jdk

Форк
0
402 строки · 13.8 Кб
1
/*
2
 * reserved comment block
3
 * DO NOT REMOVE OR ALTER!
4
 */
5
/*
6
 * jidctred.c
7
 *
8
 * Copyright (C) 1994-1998, Thomas G. Lane.
9
 * This file is part of the Independent JPEG Group's software.
10
 * For conditions of distribution and use, see the accompanying README file.
11
 *
12
 * This file contains inverse-DCT routines that produce reduced-size output:
13
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
14
 *
15
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
16
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
17
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
18
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
19
 * These steps were derived by computing the corresponding values at the end
20
 * of the normal LL&M code, then simplifying as much as possible.
21
 *
22
 * 1x1 is trivial: just take the DC coefficient divided by 8.
23
 *
24
 * See jidctint.c for additional comments.
25
 */
26

27
#define JPEG_INTERNALS
28
#include "jinclude.h"
29
#include "jpeglib.h"
30
#include "jdct.h"               /* Private declarations for DCT subsystem */
31

32
#ifdef IDCT_SCALING_SUPPORTED
33

34

35
/*
36
 * This module is specialized to the case DCTSIZE = 8.
37
 */
38

39
#if DCTSIZE != 8
40
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
41
#endif
42

43

44
/* Scaling is the same as in jidctint.c. */
45

46
#if BITS_IN_JSAMPLE == 8
47
#define CONST_BITS  13
48
#define PASS1_BITS  2
49
#else
50
#define CONST_BITS  13
51
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
52
#endif
53

54
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
55
 * causing a lot of useless floating-point operations at run time.
56
 * To get around this we use the following pre-calculated constants.
57
 * If you change CONST_BITS you may want to add appropriate values.
58
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
59
 */
60

61
#if CONST_BITS == 13
62
#define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
63
#define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
64
#define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
65
#define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
66
#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
67
#define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
68
#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
69
#define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
70
#define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
71
#define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
72
#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
73
#define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
74
#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
75
#define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
76
#else
77
#define FIX_0_211164243  FIX(0.211164243)
78
#define FIX_0_509795579  FIX(0.509795579)
79
#define FIX_0_601344887  FIX(0.601344887)
80
#define FIX_0_720959822  FIX(0.720959822)
81
#define FIX_0_765366865  FIX(0.765366865)
82
#define FIX_0_850430095  FIX(0.850430095)
83
#define FIX_0_899976223  FIX(0.899976223)
84
#define FIX_1_061594337  FIX(1.061594337)
85
#define FIX_1_272758580  FIX(1.272758580)
86
#define FIX_1_451774981  FIX(1.451774981)
87
#define FIX_1_847759065  FIX(1.847759065)
88
#define FIX_2_172734803  FIX(2.172734803)
89
#define FIX_2_562915447  FIX(2.562915447)
90
#define FIX_3_624509785  FIX(3.624509785)
91
#endif
92

93

94
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
95
 * For 8-bit samples with the recommended scaling, all the variable
96
 * and constant values involved are no more than 16 bits wide, so a
97
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
98
 * For 12-bit samples, a full 32-bit multiplication will be needed.
99
 */
100

101
#if BITS_IN_JSAMPLE == 8
102
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
103
#else
104
#define MULTIPLY(var,const)  ((var) * (const))
105
#endif
106

107

108
/* Dequantize a coefficient by multiplying it by the multiplier-table
109
 * entry; produce an int result.  In this module, both inputs and result
110
 * are 16 bits or less, so either int or short multiply will work.
111
 */
112

113
#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
114

115

116
/*
117
 * Perform dequantization and inverse DCT on one block of coefficients,
118
 * producing a reduced-size 4x4 output block.
119
 */
120

121
GLOBAL(void)
122
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
123
               JCOEFPTR coef_block,
124
               JSAMPARRAY output_buf, JDIMENSION output_col)
125
{
126
  INT32 tmp0, tmp2, tmp10, tmp12;
127
  INT32 z1, z2, z3, z4;
128
  JCOEFPTR inptr;
129
  ISLOW_MULT_TYPE * quantptr;
130
  int * wsptr;
131
  JSAMPROW outptr;
132
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
133
  int ctr;
134
  int workspace[DCTSIZE*4];     /* buffers data between passes */
135
  SHIFT_TEMPS
136

137
  /* Pass 1: process columns from input, store into work array. */
138

139
  inptr = coef_block;
140
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
141
  wsptr = workspace;
142
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
143
    /* Don't bother to process column 4, because second pass won't use it */
144
    if (ctr == DCTSIZE-4)
145
      continue;
146
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
147
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
148
        inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
149
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
150
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
151

152
      wsptr[DCTSIZE*0] = dcval;
153
      wsptr[DCTSIZE*1] = dcval;
154
      wsptr[DCTSIZE*2] = dcval;
155
      wsptr[DCTSIZE*3] = dcval;
156

157
      continue;
158
    }
159

160
    /* Even part */
161

162
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
163
    tmp0 <<= (CONST_BITS+1);
164

165
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
166
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
167

168
    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
169

170
    tmp10 = tmp0 + tmp2;
171
    tmp12 = tmp0 - tmp2;
172

173
    /* Odd part */
174

175
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
176
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
177
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
178
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
179

180
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
181
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
182
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
183
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
184

185
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
186
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
187
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
188
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
189

