }
1346

1347
        if (nElements == 256U) {
1348

1349
            for (j=0; j < nElements; j++) {
1350

1351
                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1352
            }
1353
        }
1354
        else {
1355

1356
            for (j=0; j < nElements; j++) {
1357
                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1358
            }
1359
        }
1360
    }
1361

1362
    return c16;
1363
}
1364

1365
static
1366
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1367
                         CMSREGISTER cmsUInt16Number Out[],
1368
                         CMSREGISTER const void* D)
1369
{
1370
    Curves16Data* Data = (Curves16Data*) D;
1371
    int x;
1372
    cmsUInt32Number i;
1373

1374
    for (i=0; i < Data ->nCurves; i++) {
1375

1376
         x = (In[i] >> 8);
1377
         Out[i] = Data -> Curves[i][x];
1378
    }
1379
}
1380

1381

1382
static
1383
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1384
                          CMSREGISTER cmsUInt16Number Out[],
1385
                          CMSREGISTER const void* D)
1386
{
1387
    Curves16Data* Data = (Curves16Data*) D;
1388
    cmsUInt32Number i;
1389

1390
    for (i=0; i < Data ->nCurves; i++) {
1391
         Out[i] = Data -> Curves[i][In[i]];
1392
    }
1393
}
1394

1395

1396
static
1397
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1398
                    CMSREGISTER cmsUInt16Number Out[],
1399
                    CMSREGISTER const void* D)
1400
{
1401
    cmsPipeline* Lut = (cmsPipeline*) D;
1402
    cmsUInt32Number i;
1403

1404
    for (i=0; i < Lut ->InputChannels; i++) {
1405
         Out[i] = In[i];
1406
    }
1407
}
1408

1409

1410
// If the target LUT holds only curves, the optimization procedure is to join all those
1411
// curves together. That only works on curves and does not work on matrices.
1412
static
1413
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1414
{
1415
    cmsToneCurve** GammaTables = NULL;
1416
    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1417
    cmsUInt32Number i, j;
1418
    cmsPipeline* Src = *Lut;
1419
    cmsPipeline* Dest = NULL;
1420
    cmsStage* mpe;
1421
    cmsStage* ObtainedCurves = NULL;
1422

1423

1424
    // This is a lossy optimization! does not apply in floating-point cases
1425
    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1426

1427
    //  Only curves in this LUT?
1428
    for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1429
         mpe != NULL;
1430
         mpe = cmsStageNext(mpe)) {
1431
            if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1432
    }
1433

1434
    // Allocate an empty LUT
1435
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1436
    if (Dest == NULL) return FALSE;
1437

1438
    // Create target curves
1439
    GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1440
    if (GammaTables == NULL) goto Error;
1441

1442
    for (i=0; i < Src ->InputChannels; i++) {
1443
        GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1444
        if (GammaTables[i] == NULL) goto Error;
1445
    }
1446

1447
    // Compute 16 bit result by using floating point
1448
    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1449

1450
        for (j=0; j < Src ->InputChannels; j++)
1451
            InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1452

1453
        cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1454

1455
        for (j=0; j < Src ->InputChannels; j++)
1456
            GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1457
    }
1458

1459
    ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1460
    if (ObtainedCurves == NULL) goto Error;
1461

1462
    for (i=0; i < Src ->InputChannels; i++) {
1463
        cmsFreeToneCurve(GammaTables[i]);
1464
        GammaTables[i] = NULL;
1465
    }
1466

1467
    if (GammaTables != NULL) {
1468
        _cmsFree(Src->ContextID, GammaTables);
1469
        GammaTables = NULL;
1470
    }
1471

1472
    // Maybe the curves are linear at the end
1473
    if (!AllCurvesAreLinear(ObtainedCurves)) {
1474
       _cmsStageToneCurvesData* Data;
1475

1476
        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1477
            goto Error;
1478
        Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1479
        ObtainedCurves = NULL;
1480

1481
        // If the curves are to be applied in 8 bits, we can save memory
1482
        if (_cmsFormatterIs8bit(*InputFormat)) {
1483
             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1484

1485
             if (c16 == NULL) goto Error;
1486
             *dwFlags |= cmsFLAGS_NOCACHE;
1487
            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1488

1489
        }
1490
        else {
1491
             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1492

1493
             if (c16 == NULL) goto Error;
1494
             *dwFlags |= cmsFLAGS_NOCACHE;
1495
            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1496
        }
1497
    }
1498
    else {
1499

1500
        // LUT optimizes to nothing. Set the identity LUT
1501
        cmsStageFree(ObtainedCurves);
1502
        ObtainedCurves = NULL;
1503

1504
        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1505
            goto Error;
1506

1507
        *dwFlags |= cmsFLAGS_NOCACHE;
1508
        _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1509
    }
1510

