jdk
287 строк · 11.2 Кб
1/*
2* reserved comment block
3* DO NOT REMOVE OR ALTER!
4*/
5/*
6* jfdctint.c
7*
8* Copyright (C) 1991-1996, Thomas G. Lane.
9* This file is part of the Independent JPEG Group's software.
10* For conditions of distribution and use, see the accompanying README file.
11*
12* This file contains a slow-but-accurate integer implementation of the
13* forward DCT (Discrete Cosine Transform).
14*
15* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
16* on each column. Direct algorithms are also available, but they are
17* much more complex and seem not to be any faster when reduced to code.
18*
19* This implementation is based on an algorithm described in
20* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
21* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
22* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
23* The primary algorithm described there uses 11 multiplies and 29 adds.
24* We use their alternate method with 12 multiplies and 32 adds.
25* The advantage of this method is that no data path contains more than one
26* multiplication; this allows a very simple and accurate implementation in
27* scaled fixed-point arithmetic, with a minimal number of shifts.
28*/
29
30#define JPEG_INTERNALS31#include "jinclude.h"32#include "jpeglib.h"33#include "jdct.h" /* Private declarations for DCT subsystem */34
35#ifdef DCT_ISLOW_SUPPORTED36
37
38/*
39* This module is specialized to the case DCTSIZE = 8.
40*/
41
42#if DCTSIZE != 843Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */44#endif45
46
47/*
48* The poop on this scaling stuff is as follows:
49*
50* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
51* larger than the true DCT outputs. The final outputs are therefore
52* a factor of N larger than desired; since N=8 this can be cured by
53* a simple right shift at the end of the algorithm. The advantage of
54* this arrangement is that we save two multiplications per 1-D DCT,
55* because the y0 and y4 outputs need not be divided by sqrt(N).
56* In the IJG code, this factor of 8 is removed by the quantization step
57* (in jcdctmgr.c), NOT in this module.
58*
59* We have to do addition and subtraction of the integer inputs, which
60* is no problem, and multiplication by fractional constants, which is
61* a problem to do in integer arithmetic. We multiply all the constants
62* by CONST_SCALE and convert them to integer constants (thus retaining
63* CONST_BITS bits of precision in the constants). After doing a
64* multiplication we have to divide the product by CONST_SCALE, with proper
65* rounding, to produce the correct output. This division can be done
66* cheaply as a right shift of CONST_BITS bits. We postpone shifting
67* as long as possible so that partial sums can be added together with
68* full fractional precision.
69*
70* The outputs of the first pass are scaled up by PASS1_BITS bits so that
71* they are represented to better-than-integral precision. These outputs
72* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
73* with the recommended scaling. (For 12-bit sample data, the intermediate
74* array is INT32 anyway.)
75*
76* To avoid overflow of the 32-bit intermediate results in pass 2, we must
77* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
78* shows that the values given below are the most effective.
79*/
80
81#if BITS_IN_JSAMPLE == 882#define CONST_BITS 1383#define PASS1_BITS 284#else85#define CONST_BITS 1386#define PASS1_BITS 1 /* lose a little precision to avoid overflow */87#endif88
89/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
90* causing a lot of useless floating-point operations at run time.
91* To get around this we use the following pre-calculated constants.
92* If you change CONST_BITS you may want to add appropriate values.
93* (With a reasonable C compiler, you can just rely on the FIX() macro...)
94*/
95
96#if CONST_BITS == 1397#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */98#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */99#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */100#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */101#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */102#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */103#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */104#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */105#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */106#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */107#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */108#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */109#else110#define FIX_0_298631336 FIX(0.298631336)111#define FIX_0_390180644 FIX(0.390180644)112#define FIX_0_541196100 FIX(0.541196100)113#define FIX_0_765366865 FIX(0.765366865)114#define FIX_0_899976223 FIX(0.899976223)115#define FIX_1_175875602 FIX(1.175875602)116#define FIX_1_501321110 FIX(1.501321110)117#define FIX_1_847759065 FIX(1.847759065)118#define FIX_1_961570560 FIX(1.961570560)119#define FIX_2_053119869 FIX(2.053119869)120#define FIX_2_562915447 FIX(2.562915447)121#define FIX_3_072711026 FIX(3.072711026)122#endif123
124
125/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
126* For 8-bit samples with the recommended scaling, all the variable
127* and constant values involved are no more than 16 bits wide, so a
128* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
129* For 12-bit samples, a full 32-bit multiplication will be needed.
