jdk

Форк
0
/
output.cpp 
3664 строки · 133.5 Кб
1
/*
2
 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "asm/assembler.inline.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "code/compiledIC.hpp"
29
#include "code/debugInfo.hpp"
30
#include "code/debugInfoRec.hpp"
31
#include "compiler/compileBroker.hpp"
32
#include "compiler/compilerDirectives.hpp"
33
#include "compiler/disassembler.hpp"
34
#include "compiler/oopMap.hpp"
35
#include "gc/shared/barrierSet.hpp"
36
#include "gc/shared/c2/barrierSetC2.hpp"
37
#include "memory/allocation.inline.hpp"
38
#include "memory/allocation.hpp"
39
#include "opto/ad.hpp"
40
#include "opto/block.hpp"
41
#include "opto/c2compiler.hpp"
42
#include "opto/c2_MacroAssembler.hpp"
43
#include "opto/callnode.hpp"
44
#include "opto/cfgnode.hpp"
45
#include "opto/locknode.hpp"
46
#include "opto/machnode.hpp"
47
#include "opto/node.hpp"
48
#include "opto/optoreg.hpp"
49
#include "opto/output.hpp"
50
#include "opto/regalloc.hpp"
51
#include "opto/runtime.hpp"
52
#include "opto/subnode.hpp"
53
#include "opto/type.hpp"
54
#include "runtime/handles.inline.hpp"
55
#include "runtime/sharedRuntime.hpp"
56
#include "utilities/macros.hpp"
57
#include "utilities/powerOfTwo.hpp"
58
#include "utilities/xmlstream.hpp"
59

60
#ifndef PRODUCT
61
#define DEBUG_ARG(x) , x
62
#else
63
#define DEBUG_ARG(x)
64
#endif
65

66
//------------------------------Scheduling----------------------------------
67
// This class contains all the information necessary to implement instruction
68
// scheduling and bundling.
69
class Scheduling {
70

71
private:
72
  // Arena to use
73
  Arena *_arena;
74

75
  // Control-Flow Graph info
76
  PhaseCFG *_cfg;
77

78
  // Register Allocation info
79
  PhaseRegAlloc *_regalloc;
80

81
  // Number of nodes in the method
82
  uint _node_bundling_limit;
83

84
  // List of scheduled nodes. Generated in reverse order
85
  Node_List _scheduled;
86

87
  // List of nodes currently available for choosing for scheduling
88
  Node_List _available;
89

90
  // For each instruction beginning a bundle, the number of following
91
  // nodes to be bundled with it.
92
  Bundle *_node_bundling_base;
93

94
  // Mapping from register to Node
95
  Node_List _reg_node;
96

97
  // Free list for pinch nodes.
98
  Node_List _pinch_free_list;
99

100
  // Number of uses of this node within the containing basic block.
101
  short *_uses;
102

103
  // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
104
  // front, branch+proj at end.  Also skips Catch/CProj (same as
105
  // branch-at-end), plus just-prior exception-throwing call.
106
  uint _bb_start, _bb_end;
107

108
  // Latency from the end of the basic block as scheduled
109
  unsigned short *_current_latency;
110

111
  // Remember the next node
112
  Node *_next_node;
113

114
  // Use this for an unconditional branch delay slot
115
  Node *_unconditional_delay_slot;
116

117
  // Pointer to a Nop
118
  MachNopNode *_nop;
119

120
  // Length of the current bundle, in instructions
121
  uint _bundle_instr_count;
122

123
  // Current Cycle number, for computing latencies and bundling
124
  uint _bundle_cycle_number;
125

126
  // Bundle information
127
  Pipeline_Use_Element _bundle_use_elements[resource_count];
128
  Pipeline_Use         _bundle_use;
129

130
  // Dump the available list
131
  void dump_available() const;
132

133
public:
134
  Scheduling(Arena *arena, Compile &compile);
135

136
  // Destructor
137
  NOT_PRODUCT( ~Scheduling(); )
138

139
  // Step ahead "i" cycles
140
  void step(uint i);
141

142
  // Step ahead 1 cycle, and clear the bundle state (for example,
143
  // at a branch target)
144
  void step_and_clear();
145