1511
    // We are done.
1512
    cmsPipelineFree(Src);
1513
    *Lut = Dest;
1514
    return TRUE;
1515

1516
Error:
1517

1518
    if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1519
    if (GammaTables != NULL) {
1520
        for (i=0; i < Src ->InputChannels; i++) {
1521
            if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1522
        }
1523

1524
        _cmsFree(Src ->ContextID, GammaTables);
1525
    }
1526

1527
    if (Dest != NULL) cmsPipelineFree(Dest);
1528
    return FALSE;
1529

1530
    cmsUNUSED_PARAMETER(Intent);
1531
    cmsUNUSED_PARAMETER(InputFormat);
1532
    cmsUNUSED_PARAMETER(OutputFormat);
1533
    cmsUNUSED_PARAMETER(dwFlags);
1534
}
1535

1536
// -------------------------------------------------------------------------------------------------------------------------------------
1537
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1538

1539

1540
static
1541
void  FreeMatShaper(cmsContext ContextID, void* Data)
1542
{
1543
    if (Data != NULL) _cmsFree(ContextID, Data);
1544
}
1545

1546
static
1547
void* DupMatShaper(cmsContext ContextID, const void* Data)
1548
{
1549
    return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1550
}
1551

1552

1553
// A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
1554
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1555
// in total about 50K, and the performance boost is huge!
1556
static CMS_NO_SANITIZE
1557
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1558
                     CMSREGISTER cmsUInt16Number Out[],
1559
                     CMSREGISTER const void* D)
1560
{
1561
    MatShaper8Data* p = (MatShaper8Data*) D;
1562
    cmsS1Fixed14Number l1, l2, l3, r, g, b;
1563
    cmsUInt32Number ri, gi, bi;
1564

1565
    // In this case (and only in this case!) we can use this simplification since
1566
    // In[] is assured to come from a 8 bit number. (a << 8 | a)
1567
    ri = In[0] & 0xFFU;
1568
    gi = In[1] & 0xFFU;
1569
    bi = In[2] & 0xFFU;
1570

1571
    // Across first shaper, which also converts to 1.14 fixed point
1572
    r = p->Shaper1R[ri];
1573
    g = p->Shaper1G[gi];
1574
    b = p->Shaper1B[bi];
1575

1576
    // Evaluate the matrix in 1.14 fixed point
1577
    l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1578
    l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1579
    l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1580

1581
    // Now we have to clip to 0..1.0 range
1582
    ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1583
    gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1584
    bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1585

1586
    // And across second shaper,
1587
    Out[0] = p->Shaper2R[ri];
1588
    Out[1] = p->Shaper2G[gi];
1589
    Out[2] = p->Shaper2B[bi];
1590

1591
}
1592

1593
// This table converts from 8 bits to 1.14 after applying the curve
1594
static
1595
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1596
{
1597
    int i;
1598
    cmsFloat32Number R, y;
1599

1600
    for (i=0; i < 256; i++) {
1601

1602
        R   = (cmsFloat32Number) (i / 255.0);
1603
        y   = cmsEvalToneCurveFloat(Curve, R);
1604

1605
        if (y < 131072.0)
1606
            Table[i] = DOUBLE_TO_1FIXED14(y);
1607
        else
1608
            Table[i] = 0x7fffffff;
1609
    }
1610
}
1611

1612
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1613
static
1614
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1615
{
1616
    int i;
1617
    cmsFloat32Number R, Val;
1618

1619
    for (i=0; i < 16385; i++) {
1620

1621
        R   = (cmsFloat32Number) (i / 16384.0);
1622
        Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1623

1624
        if (Val < 0)
1625
            Val = 0;
1626

1627
        if (Val > 1.0)
1628
            Val = 1.0;
1629

1630
        if (Is8BitsOutput) {
1631

1632
            // If 8 bits output, we can optimize further by computing the / 257 part.
1633
            // first we compute the resulting byte and then we store the byte times
1634
            // 257. This quantization allows to round very quick by doing a >> 8, but
1635
            // since the low byte is always equal to msb, we can do a & 0xff and this works!
1636
            cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1637
            cmsUInt8Number  b = FROM_16_TO_8(w);
1638

1639
            Table[i] = FROM_8_TO_16(b);
1640
        }
1641
        else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1642
    }
1643
}
1644

1645
// Compute the matrix-shaper structure
1646
static
1647
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1648
{
1649
    MatShaper8Data* p;
1650
    int i, j;
1651
    cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1652

1653
    // Allocate a big chuck of memory to store precomputed tables
1654
    p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1655
    if (p == NULL) return FALSE;
1656

