jdk

Форк
0
393 строки · 15.1 Кб
1
/*
2
 * reserved comment block
3
 * DO NOT REMOVE OR ALTER!
4
 */
5
/*
6
 * jidctint.c
7
 *
8
 * Copyright (C) 1991-1998, Thomas G. Lane.
9
 * This file is part of the Independent JPEG Group's software.
10
 * For conditions of distribution and use, see the accompanying README file.
11
 *
12
 * This file contains a slow-but-accurate integer implementation of the
13
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
14
 * must also perform dequantization of the input coefficients.
15
 *
16
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
17
 * on each row (or vice versa, but it's more convenient to emit a row at
18
 * a time).  Direct algorithms are also available, but they are much more
19
 * complex and seem not to be any faster when reduced to code.
20
 *
21
 * This implementation is based on an algorithm described in
22
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
23
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
24
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
25
 * The primary algorithm described there uses 11 multiplies and 29 adds.
26
 * We use their alternate method with 12 multiplies and 32 adds.
27
 * The advantage of this method is that no data path contains more than one
28
 * multiplication; this allows a very simple and accurate implementation in
29
 * scaled fixed-point arithmetic, with a minimal number of shifts.
30
 */
31

32
#define JPEG_INTERNALS
33
#include "jinclude.h"
34
#include "jpeglib.h"
35
#include "jdct.h"               /* Private declarations for DCT subsystem */
36

37
#ifdef DCT_ISLOW_SUPPORTED
38

39

40
/*
41
 * This module is specialized to the case DCTSIZE = 8.
42
 */
43

44
#if DCTSIZE != 8
45
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
46
#endif
47

48

49
/*
50
 * The poop on this scaling stuff is as follows:
51
 *
52
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
53
 * larger than the true IDCT outputs.  The final outputs are therefore
54
 * a factor of N larger than desired; since N=8 this can be cured by
55
 * a simple right shift at the end of the algorithm.  The advantage of
56
 * this arrangement is that we save two multiplications per 1-D IDCT,
57
 * because the y0 and y4 inputs need not be divided by sqrt(N).
58
 *
59
 * We have to do addition and subtraction of the integer inputs, which
60
 * is no problem, and multiplication by fractional constants, which is
61
 * a problem to do in integer arithmetic.  We multiply all the constants
62
 * by CONST_SCALE and convert them to integer constants (thus retaining
63
 * CONST_BITS bits of precision in the constants).  After doing a
64
 * multiplication we have to divide the product by CONST_SCALE, with proper
65
 * rounding, to produce the correct output.  This division can be done
66
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
67
 * as long as possible so that partial sums can be added together with
68
 * full fractional precision.
69
 *
70
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
71
 * they are represented to better-than-integral precision.  These outputs
72
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
73
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
74
 * intermediate INT32 array would be needed.)
75
 *
76
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
77
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
78
 * shows that the values given below are the most effective.
79
 */
80

81
#if BITS_IN_JSAMPLE == 8
82
#define CONST_BITS  13
83
#define PASS1_BITS  2
84
#else
85
#define CONST_BITS  13
86
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
87
#endif
88

89
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
90
 * causing a lot of useless floating-point operations at run time.
91
 * To get around this we use the following pre-calculated constants.
92
 * If you change CONST_BITS you may want to add appropriate values.
93
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
94
 */
95

96
#if CONST_BITS == 13
97
#define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
98
#define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
99
#define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
100
#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
101
#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
102
#define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
103
#define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
104
#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
105
#define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
106
#define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
107
#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
108
#define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
109
#else
110
#define FIX_0_298631336  FIX(0.298631336)
111
#define FIX_0_390180644  FIX(0.390180644)
112
#define FIX_0_541196100  FIX(0.541196100)
113
#define FIX_0_765366865  FIX(0.765366865)
114
#define FIX_0_899976223  FIX(0.899976223)
115
#define FIX_1_175875602  FIX(1.175875602)
116
#define FIX_1_501321110  FIX(1.501321110)
117
#define FIX_1_847759065  FIX(1.847759065)
118
#define FIX_1_961570560  FIX(1.961570560)
119
#define FIX_2_053119869  FIX(2.053119869)
120
#define FIX_2_562915447  FIX(2.562915447)
121
#define FIX_3_072711026  FIX(3.072711026)
122
#endif
123

