jdk

Форк
0
172 строки · 5.5 Кб
1
/*
2
 * reserved comment block
3
 * DO NOT REMOVE OR ALTER!
4
 */
5
/*
6
 * jfdctflt.c
7
 *
8
 * Copyright (C) 1994-1996, Thomas G. Lane.
9
 * This file is part of the Independent JPEG Group's software.
10
 * For conditions of distribution and use, see the accompanying README file.
11
 *
12
 * This file contains a floating-point implementation of the
13
 * forward DCT (Discrete Cosine Transform).
14
 *
15
 * This implementation should be more accurate than either of the integer
16
 * DCT implementations.  However, it may not give the same results on all
17
 * machines because of differences in roundoff behavior.  Speed will depend
18
 * on the hardware's floating point capacity.
19
 *
20
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
21
 * on each column.  Direct algorithms are also available, but they are
22
 * much more complex and seem not to be any faster when reduced to code.
23
 *
24
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
25
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
26
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
27
 * JPEG textbook (see REFERENCES section in file README).  The following code
28
 * is based directly on figure 4-8 in P&M.
29
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
30
 * possible to arrange the computation so that many of the multiplies are
31
 * simple scalings of the final outputs.  These multiplies can then be
32
 * folded into the multiplications or divisions by the JPEG quantization
33
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
34
 * to be done in the DCT itself.
35
 * The primary disadvantage of this method is that with a fixed-point
36
 * implementation, accuracy is lost due to imprecise representation of the
37
 * scaled quantization values.  However, that problem does not arise if
38
 * we use floating point arithmetic.
39
 */
40

41
#define JPEG_INTERNALS
42
#include "jinclude.h"
43
#include "jpeglib.h"
44
#include "jdct.h"               /* Private declarations for DCT subsystem */
45

46
#ifdef DCT_FLOAT_SUPPORTED
47

48

49
/*
50
 * This module is specialized to the case DCTSIZE = 8.
51
 */
52

53
#if DCTSIZE != 8
54
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
55
#endif
56

57

58
/*
59
 * Perform the forward DCT on one block of samples.
60
 */
61

62
GLOBAL(void)
63
jpeg_fdct_float (FAST_FLOAT * data)
64
{
65
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
66
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
67
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
68
  FAST_FLOAT *dataptr;
69
  int ctr;
70

71
  /* Pass 1: process rows. */
72

73
  dataptr = data;
74
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
75
    tmp0 = dataptr[0] + dataptr[7];
76
    tmp7 = dataptr[0] - dataptr[7];
77
    tmp1 = dataptr[1] + dataptr[6];
78
    tmp6 = dataptr[1] - dataptr[6];
79
    tmp2 = dataptr[2] + dataptr[5];
80
    tmp5 = dataptr[2] - dataptr[5];
81
    tmp3 = dataptr[3] + dataptr[4];
82
    tmp4 = dataptr[3] - dataptr[4];
83

84
    /* Even part */
85

86
    tmp10 = tmp0 + tmp3;        /* phase 2 */
87
    tmp13 = tmp0 - tmp3;
88
    tmp11 = tmp1 + tmp2;
89
    tmp12 = tmp1 - tmp2;
90

91
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
92
    dataptr[4] = tmp10 - tmp11;
93

94
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
95
    dataptr[2] = tmp13 + z1;    /* phase 5 */
96
    dataptr[6] = tmp13 - z1;
97

98
    /* Odd part */
99

100
    tmp10 = tmp4 + tmp5;        /* phase 2 */
101
    tmp11 = tmp5 + tmp6;
102
    tmp12 = tmp6 + tmp7;
103

104
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
105
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
106
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
107
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
108
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
109

110
    z11 = tmp7 + z3;            /* phase 5 */
111
    z13 = tmp7 - z3;
112

113
    dataptr[5] = z13 + z2;      /* phase 6 */
114
    dataptr[3] = z13 - z2;
115
    dataptr[1] = z11 + z4;
116
    dataptr[7] = z11 - z4;
117

118
    dataptr += DCTSIZE;         /* advance pointer to next row */
119
  }
120

121
  /* Pass 2: process columns. */
122

123
  dataptr = data;
124
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
125
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
126
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
127
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
128
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
129
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
130
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
131
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
132
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
133

134
    /* Even part */
135

136
    tmp10 = tmp0 + tmp3;        /* phase 2 */
137
    tmp13 = tmp0 - tmp3;
138
    tmp11 = tmp1 + tmp2;
139
    tmp12 = tmp1 - tmp2;
140

141
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
142
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
143

144
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
145
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
146
    dataptr[DCTSIZE*6] = tmp13 - z1;
147

148
    /* Odd part */
149

150
    tmp10 = tmp4 + tmp5;        /* phase 2 */
151
    tmp11 = tmp5 + tmp6;
152
    tmp12 = tmp6 + tmp7;
153

154
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
155
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
156
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
157
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
158
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
159

160
    z11 = tmp7 + z3;            /* phase 5 */
161
    z13 = tmp7 - z3;
162

163
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
164
    dataptr[DCTSIZE*3] = z13 - z2;
165
    dataptr[DCTSIZE*1] = z11 + z4;
166
    dataptr[DCTSIZE*7] = z11 - z4;
167

168
    dataptr++;                  /* advance pointer to next column */
169
  }
170
}
171

172
#endif /* DCT_FLOAT_SUPPORTED */
173

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.