146
  Bundle* node_bundling(const Node *n) {
147
    assert(valid_bundle_info(n), "oob");
148
    return (&_node_bundling_base[n->_idx]);
149
  }
150

151
  bool valid_bundle_info(const Node *n) const {
152
    return (_node_bundling_limit > n->_idx);
153
  }
154

155
  bool starts_bundle(const Node *n) const {
156
    return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
157
  }
158

159
  // Do the scheduling
160
  void DoScheduling();
161

162
  // Compute the register antidependencies within a basic block
163
  void ComputeRegisterAntidependencies(Block *bb);
164
  void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
165
  void verify_good_schedule( Block *b, const char *msg );
166
  void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
167
  void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
168

169
  // Add a node to the current bundle
170
  void AddNodeToBundle(Node *n, const Block *bb);
171

172
  // Return an integer less than, equal to, or greater than zero
173
  // if the stack offset of the first argument is respectively
174
  // less than, equal to, or greater than the second.
175
  int compare_two_spill_nodes(Node* first, Node* second);
176

177
  // Add a node to the list of available nodes
178
  void AddNodeToAvailableList(Node *n);
179

180
  // Compute the local use count for the nodes in a block, and compute
181
  // the list of instructions with no uses in the block as available
182
  void ComputeUseCount(const Block *bb);
183

184
  // Choose an instruction from the available list to add to the bundle
185
  Node * ChooseNodeToBundle();
186

187
  // See if this Node fits into the currently accumulating bundle
188
  bool NodeFitsInBundle(Node *n);
189

190
  // Decrement the use count for a node
191
 void DecrementUseCounts(Node *n, const Block *bb);
192

193
  // Garbage collect pinch nodes for reuse by other blocks.
194
  void garbage_collect_pinch_nodes();
195
  // Clean up a pinch node for reuse (helper for above).
196
  void cleanup_pinch( Node *pinch );
197

198
  // Information for statistics gathering
199
#ifndef PRODUCT
200
private:
201
  // Gather information on size of nops relative to total
202
  uint _branches, _unconditional_delays;
203

204
  static uint _total_nop_size, _total_method_size;
205
  static uint _total_branches, _total_unconditional_delays;
206
  static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
207

208
public:
209
  static void print_statistics();
210

211
  static void increment_instructions_per_bundle(uint i) {
212
    _total_instructions_per_bundle[i]++;
213
  }
214

215
  static void increment_nop_size(uint s) {
216
    _total_nop_size += s;
217
  }
218

219
  static void increment_method_size(uint s) {
220
    _total_method_size += s;
221
  }
222
#endif
223

224
};
225

226
PhaseOutput::PhaseOutput()
227
  : Phase(Phase::Output),
228
    _code_buffer("Compile::Fill_buffer"),
229
    _first_block_size(0),
230
    _handler_table(),
231
    _inc_table(),
232
    _stub_list(),
233
    _oop_map_set(nullptr),
234
    _scratch_buffer_blob(nullptr),
235
    _scratch_locs_memory(nullptr),
236
    _scratch_const_size(-1),
237
    _in_scratch_emit_size(false),
238
    _frame_slots(0),
239
    _code_offsets(),
240
    _node_bundling_limit(0),
241
    _node_bundling_base(nullptr),
242
    _orig_pc_slot(0),
243
    _orig_pc_slot_offset_in_bytes(0),
244
    _buf_sizes(),
245
    _block(nullptr),
246
    _index(0) {
247
  C->set_output(this);
248
  if (C->stub_name() == nullptr) {
249
    _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
250
  }
251
}
252

253
PhaseOutput::~PhaseOutput() {
254
  C->set_output(nullptr);
255
  if (_scratch_buffer_blob != nullptr) {
256
    BufferBlob::free(_scratch_buffer_blob);
257
  }
258
}
259

260
void PhaseOutput::perform_mach_node_analysis() {
261
  // Late barrier analysis must be done after schedule and bundle
262
  // Otherwise liveness based spilling will fail
263
  BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
264
  bs->late_barrier_analysis();
265