190
    /* Final output stage */
191

192
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
193
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
194
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
195
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
196
  }
197

198
  /* Pass 2: process 4 rows from work array, store into output array. */
199

200
  wsptr = workspace;
201
  for (ctr = 0; ctr < 4; ctr++) {
202
    outptr = output_buf[ctr] + output_col;
203
    /* It's not clear whether a zero row test is worthwhile here ... */
204

205
#ifndef NO_ZERO_ROW_TEST
206
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
207
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
208
      /* AC terms all zero */
209
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
210
                                  & RANGE_MASK];
211

212
      outptr[0] = dcval;
213
      outptr[1] = dcval;
214
      outptr[2] = dcval;
215
      outptr[3] = dcval;
216

217
      wsptr += DCTSIZE;         /* advance pointer to next row */
218
      continue;
219
    }
220
#endif
221

222
    /* Even part */
223

224
    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
225

226
    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
227
         + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
228

229
    tmp10 = tmp0 + tmp2;
230
    tmp12 = tmp0 - tmp2;
231

232
    /* Odd part */
233

234
    z1 = (INT32) wsptr[7];
235
    z2 = (INT32) wsptr[5];
236
    z3 = (INT32) wsptr[3];
237
    z4 = (INT32) wsptr[1];
238

239
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
240
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
241
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
242
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
243

244
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
245
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
246
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
247
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
248

249
    /* Final output stage */
250

251
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
252
                                          CONST_BITS+PASS1_BITS+3+1)
253
                            & RANGE_MASK];
254
    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
255
                                          CONST_BITS+PASS1_BITS+3+1)
256
                            & RANGE_MASK];
257
    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
258
                                          CONST_BITS+PASS1_BITS+3+1)
259
                            & RANGE_MASK];
260
    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
261
                                          CONST_BITS+PASS1_BITS+3+1)
262
                            & RANGE_MASK];
263

264
    wsptr += DCTSIZE;           /* advance pointer to next row */
265
  }
266
}
267

268

269
/*
270
 * Perform dequantization and inverse DCT on one block of coefficients,
271
 * producing a reduced-size 2x2 output block.
272
 */
273

274
GLOBAL(void)
275
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
276
               JCOEFPTR coef_block,
277
               JSAMPARRAY output_buf, JDIMENSION output_col)
278
{
279
  INT32 tmp0, tmp10, z1;
280
  JCOEFPTR inptr;
281
  ISLOW_MULT_TYPE * quantptr;
282
  int * wsptr;
283
  JSAMPROW outptr;
284
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
285
  int ctr;
286
  int workspace[DCTSIZE*2];     /* buffers data between passes */
287
  SHIFT_TEMPS
288

289
  /* Pass 1: process columns from input, store into work array. */
290

291
  inptr = coef_block;
292
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
293
  wsptr = workspace;
294
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
295
    /* Don't bother to process columns 2,4,6 */
296
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
297
      continue;
298
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
299
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
300
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
302

303
      wsptr[DCTSIZE*0] = dcval;
304
      wsptr[DCTSIZE*1] = dcval;
305

306
      continue;
307
    }
308

309
    /* Even part */
310

311
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
312
    tmp10 = z1 << (CONST_BITS+2);
313

314
    /* Odd part */
315

316
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
317
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
318
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
319
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
320
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
321
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
322
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
323
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
324

325
    /* Final output stage */
326

327
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
328
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
329
  }
330

331
  /* Pass 2: process 2 rows from work array, store into output array. */
332

333
  wsptr = workspace;
334
  for (ctr = 0; ctr < 2; ctr++) {
335
    outptr = output_buf[ctr] + output_col;
336
    /* It's not clear whether a zero row test is worthwhile here ... */
337

338
#ifndef NO_ZERO_ROW_TEST
339
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
340
      /* AC terms all zero */
341
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
342
                                  & RANGE_MASK];
343

344
      outptr[0] = dcval;
345
      outptr[1] = dcval;
346

347
      wsptr += DCTSIZE;         /* advance pointer to next row */
348
      continue;
349
    }
350
#endif
351

352
    /* Even part */
353

354
    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
355

356
    /* Odd part */
357

358
    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
359
         + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
360
         + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
361
         + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
362

363
    /* Final output stage */
364

365
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
366
                                          CONST_BITS+PASS1_BITS+3+2)
367
                            & RANGE_MASK];
368
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
369
                                          CONST_BITS+PASS1_BITS+3+2)
370
                            & RANGE_MASK];
371

372
    wsptr += DCTSIZE;           /* advance pointer to next row */
373
  }
374
}
375

376

377
/*
378
 * Perform dequantization and inverse DCT on one block of coefficients,
379
 * producing a reduced-size 1x1 output block.
380
 */
381

382
GLOBAL(void)
383
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
384
               JCOEFPTR coef_block,
385
               JSAMPARRAY output_buf, JDIMENSION output_col)
386
{
387
  int dcval;
388
  ISLOW_MULT_TYPE * quantptr;
389
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
390
  SHIFT_TEMPS
391

392
  /* We hardly need an inverse DCT routine for this: just take the
393
   * average pixel value, which is one-eighth of the DC coefficient.
394
   */
395
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
396
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
397
  dcval = (int) DESCALE((INT32) dcval, 3);
398

399
  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
400
}
401

402
#endif /* IDCT_SCALING_SUPPORTED */
403

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.