1657
    p -> ContextID = Dest -> ContextID;
1658

1659
    // Precompute tables
1660
    FillFirstShaper(p ->Shaper1R, Curve1[0]);
1661
    FillFirstShaper(p ->Shaper1G, Curve1[1]);
1662
    FillFirstShaper(p ->Shaper1B, Curve1[2]);
1663

1664
    FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1665
    FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1666
    FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1667

1668
    // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1669
    for (i=0; i < 3; i++) {
1670
        for (j=0; j < 3; j++) {
1671
            p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1672
        }
1673
    }
1674

1675
    for (i=0; i < 3; i++) {
1676

1677
        if (Off == NULL) {
1678
            p ->Off[i] = 0;
1679
        }
1680
        else {
1681
            p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1682
        }
1683
    }
1684

1685
    // Mark as optimized for faster formatter
1686
    if (Is8Bits)
1687
        *OutputFormat |= OPTIMIZED_SH(1);
1688

1689
    // Fill function pointers
1690
    _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1691
    return TRUE;
1692
}
1693

1694
//  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1695
static
1696
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1697
{
1698
       cmsStage* Curve1, *Curve2;
1699
       cmsStage* Matrix1, *Matrix2;
1700
       cmsMAT3 res;
1701
       cmsBool IdentityMat;
1702
       cmsPipeline* Dest, *Src;
1703
       cmsFloat64Number* Offset;
1704

1705
       // Only works on RGB to RGB
1706
       if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1707

1708
       // Only works on 8 bit input
1709
       if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1710

1711
       // Seems suitable, proceed
1712
       Src = *Lut;
1713

1714
       // Check for:
1715
       //
1716
       //    shaper-matrix-matrix-shaper
1717
       //    shaper-matrix-shaper
1718
       //
1719
       // Both of those constructs are possible (first because abs. colorimetric).
1720
       // additionally, In the first case, the input matrix offset should be zero.
1721

1722
       IdentityMat = FALSE;
1723
       if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1724
              cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1725
              &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1726

1727
              // Get both matrices
1728
              _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1729
              _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1730

1731
              // Only RGB to RGB
1732
              if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
1733
                  Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
1734

1735
              // Input offset should be zero
1736
              if (Data1->Offset != NULL) return FALSE;
1737

1738
              // Multiply both matrices to get the result
1739
              _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1740

1741
              // Only 2nd matrix has offset, or it is zero
1742
              Offset = Data2->Offset;
1743

1744
              // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1745
              if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1746

1747
                     // We can get rid of full matrix
1748
                     IdentityMat = TRUE;
1749
              }
1750

1751
       }
1752
       else {
1753

1754
              if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1755
                     cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1756
                     &Curve1, &Matrix1, &Curve2)) {
1757

1758
                     _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1759

1760
                     if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE;
1761

1762
                     // Copy the matrix to our result
1763
                     memcpy(&res, Data->Double, sizeof(res));
1764

1765
                     // Preserve the Odffset (may be NULL as a zero offset)
1766
                     Offset = Data->Offset;
1767

1768
                     if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1769

1770
                            // We can get rid of full matrix
1771
                            IdentityMat = TRUE;
1772
                     }
1773
              }
1774
              else
1775
                     return FALSE; // Not optimizeable this time
1776

1777
       }
1778

1779
      // Allocate an empty LUT
1780
    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1781
    if (!Dest) return FALSE;
1782

1783
    // Assamble the new LUT
1784
    if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1785
        goto Error;
1786

1787
    if (!IdentityMat) {
1788

1789
           if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1790
                  goto Error;
1791
    }
1792

1793
    if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1794
        goto Error;
1795

1796
    // If identity on matrix, we can further optimize the curves, so call the join curves routine
1797
    if (IdentityMat) {
1798

1799
        OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1800
    }
1801
    else {
1802
        _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1803
        _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1804

1805
        // In this particular optimization, cache does not help as it takes more time to deal with
1806
        // the cache than with the pixel handling
1807
        *dwFlags |= cmsFLAGS_NOCACHE;
1808

1809
        // Setup the optimizarion routines
1810
        SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1811
    }
1812

1813
    cmsPipelineFree(Src);
1814
    *Lut = Dest;
1815
    return TRUE;
1816
Error:
1817
    // Leave Src unchanged
1818
    cmsPipelineFree(Dest);
1819
    return FALSE;
1820
}
1821

1822

1823
// -------------------------------------------------------------------------------------------------------------------------------------
1824
// Optimization plug-ins
1825

1826
// List of optimizations
1827
typedef struct _cmsOptimizationCollection_st {
1828

1829
    _cmsOPToptimizeFn  OptimizePtr;
1830

1831
    struct _cmsOptimizationCollection_st *Next;
1832

1833
} _cmsOptimizationCollection;
1834

1835

1836
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1837
static _cmsOptimizationCollection DefaultOptimization[] = {
1838