266
  pd_perform_mach_node_analysis();
267

268
  C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3);
269
}
270

271
// Convert Nodes to instruction bits and pass off to the VM
272
void PhaseOutput::Output() {
273
  // RootNode goes
274
  assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
275

276
  // The number of new nodes (mostly MachNop) is proportional to
277
  // the number of java calls and inner loops which are aligned.
278
  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
279
                            C->inner_loops()*(OptoLoopAlignment-1)),
280
                           "out of nodes before code generation" ) ) {
281
    return;
282
  }
283
  // Make sure I can find the Start Node
284
  Block *entry = C->cfg()->get_block(1);
285
  Block *broot = C->cfg()->get_root_block();
286

287
  const StartNode *start = entry->head()->as_Start();
288

289
  // Replace StartNode with prolog
290
  MachPrologNode *prolog = new MachPrologNode();
291
  entry->map_node(prolog, 0);
292
  C->cfg()->map_node_to_block(prolog, entry);
293
  C->cfg()->unmap_node_from_block(start); // start is no longer in any block
294

295
  // Virtual methods need an unverified entry point
296

297
  if( C->is_osr_compilation() ) {
298
    if( PoisonOSREntry ) {
299
      // TODO: Should use a ShouldNotReachHereNode...
300
      C->cfg()->insert( broot, 0, new MachBreakpointNode() );
301
    }
302
  } else {
303
    if( C->method() && !C->method()->flags().is_static() ) {
304
      // Insert unvalidated entry point
305
      C->cfg()->insert( broot, 0, new MachUEPNode() );
306
    }
307

308
  }
309

310
  // Break before main entry point
311
  if ((C->method() && C->directive()->BreakAtExecuteOption) ||
312
      (OptoBreakpoint && C->is_method_compilation())       ||
313
      (OptoBreakpointOSR && C->is_osr_compilation())       ||
314
      (OptoBreakpointC2R && !C->method())                   ) {
315
    // checking for C->method() means that OptoBreakpoint does not apply to
316
    // runtime stubs or frame converters
317
    C->cfg()->insert( entry, 1, new MachBreakpointNode() );
318
  }
319

320
  // Insert epilogs before every return
321
  for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
322
    Block* block = C->cfg()->get_block(i);
323
    if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
324
      Node* m = block->end();
325
      if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
326
        MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
327
        block->add_inst(epilog);
328
        C->cfg()->map_node_to_block(epilog, block);
329
      }
330
    }
331
  }
332

333
  // Keeper of sizing aspects
334
  _buf_sizes = BufferSizingData();
335

336
  // Initialize code buffer
337
  estimate_buffer_size(_buf_sizes._const);
338
  if (C->failing()) return;
339

340
  // Pre-compute the length of blocks and replace
341
  // long branches with short if machine supports it.
342
  // Must be done before ScheduleAndBundle due to SPARC delay slots
343
  uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
344
  blk_starts[0] = 0;
345
  shorten_branches(blk_starts);
346

347
  ScheduleAndBundle();
348
  if (C->failing()) {
349
    return;
350
  }
351

352
  perform_mach_node_analysis();
353

354
  // Complete sizing of codebuffer
355
  CodeBuffer* cb = init_buffer();
356
  if (cb == nullptr || C->failing()) {
357
    return;
358
  }
359

360
  BuildOopMaps();
361

362
  if (C->failing())  {
363
    return;
364
  }
365

366
  C2_MacroAssembler masm(cb);
367
  fill_buffer(&masm, blk_starts);
368
}
369

370
bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
371
  // Determine if we need to generate a stack overflow check.
372
  // Do it if the method is not a stub function and
373
  // has java calls or has frame size > vm_page_size/8.
374
  // The debug VM checks that deoptimization doesn't trigger an
375
  // unexpected stack overflow (compiled method stack banging should
376
  // guarantee it doesn't happen) so we always need the stack bang in
377
  // a debug VM.
378
  return (C->stub_function() == nullptr &&
379
          (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3
380
           DEBUG_ONLY(|| true)));
381
}
382

