jdk

Форк
0
287 строк · 11.2 Кб
1
/*
2
 * reserved comment block
3
 * DO NOT REMOVE OR ALTER!
4
 */
5
/*
6
 * jfdctint.c
7
 *
8
 * Copyright (C) 1991-1996, Thomas G. Lane.
9
 * This file is part of the Independent JPEG Group's software.
10
 * For conditions of distribution and use, see the accompanying README file.
11
 *
12
 * This file contains a slow-but-accurate integer implementation of the
13
 * forward DCT (Discrete Cosine Transform).
14
 *
15
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
16
 * on each column.  Direct algorithms are also available, but they are
17
 * much more complex and seem not to be any faster when reduced to code.
18
 *
19
 * This implementation is based on an algorithm described in
20
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
21
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
22
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
23
 * The primary algorithm described there uses 11 multiplies and 29 adds.
24
 * We use their alternate method with 12 multiplies and 32 adds.
25
 * The advantage of this method is that no data path contains more than one
26
 * multiplication; this allows a very simple and accurate implementation in
27
 * scaled fixed-point arithmetic, with a minimal number of shifts.
28
 */
29

30
#define JPEG_INTERNALS
31
#include "jinclude.h"
32
#include "jpeglib.h"
33
#include "jdct.h"               /* Private declarations for DCT subsystem */
34

35
#ifdef DCT_ISLOW_SUPPORTED
36

37

38
/*
39
 * This module is specialized to the case DCTSIZE = 8.
40
 */
41

42
#if DCTSIZE != 8
43
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
44
#endif
45

46

47
/*
48
 * The poop on this scaling stuff is as follows:
49
 *
50
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
51
 * larger than the true DCT outputs.  The final outputs are therefore
52
 * a factor of N larger than desired; since N=8 this can be cured by
53
 * a simple right shift at the end of the algorithm.  The advantage of
54
 * this arrangement is that we save two multiplications per 1-D DCT,
55
 * because the y0 and y4 outputs need not be divided by sqrt(N).
56
 * In the IJG code, this factor of 8 is removed by the quantization step
57
 * (in jcdctmgr.c), NOT in this module.
58
 *
59
 * We have to do addition and subtraction of the integer inputs, which
60
 * is no problem, and multiplication by fractional constants, which is
61
 * a problem to do in integer arithmetic.  We multiply all the constants
62
 * by CONST_SCALE and convert them to integer constants (thus retaining
63
 * CONST_BITS bits of precision in the constants).  After doing a
64
 * multiplication we have to divide the product by CONST_SCALE, with proper
65
 * rounding, to produce the correct output.  This division can be done
66
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
67
 * as long as possible so that partial sums can be added together with
68
 * full fractional precision.
69
 *
70
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
71
 * they are represented to better-than-integral precision.  These outputs
72
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
73
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
74
 * array is INT32 anyway.)
75
 *
76
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
77
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
78
 * shows that the values given below are the most effective.
79
 */
80

81
#if BITS_IN_JSAMPLE == 8
82
#define CONST_BITS  13
83
#define PASS1_BITS  2
84
#else
85
#define CONST_BITS  13
86
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
87
#endif
88

89
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
90
 * causing a lot of useless floating-point operations at run time.
91
 * To get around this we use the following pre-calculated constants.
92
 * If you change CONST_BITS you may want to add appropriate values.
93
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
94
 */
95

96
#if CONST_BITS == 13
97
#define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
98
#define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
99
#define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
100
#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
101
#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
102
#define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
103
#define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
104
#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
105
#define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
106
#define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
107
#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
108
#define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
109
#else
110
#define FIX_0_298631336  FIX(0.298631336)
111
#define FIX_0_390180644  FIX(0.390180644)
112
#define FIX_0_541196100  FIX(0.541196100)
113
#define FIX_0_765366865  FIX(0.765366865)
114
#define FIX_0_899976223  FIX(0.899976223)
115
#define FIX_1_175875602  FIX(1.175875602)
116
#define FIX_1_501321110  FIX(1.501321110)
117
#define FIX_1_847759065  FIX(1.847759065)
118
#define FIX_1_961570560  FIX(1.961570560)
119
#define FIX_2_053119869  FIX(2.053119869)
120
#define FIX_2_562915447  FIX(2.562915447)
121
#define FIX_3_072711026  FIX(3.072711026)
122
#endif
123