1839
    { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1840
    { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1841
    { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1842
    { OptimizeByResampling,               NULL }
1843
};
1844

1845
// The linked list head
1846
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1847

1848

1849
// Duplicates the zone of memory used by the plug-in in the new context
1850
static
1851
void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1852
                               const struct _cmsContext_struct* src)
1853
{
1854
   _cmsOptimizationPluginChunkType newHead = { NULL };
1855
   _cmsOptimizationCollection*  entry;
1856
   _cmsOptimizationCollection*  Anterior = NULL;
1857
   _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1858

1859
    _cmsAssert(ctx != NULL);
1860
    _cmsAssert(head != NULL);
1861

1862
    // Walk the list copying all nodes
1863
   for (entry = head->OptimizationCollection;
1864
        entry != NULL;
1865
        entry = entry ->Next) {
1866

1867
            _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1868

1869
            if (newEntry == NULL)
1870
                return;
1871

1872
            // We want to keep the linked list order, so this is a little bit tricky
1873
            newEntry -> Next = NULL;
1874
            if (Anterior)
1875
                Anterior -> Next = newEntry;
1876

1877
            Anterior = newEntry;
1878

1879
            if (newHead.OptimizationCollection == NULL)
1880
                newHead.OptimizationCollection = newEntry;
1881
    }
1882

1883
  ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1884
}
1885

1886
void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1887
                                         const struct _cmsContext_struct* src)
1888
{
1889
  if (src != NULL) {
1890

1891
        // Copy all linked list
1892
       DupPluginOptimizationList(ctx, src);
1893
    }
1894
    else {
1895
        static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1896
        ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1897
    }
1898
}
1899

1900

1901
// Register new ways to optimize
1902
cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1903
{
1904
    cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1905
    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1906
    _cmsOptimizationCollection* fl;
1907

1908
    if (Data == NULL) {
1909

1910
        ctx->OptimizationCollection = NULL;
1911
        return TRUE;
1912
    }
1913

1914
    // Optimizer callback is required
1915
    if (Plugin ->OptimizePtr == NULL) return FALSE;
1916

1917
    fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1918
    if (fl == NULL) return FALSE;
1919

1920
    // Copy the parameters
1921
    fl ->OptimizePtr = Plugin ->OptimizePtr;
1922

1923
    // Keep linked list
1924
    fl ->Next = ctx->OptimizationCollection;
1925

1926
    // Set the head
1927
    ctx ->OptimizationCollection = fl;
1928

1929
    // All is ok
1930
    return TRUE;
1931
}
1932

1933
// The entry point for LUT optimization
1934
cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1935
                             cmsPipeline**    PtrLut,
1936
                             cmsUInt32Number  Intent,
1937
                             cmsUInt32Number* InputFormat,
1938
                             cmsUInt32Number* OutputFormat,
1939
                             cmsUInt32Number* dwFlags)
1940
{
1941
    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1942
    _cmsOptimizationCollection* Opts;
1943
    cmsBool AnySuccess = FALSE;
1944
    cmsStage* mpe;
1945

1946
    // A CLUT is being asked, so force this specific optimization
1947
    if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1948

1949
        PreOptimize(*PtrLut);
1950
        return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1951
    }
1952

1953
    // Anything to optimize?
1954
    if ((*PtrLut) ->Elements == NULL) {
1955
        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1956
        return TRUE;
1957
    }
1958

1959
    // Named color pipelines cannot be optimized
1960
    for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
1961
        mpe != NULL;
1962
        mpe = cmsStageNext(mpe)) {
1963
            if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1964
    }
1965

1966
    // Try to get rid of identities and trivial conversions.
1967
    AnySuccess = PreOptimize(*PtrLut);
1968

1969
    // After removal do we end with an identity?
1970
    if ((*PtrLut) ->Elements == NULL) {
1971
        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1972
        return TRUE;
1973
    }
1974

1975
    // Do not optimize, keep all precision
1976
    if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1977
        return FALSE;
1978

1979
    // Try plug-in optimizations
1980
    for (Opts = ctx->OptimizationCollection;
1981
         Opts != NULL;
1982
         Opts = Opts ->Next) {
1983

1984
            // If one schema succeeded, we are done
1985
            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1986

1987
                return TRUE;    // Optimized!
1988
            }
1989
    }
1990

1991
   // Try built-in optimizations
1992
    for (Opts = DefaultOptimization;
1993
         Opts != NULL;
1994
         Opts = Opts ->Next) {
1995

1996
            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1997

1998
                return TRUE;
1999
            }
2000
    }
2001

2002
    // Only simple optimizations succeeded
2003
    return AnySuccess;
2004
}
2005

2006

2007

2008

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.