124

125
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
126
 * For 8-bit samples with the recommended scaling, all the variable
127
 * and constant values involved are no more than 16 bits wide, so a
128
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
129
 * For 12-bit samples, a full 32-bit multiplication will be needed.
130
 */
131

132
#if BITS_IN_JSAMPLE == 8
133
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
134
#else
135
#define MULTIPLY(var,const)  ((var) * (const))
136
#endif
137

138

139
/* Dequantize a coefficient by multiplying it by the multiplier-table
140
 * entry; produce an int result.  In this module, both inputs and result
141
 * are 16 bits or less, so either int or short multiply will work.
142
 */
143

144
#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
145

146

147
/*
148
 * Perform dequantization and inverse DCT on one block of coefficients.
149
 */
150

151
GLOBAL(void)
152
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
153
                 JCOEFPTR coef_block,
154
                 JSAMPARRAY output_buf, JDIMENSION output_col)
155
{
156
  INT32 tmp0, tmp1, tmp2, tmp3;
157
  INT32 tmp10, tmp11, tmp12, tmp13;
158
  INT32 z1, z2, z3, z4, z5;
159
  JCOEFPTR inptr;
160
  ISLOW_MULT_TYPE * quantptr;
161
  int * wsptr;
162
  JSAMPROW outptr;
163
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
164
  int ctr;
165
  int workspace[DCTSIZE2];      /* buffers data between passes */
166
  SHIFT_TEMPS
167

168
  /* Pass 1: process columns from input, store into work array. */
169
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
170
  /* furthermore, we scale the results by 2**PASS1_BITS. */
171

172
  inptr = coef_block;
173
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
174
  wsptr = workspace;
175
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
176
    /* Due to quantization, we will usually find that many of the input
177
     * coefficients are zero, especially the AC terms.  We can exploit this
178
     * by short-circuiting the IDCT calculation for any column in which all
179
     * the AC terms are zero.  In that case each output is equal to the
180
     * DC coefficient (with scale factor as needed).
181
     * With typical images and quantization tables, half or more of the
182
     * column DCT calculations can be simplified this way.
183
     */
184

185
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
186
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
187
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
188
        inptr[DCTSIZE*7] == 0) {
189
      /* AC terms all zero */
190
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
191

192
      wsptr[DCTSIZE*0] = dcval;
193
      wsptr[DCTSIZE*1] = dcval;
194
      wsptr[DCTSIZE*2] = dcval;
195
      wsptr[DCTSIZE*3] = dcval;
196
      wsptr[DCTSIZE*4] = dcval;
197
      wsptr[DCTSIZE*5] = dcval;
198
      wsptr[DCTSIZE*6] = dcval;
199
      wsptr[DCTSIZE*7] = dcval;
200

201
      inptr++;                  /* advance pointers to next column */
202
      quantptr++;
203
      wsptr++;
204
      continue;
205
    }
206

207
    /* Even part: reverse the even part of the forward DCT. */
208
    /* The rotator is sqrt(2)*c(-6). */
209

210
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
211
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
212

213
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
214
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
215
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
216

217
    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
218
    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
219

220
    tmp0 = (z2 + z3) << CONST_BITS;
221
    tmp1 = (z2 - z3) << CONST_BITS;
222

223
    tmp10 = tmp0 + tmp3;
224
    tmp13 = tmp0 - tmp3;
225
    tmp11 = tmp1 + tmp2;
226
    tmp12 = tmp1 - tmp2;
227

228
    /* Odd part per figure 8; the matrix is unitary and hence its
229
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
230
     */
231

232
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
233
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
234
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
235
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
236

237
    z1 = tmp0 + tmp3;
238
    z2 = tmp1 + tmp2;
239
    z3 = tmp0 + tmp2;
240
    z4 = tmp1 + tmp3;
241
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
242

243
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
244
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
245
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
246
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
247
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
248
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
249
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
250
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
251