383
bool PhaseOutput::need_register_stack_bang() const {
384
  // Determine if we need to generate a register stack overflow check.
385
  // This is only used on architectures which have split register
386
  // and memory stacks (ie. IA64).
387
  // Bang if the method is not a stub function and has java calls
388
  return (C->stub_function() == nullptr && C->has_java_calls());
389
}
390

391

392
// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
393
// of a loop. When aligning a loop we need to provide enough instructions
394
// in cpu's fetch buffer to feed decoders. The loop alignment could be
395
// avoided if we have enough instructions in fetch buffer at the head of a loop.
396
// By default, the size is set to 999999 by Block's constructor so that
397
// a loop will be aligned if the size is not reset here.
398
//
399
// Note: Mach instructions could contain several HW instructions
400
// so the size is estimated only.
401
//
402
void PhaseOutput::compute_loop_first_inst_sizes() {
403
  // The next condition is used to gate the loop alignment optimization.
404
  // Don't aligned a loop if there are enough instructions at the head of a loop
405
  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
406
  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
407
  // equal to 11 bytes which is the largest address NOP instruction.
408
  if (MaxLoopPad < OptoLoopAlignment - 1) {
409
    uint last_block = C->cfg()->number_of_blocks() - 1;
410
    for (uint i = 1; i <= last_block; i++) {
411
      Block* block = C->cfg()->get_block(i);
412
      // Check the first loop's block which requires an alignment.
413
      if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
414
        uint sum_size = 0;
415
        uint inst_cnt = NumberOfLoopInstrToAlign;
416
        inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
417

418
        // Check subsequent fallthrough blocks if the loop's first
419
        // block(s) does not have enough instructions.
420
        Block *nb = block;
421
        while(inst_cnt > 0 &&
422
              i < last_block &&
423
              !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
424
              !nb->has_successor(block)) {
425
          i++;
426
          nb = C->cfg()->get_block(i);
427
          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
428
        } // while( inst_cnt > 0 && i < last_block  )
429

430
        block->set_first_inst_size(sum_size);
431
      } // f( b->head()->is_Loop() )
432
    } // for( i <= last_block )
433
  } // if( MaxLoopPad < OptoLoopAlignment-1 )
434
}
435

436
// The architecture description provides short branch variants for some long
437
// branch instructions. Replace eligible long branches with short branches.
438
void PhaseOutput::shorten_branches(uint* blk_starts) {
439

440
  Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]);
441

442
  // Compute size of each block, method size, and relocation information size
443
  uint nblocks  = C->cfg()->number_of_blocks();
444

445
  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
446
  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
447
  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
448

449
  // Collect worst case block paddings
450
  int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
451
  memset(block_worst_case_pad, 0, nblocks * sizeof(int));
452

453
  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
454
  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
455

456
  bool has_short_branch_candidate = false;
457

458
  // Initialize the sizes to 0
459
  int code_size  = 0;          // Size in bytes of generated code
460
  int stub_size  = 0;          // Size in bytes of all stub entries
461
  // Size in bytes of all relocation entries, including those in local stubs.
462
  // Start with 2-bytes of reloc info for the unvalidated entry point
463
  int reloc_size = 1;          // Number of relocation entries
464

465
  // Make three passes.  The first computes pessimistic blk_starts,
466
  // relative jmp_offset and reloc_size information.  The second performs
467
  // short branch substitution using the pessimistic sizing.  The
468
  // third inserts nops where needed.
469

470
  // Step one, perform a pessimistic sizing pass.
471
  uint last_call_adr = max_juint;
472
  uint last_avoid_back_to_back_adr = max_juint;
473
  uint nop_size = (new MachNopNode())->size(C->regalloc());
474
  for (uint i = 0; i < nblocks; i++) { // For all blocks
475
    Block* block = C->cfg()->get_block(i);
476
    _block = block;
477

