jdk

Форк
0
/
numberSeq.cpp 
276 строк · 7.0 Кб
1
/*
2
 * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "utilities/debug.hpp"
28
#include "utilities/globalDefinitions.hpp"
29
#include "utilities/numberSeq.hpp"
30

31
AbsSeq::AbsSeq(double alpha) :
32
  _num(0), _sum(0.0), _sum_of_squares(0.0),
33
  _davg(0.0), _dvariance(0.0), _alpha(alpha) {
34
}
35

36
void AbsSeq::add(double val) {
37
  if (_num == 0) {
38
    // if the sequence is empty, the davg is the same as the value
39
    _davg = val;
40
    // and the variance is 0
41
    _dvariance = 0.0;
42
  } else {
43
    // otherwise, calculate both
44
    // Formula from "Incremental calculation of weighted mean and variance" by Tony Finch
45
    // diff := x - mean
46
    // incr := alpha * diff
47
    // mean := mean + incr
48
    // variance := (1 - alpha) * (variance + diff * incr)
49
    // PDF available at https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
50
    double diff = val - _davg;
51
    double incr = _alpha * diff;
52
    _davg += incr;
53
    _dvariance = (1.0 - _alpha) * (_dvariance + diff * incr);
54
  }
55
}
56

57
double AbsSeq::avg() const {
58
  if (_num == 0)
59
    return 0.0;
60
  else
61
    return _sum / total();
62
}
63

64
double AbsSeq::variance() const {
65
  if (_num <= 1)
66
    return 0.0;
67

68
  double x_bar = avg();
69
  double result = _sum_of_squares / total() - x_bar * x_bar;
70
  if (result < 0.0) {
71
    // due to loss-of-precision errors, the variance might be negative
72
    // by a small bit
73

74
    //    guarantee(-0.1 < result && result < 0.0,
75
    //        "if variance is negative, it should be very small");
76
    result = 0.0;
77
  }
78
  return result;
79
}
80

81
double AbsSeq::sd() const {
82
  double var = variance();
83
  guarantee( var >= 0.0, "variance should not be negative" );
84
  return sqrt(var);
85
}
86

87
double AbsSeq::davg() const {
88
  return _davg;
89
}
90

91
double AbsSeq::dvariance() const {
92
  if (_num <= 1)
93
    return 0.0;
94

95
  double result = _dvariance;
96
  if (result < 0.0) {
97
    // due to loss-of-precision errors, the variance might be negative
98
    // by a small bit
99

100
    guarantee(-0.1 < result && result < 0.0,
101
               "if variance is negative, it should be very small");
102
    result = 0.0;
103
  }
104
  return result;
105
}
106

107
double AbsSeq::dsd() const {
108
  double var = dvariance();
109
  guarantee( var >= 0.0, "variance should not be negative" );
110
  return sqrt(var);
111
}
112

113
NumberSeq::NumberSeq(double alpha) :
114
  AbsSeq(alpha), _last(0.0), _maximum(0.0) {
115
}
116

117
bool NumberSeq::check_nums(NumberSeq *total, int n, NumberSeq **parts) {
118
  for (int i = 0; i < n; ++i) {
119
    if (parts[i] != nullptr && total->num() != parts[i]->num())
120
      return false;
121
  }
122
  return true;
123
}
124

125
void NumberSeq::add(double val) {
126
  AbsSeq::add(val);
127

128
  _last = val;
129
  if (_num == 0) {
130
    _maximum = val;
131
  } else {
132
    if (val > _maximum)
133
      _maximum = val;
134
  }
135
  _sum += val;
136
  _sum_of_squares += val * val;
137
  ++_num;
138
}
139

140

141
TruncatedSeq::TruncatedSeq(int length, double alpha):
142
  AbsSeq(alpha), _length(length), _next(0) {
143
  _sequence = NEW_C_HEAP_ARRAY(double, _length, mtInternal);
144
  for (int i = 0; i < _length; ++i)
145
    _sequence[i] = 0.0;
146
}
147