130*/
131
132#if BITS_IN_JSAMPLE == 8133#define MULTIPLY(var,const) MULTIPLY16C16(var,const)134#else135#define MULTIPLY(var,const) ((var) * (const))136#endif137
138
139/*
140* Perform the forward DCT on one block of samples.
141*/
142
143GLOBAL(void)144jpeg_fdct_islow (DCTELEM * data)145{
146INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;147INT32 tmp10, tmp11, tmp12, tmp13;148INT32 z1, z2, z3, z4, z5;149DCTELEM *dataptr;150int ctr;151SHIFT_TEMPS
152
153/* Pass 1: process rows. */154/* Note results are scaled up by sqrt(8) compared to a true DCT; */155/* furthermore, we scale the results by 2**PASS1_BITS. */156
157dataptr = data;158for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {159tmp0 = dataptr[0] + dataptr[7];160tmp7 = dataptr[0] - dataptr[7];161tmp1 = dataptr[1] + dataptr[6];162tmp6 = dataptr[1] - dataptr[6];163tmp2 = dataptr[2] + dataptr[5];164tmp5 = dataptr[2] - dataptr[5];165tmp3 = dataptr[3] + dataptr[4];166tmp4 = dataptr[3] - dataptr[4];167
168/* Even part per LL&M figure 1 --- note that published figure is faulty;169* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
170*/
171
172tmp10 = tmp0 + tmp3;173tmp13 = tmp0 - tmp3;174tmp11 = tmp1 + tmp2;175tmp12 = tmp1 - tmp2;176
177dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);178dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);179
180z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);181dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),182CONST_BITS-PASS1_BITS);183dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),184CONST_BITS-PASS1_BITS);185
186/* Odd part per figure 8 --- note paper omits factor of sqrt(2).187* cK represents cos(K*pi/16).
188* i0..i3 in the paper are tmp4..tmp7 here.
189*/
190
191z1 = tmp4 + tmp7;192z2 = tmp5 + tmp6;193z3 = tmp4 + tmp6;194z4 = tmp5 + tmp7;195z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */196
197tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */198tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */199tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */200tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */201z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */202z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */203z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */204z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */205
206z3 += z5;207z4 += z5;208
209dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);210dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);211dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);212dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);213
214dataptr += DCTSIZE; /* advance pointer to next row */215}216
217/* Pass 2: process columns.218* We remove the PASS1_BITS scaling, but leave the results scaled up
219* by an overall factor of 8.
220*/
221
222dataptr = data;223for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {224tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];225tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];226tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];227tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];228tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];229tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];230tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];231tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];232
233/* Even part per LL&M figure 1 --- note that published figure is faulty;234* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
235*/
236
237tmp10 = tmp0 + tmp3;238tmp13 = tmp0 - tmp3;239tmp11 = tmp1 + tmp2;240tmp12 = tmp1 - tmp2;241
242dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);243dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);244
245z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);246dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),247CONST_BITS+PASS1_BITS);248dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),249CONST_BITS+PASS1_BITS);250
251/* Odd part per figure 8 --- note paper omits factor of sqrt(2).252* cK represents cos(K*pi/16).
253* i0..i3 in the paper are tmp4..tmp7 here.
254*/
255
256z1 = tmp4 + tmp7;257z2 = tmp5 + tmp6;258z3 = tmp4 + tmp6;259z4 = tmp5 + tmp7;260z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */261
262tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */263tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */264tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */265tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */266z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */267z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */268z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */269z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */270
271z3 += z5;272z4 += z5;273
274dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,275CONST_BITS+PASS1_BITS);276dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,277CONST_BITS+PASS1_BITS);278dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,279CONST_BITS+PASS1_BITS);280dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,281CONST_BITS+PASS1_BITS);282
283dataptr++; /* advance pointer to next column */284}285}
286
287#endif /* DCT_ISLOW_SUPPORTED */288