478
    // During short branch replacement, we store the relative (to blk_starts)
479
    // offset of jump in jmp_offset, rather than the absolute offset of jump.
480
    // This is so that we do not need to recompute sizes of all nodes when
481
    // we compute correct blk_starts in our next sizing pass.
482
    jmp_offset[i] = 0;
483
    jmp_size[i]   = 0;
484
    jmp_nidx[i]   = -1;
485
    DEBUG_ONLY( jmp_target[i] = 0; )
486
    DEBUG_ONLY( jmp_rule[i]   = 0; )
487

488
    // Sum all instruction sizes to compute block size
489
    uint last_inst = block->number_of_nodes();
490
    uint blk_size = 0;
491
    for (uint j = 0; j < last_inst; j++) {
492
      _index = j;
493
      Node* nj = block->get_node(_index);
494
      // Handle machine instruction nodes
495
      if (nj->is_Mach()) {
496
        MachNode* mach = nj->as_Mach();
497
        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
498
        reloc_size += mach->reloc();
499
        if (mach->is_MachCall()) {
500
          // add size information for trampoline stub
501
          // class CallStubImpl is platform-specific and defined in the *.ad files.
502
          stub_size  += CallStubImpl::size_call_trampoline();
503
          reloc_size += CallStubImpl::reloc_call_trampoline();
504

505
          MachCallNode *mcall = mach->as_MachCall();
506
          // This destination address is NOT PC-relative
507

508
          mcall->method_set((intptr_t)mcall->entry_point());
509

510
          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
511
            stub_size  += CompiledDirectCall::to_interp_stub_size();
512
            reloc_size += CompiledDirectCall::reloc_to_interp_stub();
513
          }
514
        } else if (mach->is_MachSafePoint()) {
515
          // If call/safepoint are adjacent, account for possible
516
          // nop to disambiguate the two safepoints.
517
          // ScheduleAndBundle() can rearrange nodes in a block,
518
          // check for all offsets inside this block.
519
          if (last_call_adr >= blk_starts[i]) {
520
            blk_size += nop_size;
521
          }
522
        }
523
        if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
524
          // Nop is inserted between "avoid back to back" instructions.
525
          // ScheduleAndBundle() can rearrange nodes in a block,
526
          // check for all offsets inside this block.
527
          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
528
            blk_size += nop_size;
529
          }
530
        }
531
        if (mach->may_be_short_branch()) {
532
          if (!nj->is_MachBranch()) {
533
#ifndef PRODUCT
534
            nj->dump(3);
535
#endif
536
            Unimplemented();
537
          }
538
          assert(jmp_nidx[i] == -1, "block should have only one branch");
539
          jmp_offset[i] = blk_size;
540
          jmp_size[i]   = nj->size(C->regalloc());
541
          jmp_nidx[i]   = j;
542
          has_short_branch_candidate = true;
543
        }
544
      }
545
      blk_size += nj->size(C->regalloc());
546
      // Remember end of call offset
547
      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
548
        last_call_adr = blk_starts[i]+blk_size;
549
      }
550
      // Remember end of avoid_back_to_back offset
551
      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
552
        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
553
      }
554
    }
555

556
    // When the next block starts a loop, we may insert pad NOP
557
    // instructions.  Since we cannot know our future alignment,
558
    // assume the worst.
559
    if (i < nblocks - 1) {
560
      Block* nb = C->cfg()->get_block(i + 1);
561
      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
562
      if (max_loop_pad > 0) {
563
        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
564
        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
565
        // If either is the last instruction in this block, bump by
566
        // max_loop_pad in lock-step with blk_size, so sizing
567
        // calculations in subsequent blocks still can conservatively
568
        // detect that it may the last instruction in this block.
569
        if (last_call_adr == blk_starts[i]+blk_size) {
570
          last_call_adr += max_loop_pad;
571
        }
572
        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
573
          last_avoid_back_to_back_adr += max_loop_pad;
574
        }
575
        blk_size += max_loop_pad;
576
        block_worst_case_pad[i + 1] = max_loop_pad;
577
      }
578
    }
579

580
    // Save block size; update total method size
581
    blk_starts[i+1] = blk_starts[i]+blk_size;
582
  }
583