148
TruncatedSeq::~TruncatedSeq() {
149
  FREE_C_HEAP_ARRAY(double, _sequence);
150
}
151

152
void TruncatedSeq::add(double val) {
153
  AbsSeq::add(val);
154

155
  // get the oldest value in the sequence...
156
  double old_val = _sequence[_next];
157
  // ...remove it from the sum and sum of squares
158
  _sum -= old_val;
159
  _sum_of_squares -= old_val * old_val;
160

161
  // ...and update them with the new value
162
  _sum += val;
163
  _sum_of_squares += val * val;
164

165
  // now replace the old value with the new one
166
  _sequence[_next] = val;
167
  _next = (_next + 1) % _length;
168

169
  // only increase it if the buffer is not full
170
  if (_num < _length)
171
    ++_num;
172

173
  guarantee( variance() > -1.0, "variance should be >= 0" );
174
}
175

176
// can't easily keep track of this incrementally...
177
double TruncatedSeq::maximum() const {
178
  if (_num == 0)
179
    return 0.0;
180
  double ret = _sequence[0];
181
  for (int i = 1; i < _num; ++i) {
182
    double val = _sequence[i];
183
    if (val > ret)
184
      ret = val;
185
  }
186
  return ret;
187
}
188

189
double TruncatedSeq::last() const {
190
  if (_num == 0)
191
    return 0.0;
192
  unsigned last_index = (_next + _length - 1) % _length;
193
  return _sequence[last_index];
194
}
195

196
double TruncatedSeq::oldest() const {
197
  if (_num == 0)
198
    return 0.0;
199
  else if (_num < _length)
200
    // index 0 always oldest value until the array is full
201
    return _sequence[0];
202
  else {
203
    // since the array is full, _next is over the oldest value
204
    return _sequence[_next];
205
  }
206
}
207

208
double TruncatedSeq::predict_next() const {
209
  if (_num == 0) {
210
    // No data points, pick function: y = 0 + 0*x
211
    return 0.0;
212
  }
213

214
  if (_num == 1) {
215
    // Only one point P, pick function: y = P_y + 0*x
216
    return _sequence[0];
217
  }
218

219
  double num           = (double) _num;
220
  double x_squared_sum = 0.0;
221
  double x_sum         = 0.0;
222
  double y_sum         = 0.0;
223
  double xy_sum        = 0.0;
224
  double x_avg         = 0.0;
225
  double y_avg         = 0.0;
226

227
  int first = (_next + _length - _num) % _length;
228
  for (int i = 0; i < _num; ++i) {
229
    double x = (double) i;
230
    double y =  _sequence[(first + i) % _length];
231

232
    x_squared_sum += x * x;
233
    x_sum         += x;
234
    y_sum         += y;
235
    xy_sum        += x * y;
236
  }
237
  x_avg = x_sum / num;
238
  y_avg = y_sum / num;
239

240
  double Sxx = x_squared_sum - x_sum * x_sum / num;
241
  double Sxy = xy_sum - x_sum * y_sum / num;
242
  double b1 = Sxy / Sxx;
243
  double b0 = y_avg - b1 * x_avg;
244

245
  return b0 + b1 * num;
246
}
247

248

249
// Printing/Debugging Support
250

251
void AbsSeq::dump() { dump_on(tty); }
252

253
void AbsSeq::dump_on(outputStream* s) {
254
  s->print_cr("\t _num = %d, _sum = %7.3f, _sum_of_squares = %7.3f",
255
                  _num,      _sum,         _sum_of_squares);
256
  s->print_cr("\t _davg = %7.3f, _dvariance = %7.3f, _alpha = %7.3f",
257
                  _davg,         _dvariance,         _alpha);
258
}
259

260
void NumberSeq::dump_on(outputStream* s) {
261
  AbsSeq::dump_on(s);
262
  s->print_cr("\t\t _last = %7.3f, _maximum = %7.3f", _last, _maximum);
263
}
264

265
void TruncatedSeq::dump_on(outputStream* s) {
266
  AbsSeq::dump_on(s);
267
  s->print_cr("\t\t _length = %d, _next = %d", _length, _next);
268
  for (int i = 0; i < _length; i++) {
269
    if (i%5 == 0) {
270
      s->cr();
271
      s->print("\t");
272
    }
273
    s->print("\t[%d]=%7.3f", i, _sequence[i]);
274
  }
275
  s->cr();
276
}
277

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.