jdk
172 строки · 5.5 Кб
1/*
2* reserved comment block
3* DO NOT REMOVE OR ALTER!
4*/
5/*
6* jfdctflt.c
7*
8* Copyright (C) 1994-1996, Thomas G. Lane.
9* This file is part of the Independent JPEG Group's software.
10* For conditions of distribution and use, see the accompanying README file.
11*
12* This file contains a floating-point implementation of the
13* forward DCT (Discrete Cosine Transform).
14*
15* This implementation should be more accurate than either of the integer
16* DCT implementations. However, it may not give the same results on all
17* machines because of differences in roundoff behavior. Speed will depend
18* on the hardware's floating point capacity.
19*
20* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
21* on each column. Direct algorithms are also available, but they are
22* much more complex and seem not to be any faster when reduced to code.
23*
24* This implementation is based on Arai, Agui, and Nakajima's algorithm for
25* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
26* Japanese, but the algorithm is described in the Pennebaker & Mitchell
27* JPEG textbook (see REFERENCES section in file README). The following code
28* is based directly on figure 4-8 in P&M.
29* While an 8-point DCT cannot be done in less than 11 multiplies, it is
30* possible to arrange the computation so that many of the multiplies are
31* simple scalings of the final outputs. These multiplies can then be
32* folded into the multiplications or divisions by the JPEG quantization
33* table entries. The AA&N method leaves only 5 multiplies and 29 adds
34* to be done in the DCT itself.
35* The primary disadvantage of this method is that with a fixed-point
36* implementation, accuracy is lost due to imprecise representation of the
37* scaled quantization values. However, that problem does not arise if
38* we use floating point arithmetic.
39*/
40
41#define JPEG_INTERNALS
42#include "jinclude.h"
43#include "jpeglib.h"
44#include "jdct.h" /* Private declarations for DCT subsystem */
45
46#ifdef DCT_FLOAT_SUPPORTED
47
48
49/*
50* This module is specialized to the case DCTSIZE = 8.
51*/
52
53#if DCTSIZE != 8
54Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
55#endif
56
57
58/*
59* Perform the forward DCT on one block of samples.
60*/
61
62GLOBAL(void)
63jpeg_fdct_float (FAST_FLOAT * data)
64{
65FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
66FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
67FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
68FAST_FLOAT *dataptr;
69int ctr;
70
71/* Pass 1: process rows. */
72
73dataptr = data;
74for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
75tmp0 = dataptr[0] + dataptr[7];
76tmp7 = dataptr[0] - dataptr[7];
77tmp1 = dataptr[1] + dataptr[6];
78tmp6 = dataptr[1] - dataptr[6];
79tmp2 = dataptr[2] + dataptr[5];
80tmp5 = dataptr[2] - dataptr[5];
81tmp3 = dataptr[3] + dataptr[4];
82tmp4 = dataptr[3] - dataptr[4];
83
84/* Even part */
85
86tmp10 = tmp0 + tmp3; /* phase 2 */
87tmp13 = tmp0 - tmp3;
88tmp11 = tmp1 + tmp2;
89tmp12 = tmp1 - tmp2;
90
91dataptr[0] = tmp10 + tmp11; /* phase 3 */
92dataptr[4] = tmp10 - tmp11;
93
94z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
95dataptr[2] = tmp13 + z1; /* phase 5 */
96dataptr[6] = tmp13 - z1;
97
98/* Odd part */
99
100tmp10 = tmp4 + tmp5; /* phase 2 */
101tmp11 = tmp5 + tmp6;
102tmp12 = tmp6 + tmp7;
103
104/* The rotator is modified from fig 4-8 to avoid extra negations. */
105z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
106z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
107z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
108z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
109
110z11 = tmp7 + z3; /* phase 5 */
111z13 = tmp7 - z3;
112
113dataptr[5] = z13 + z2; /* phase 6 */
114dataptr[3] = z13 - z2;
115dataptr[1] = z11 + z4;
116dataptr[7] = z11 - z4;
117
118dataptr += DCTSIZE; /* advance pointer to next row */
119}
120
121/* Pass 2: process columns. */
122
123dataptr = data;
124for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
125tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
126tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
127tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
128tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
129tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
130tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
131tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
132tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
133
134/* Even part */
135
136tmp10 = tmp0 + tmp3; /* phase 2 */
137tmp13 = tmp0 - tmp3;
138tmp11 = tmp1 + tmp2;
139tmp12 = tmp1 - tmp2;
140
141dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
142dataptr[DCTSIZE*4] = tmp10 - tmp11;
143
144z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
145dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
146dataptr[DCTSIZE*6] = tmp13 - z1;
147
148/* Odd part */
149
150tmp10 = tmp4 + tmp5; /* phase 2 */
151tmp11 = tmp5 + tmp6;
152tmp12 = tmp6 + tmp7;
153
154/* The rotator is modified from fig 4-8 to avoid extra negations. */
155z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
156z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
157z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
158z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
159
160z11 = tmp7 + z3; /* phase 5 */
161z13 = tmp7 - z3;
162
163dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
164dataptr[DCTSIZE*3] = z13 - z2;
165dataptr[DCTSIZE*1] = z11 + z4;
166dataptr[DCTSIZE*7] = z11 - z4;
167
168dataptr++; /* advance pointer to next column */
169}
170}
171
172#endif /* DCT_FLOAT_SUPPORTED */
173