584
  // Step two, replace eligible long jumps.
585
  bool progress = true;
586
  uint last_may_be_short_branch_adr = max_juint;
587
  while (has_short_branch_candidate && progress) {
588
    progress = false;
589
    has_short_branch_candidate = false;
590
    int adjust_block_start = 0;
591
    for (uint i = 0; i < nblocks; i++) {
592
      Block* block = C->cfg()->get_block(i);
593
      int idx = jmp_nidx[i];
594
      MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
595
      if (mach != nullptr && mach->may_be_short_branch()) {
596
#ifdef ASSERT
597
        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
598
        int j;
599
        // Find the branch; ignore trailing NOPs.
600
        for (j = block->number_of_nodes()-1; j>=0; j--) {
601
          Node* n = block->get_node(j);
602
          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
603
            break;
604
        }
605
        assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
606
#endif
607
        int br_size = jmp_size[i];
608
        int br_offs = blk_starts[i] + jmp_offset[i];
609

610
        // This requires the TRUE branch target be in succs[0]
611
        uint bnum = block->non_connector_successor(0)->_pre_order;
612
        int offset = blk_starts[bnum] - br_offs;
613
        if (bnum > i) { // adjust following block's offset
614
          offset -= adjust_block_start;
615
        }
616

617
        // This block can be a loop header, account for the padding
618
        // in the previous block.
619
        int block_padding = block_worst_case_pad[i];
620
        assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
621
        // In the following code a nop could be inserted before
622
        // the branch which will increase the backward distance.
623
        bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
624
        assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
625

626
        if (needs_padding && offset <= 0)
627
          offset -= nop_size;
628

629
        if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
630
          // We've got a winner.  Replace this branch.
631
          MachNode* replacement = mach->as_MachBranch()->short_branch_version();
632

633
          // Update the jmp_size.
634
          int new_size = replacement->size(C->regalloc());
635
          int diff     = br_size - new_size;
636
          assert(diff >= (int)nop_size, "short_branch size should be smaller");
637
          // Conservatively take into account padding between
638
          // avoid_back_to_back branches. Previous branch could be
639
          // converted into avoid_back_to_back branch during next
640
          // rounds.
641
          if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
642
            jmp_offset[i] += nop_size;
643
            diff -= nop_size;
644
          }
645
          adjust_block_start += diff;
646
          block->map_node(replacement, idx);
647
          mach->subsume_by(replacement, C);
648
          mach = replacement;
649
          progress = true;
650

651
          jmp_size[i] = new_size;
652
          DEBUG_ONLY( jmp_target[i] = bnum; );
653
          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
654
        } else {
655
          // The jump distance is not short, try again during next iteration.
656
          has_short_branch_candidate = true;
657
        }
658
      } // (mach->may_be_short_branch())
659
      if (mach != nullptr && (mach->may_be_short_branch() ||
660
                           mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
661
        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
662
      }
663
      blk_starts[i+1] -= adjust_block_start;
664
    }
665
  }
666

667
#ifdef ASSERT
668
  for (uint i = 0; i < nblocks; i++) { // For all blocks
669
    if (jmp_target[i] != 0) {
670
      int br_size = jmp_size[i];
671
      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
672
      if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
673
        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
674
      }
675
      assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
676
    }
677
  }
678
#endif
679

680
  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
681
  // after ScheduleAndBundle().
682

683
  // ------------------
684
  // Compute size for code buffer
685
  code_size = blk_starts[nblocks];
686

687
  // Relocation records
688
  reloc_size += 1;              // Relo entry for exception handler
689

690
  // Adjust reloc_size to number of record of relocation info
691
  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
692
  // a relocation index.
693
  // The CodeBuffer will expand the locs array if this estimate is too low.
694
  reloc_size *= 10 / sizeof(relocInfo);
695

696
  _buf_sizes._reloc = reloc_size;
697
  _buf_sizes._code  = code_size;
698
  _buf_sizes._stub  = stub_size;
699
}
700