252
    z3 += z5;
253
    z4 += z5;
254

255
    tmp0 += z1 + z3;
256
    tmp1 += z2 + z4;
257
    tmp2 += z2 + z3;
258
    tmp3 += z1 + z4;
259

260
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
261

262
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
263
    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
264
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
265
    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
266
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
267
    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
268
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
269
    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
270

271
    inptr++;                    /* advance pointers to next column */
272
    quantptr++;
273
    wsptr++;
274
  }
275

276
  /* Pass 2: process rows from work array, store into output array. */
277
  /* Note that we must descale the results by a factor of 8 == 2**3, */
278
  /* and also undo the PASS1_BITS scaling. */
279

280
  wsptr = workspace;
281
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
282
    outptr = output_buf[ctr] + output_col;
283
    /* Rows of zeroes can be exploited in the same way as we did with columns.
284
     * However, the column calculation has created many nonzero AC terms, so
285
     * the simplification applies less often (typically 5% to 10% of the time).
286
     * On machines with very fast multiplication, it's possible that the
287
     * test takes more time than it's worth.  In that case this section
288
     * may be commented out.
289
     */
290

291
#ifndef NO_ZERO_ROW_TEST
292
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
293
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
294
      /* AC terms all zero */
295
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
296
                                  & RANGE_MASK];
297

298
      outptr[0] = dcval;
299
      outptr[1] = dcval;
300
      outptr[2] = dcval;
301
      outptr[3] = dcval;
302
      outptr[4] = dcval;
303
      outptr[5] = dcval;
304
      outptr[6] = dcval;
305
      outptr[7] = dcval;
306

307
      wsptr += DCTSIZE;         /* advance pointer to next row */
308
      continue;
309
    }
310
#endif
311

312
    /* Even part: reverse the even part of the forward DCT. */
313
    /* The rotator is sqrt(2)*c(-6). */
314

315
    z2 = (INT32) wsptr[2];
316
    z3 = (INT32) wsptr[6];
317

318
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
319
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
320
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
321

322
    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
323
    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
324

325
    tmp10 = tmp0 + tmp3;
326
    tmp13 = tmp0 - tmp3;
327
    tmp11 = tmp1 + tmp2;
328
    tmp12 = tmp1 - tmp2;
329

330
    /* Odd part per figure 8; the matrix is unitary and hence its
331
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
332
     */
333

334
    tmp0 = (INT32) wsptr[7];
335
    tmp1 = (INT32) wsptr[5];
336
    tmp2 = (INT32) wsptr[3];
337
    tmp3 = (INT32) wsptr[1];
338

339
    z1 = tmp0 + tmp3;
340
    z2 = tmp1 + tmp2;
341
    z3 = tmp0 + tmp2;
342
    z4 = tmp1 + tmp3;
343
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
344

345
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
346
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
347
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
348
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
349
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
350
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
351
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
352
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
353

354
    z3 += z5;
355
    z4 += z5;
356

357
    tmp0 += z1 + z3;
358
    tmp1 += z2 + z4;
359
    tmp2 += z2 + z3;
360
    tmp3 += z1 + z4;
361

362
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
363

364
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
365
                                          CONST_BITS+PASS1_BITS+3)
366
                            & RANGE_MASK];
367
    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
368
                                          CONST_BITS+PASS1_BITS+3)
369
                            & RANGE_MASK];
370
    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
371
                                          CONST_BITS+PASS1_BITS+3)
372
                            & RANGE_MASK];
373
    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
374
                                          CONST_BITS+PASS1_BITS+3)
375
                            & RANGE_MASK];
376
    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
377
                                          CONST_BITS+PASS1_BITS+3)
378
                            & RANGE_MASK];
379
    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
380
                                          CONST_BITS+PASS1_BITS+3)
381
                            & RANGE_MASK];
382
    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
383
                                          CONST_BITS+PASS1_BITS+3)
384
                            & RANGE_MASK];
385
    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
386
                                          CONST_BITS+PASS1_BITS+3)
387
                            & RANGE_MASK];
388

389
    wsptr += DCTSIZE;           /* advance pointer to next row */
390
  }
391
}
392

393
#endif /* DCT_ISLOW_SUPPORTED */
394

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.