124

125
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
126
 * For 8-bit samples with the recommended scaling, all the variable
127
 * and constant values involved are no more than 16 bits wide, so a
128
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
129
 * For 12-bit samples, a full 32-bit multiplication will be needed.
130
 */
131

132
#if BITS_IN_JSAMPLE == 8
133
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
134
#else
135
#define MULTIPLY(var,const)  ((var) * (const))
136
#endif
137

138

139
/*
140
 * Perform the forward DCT on one block of samples.
141
 */
142

143
GLOBAL(void)
144
jpeg_fdct_islow (DCTELEM * data)
145
{
146
  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
147
  INT32 tmp10, tmp11, tmp12, tmp13;
148
  INT32 z1, z2, z3, z4, z5;
149
  DCTELEM *dataptr;
150
  int ctr;
151
  SHIFT_TEMPS
152

153
  /* Pass 1: process rows. */
154
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
155
  /* furthermore, we scale the results by 2**PASS1_BITS. */
156

157
  dataptr = data;
158
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
159
    tmp0 = dataptr[0] + dataptr[7];
160
    tmp7 = dataptr[0] - dataptr[7];
161
    tmp1 = dataptr[1] + dataptr[6];
162
    tmp6 = dataptr[1] - dataptr[6];
163
    tmp2 = dataptr[2] + dataptr[5];
164
    tmp5 = dataptr[2] - dataptr[5];
165
    tmp3 = dataptr[3] + dataptr[4];
166
    tmp4 = dataptr[3] - dataptr[4];
167

168
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
169
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
170
     */
171

172
    tmp10 = tmp0 + tmp3;
173
    tmp13 = tmp0 - tmp3;
174
    tmp11 = tmp1 + tmp2;
175
    tmp12 = tmp1 - tmp2;
176

177
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
178
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
179

180
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
181
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
182
                                   CONST_BITS-PASS1_BITS);
183
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
184
                                   CONST_BITS-PASS1_BITS);
185

186
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
187
     * cK represents cos(K*pi/16).
188
     * i0..i3 in the paper are tmp4..tmp7 here.
189
     */
190

191
    z1 = tmp4 + tmp7;
192
    z2 = tmp5 + tmp6;
193
    z3 = tmp4 + tmp6;
194
    z4 = tmp5 + tmp7;
195
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
196

197
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
198
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
199
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
200
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
201
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
202
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
203
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
204
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
205

206
    z3 += z5;
207
    z4 += z5;
208

209
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
210
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
211
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
212
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
213

214
    dataptr += DCTSIZE;         /* advance pointer to next row */
215
  }
216

217
  /* Pass 2: process columns.
218
   * We remove the PASS1_BITS scaling, but leave the results scaled up
219
   * by an overall factor of 8.
220
   */
221

222
  dataptr = data;
223
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
224
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
225
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
226
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
227
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
228
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
229
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
230
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
231
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
232

233
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
234
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
235
     */
236

237
    tmp10 = tmp0 + tmp3;
238
    tmp13 = tmp0 - tmp3;
239
    tmp11 = tmp1 + tmp2;
240
    tmp12 = tmp1 - tmp2;
241

242
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
243
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
244

245
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
246
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
247
                                           CONST_BITS+PASS1_BITS);
248
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
249
                                           CONST_BITS+PASS1_BITS);
250

251
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
252
     * cK represents cos(K*pi/16).
253
     * i0..i3 in the paper are tmp4..tmp7 here.
254
     */
255

256
    z1 = tmp4 + tmp7;
257
    z2 = tmp5 + tmp6;
258
    z3 = tmp4 + tmp6;
259
    z4 = tmp5 + tmp7;
260
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
261

262
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
263
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
264
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
265
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
266
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
267
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
268
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
269
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
270

271
    z3 += z5;
272
    z4 += z5;
273

274
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
275
                                           CONST_BITS+PASS1_BITS);
276
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
277
                                           CONST_BITS+PASS1_BITS);
278
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
279
                                           CONST_BITS+PASS1_BITS);
280
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
281
                                           CONST_BITS+PASS1_BITS);
282

283
    dataptr++;                  /* advance pointer to next column */
284
  }
285
}
286

287
#endif /* DCT_ISLOW_SUPPORTED */
288

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.