701
//------------------------------FillLocArray-----------------------------------
702
// Create a bit of debug info and append it to the array.  The mapping is from
703
// Java local or expression stack to constant, register or stack-slot.  For
704
// doubles, insert 2 mappings and return 1 (to tell the caller that the next
705
// entry has been taken care of and caller should skip it).
706
static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
707
  // This should never have accepted Bad before
708
  assert(OptoReg::is_valid(regnum), "location must be valid");
709
  return (OptoReg::is_reg(regnum))
710
         ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
711
         : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
712
}
713

714

715
ObjectValue*
716
PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
717
  for (int i = 0; i < objs->length(); i++) {
718
    assert(objs->at(i)->is_object(), "corrupt object cache");
719
    ObjectValue* sv = (ObjectValue*) objs->at(i);
720
    if (sv->id() == id) {
721
      return sv;
722
    }
723
  }
724
  // Otherwise..
725
  return nullptr;
726
}
727

728
void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
729
                                     ObjectValue* sv ) {
730
  assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
731
  objs->append(sv);
732
}
733

734

735
void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
736
                            GrowableArray<ScopeValue*> *array,
737
                            GrowableArray<ScopeValue*> *objs ) {
738
  assert( local, "use _top instead of null" );
739
  if (array->length() != idx) {
740
    assert(array->length() == idx + 1, "Unexpected array count");
741
    // Old functionality:
742
    //   return
743
    // New functionality:
744
    //   Assert if the local is not top. In product mode let the new node
745
    //   override the old entry.
746
    assert(local == C->top(), "LocArray collision");
747
    if (local == C->top()) {
748
      return;
749
    }
750
    array->pop();
751
  }
752
  const Type *t = local->bottom_type();
753

754
  // Is it a safepoint scalar object node?
755
  if (local->is_SafePointScalarObject()) {
756
    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
757

758
    ObjectValue* sv = (ObjectValue*) sv_for_node_id(objs, spobj->_idx);
759
    if (sv == nullptr) {
760
      ciKlass* cik = t->is_oopptr()->exact_klass();
761
      assert(cik->is_instance_klass() ||
762
             cik->is_array_klass(), "Not supported allocation.");
763
      sv = new ObjectValue(spobj->_idx,
764
                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
765
      set_sv_for_object_node(objs, sv);
766

767
      uint first_ind = spobj->first_index(sfpt->jvms());
768
      for (uint i = 0; i < spobj->n_fields(); i++) {
769
        Node* fld_node = sfpt->in(first_ind+i);
770
        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
771
      }
772
    }
773
    array->append(sv);
774
    return;
775
  } else if (local->is_SafePointScalarMerge()) {
776
    SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge();
777
    ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
778

779
    if (mv == nullptr) {
780
      GrowableArray<ScopeValue*> deps;
781

782
      int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms());
783
      (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs);
784
      assert(deps.length() == 1, "missing value");
785

786
      int selector_idx = smerge->selector_idx(sfpt->jvms());
787
      (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr);
788
      assert(deps.length() == 2, "missing value");
789

790
      mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
791
      set_sv_for_object_node(objs, mv);
792

793
      for (uint i = 1; i < smerge->req(); i++) {
794
        Node* obj_node = smerge->in(i);
795
        (void)FillLocArray(mv->possible_objects()->length(), sfpt, obj_node, mv->possible_objects(), objs);
796
      }
797
    }
798
    array->append(mv);
799
    return;
800
  }
801

802
  // Grab the register number for the local
803
  OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
804
  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
805
    // Record the double as two float registers.
806
    // The register mask for such a value always specifies two adjacent
807
    // float registers, with the lower register number even.
808
    // Normally, the allocation of high and low words to these registers
809
    // is irrelevant, because nearly all operations on register pairs
810
    // (e.g., StoreD) treat them as a single unit.
811
    // Here, we assume in addition that the words in these two registers
812
    // stored "naturally" (by operations like StoreD and double stores
813
    // within the interpreter) such that the lower-numbered register
814
    // is written to the lower memory address.  This may seem like
815
    // a machine dependency, but it is not--it is a requirement on
816
    // the author of the <arch>.ad file to ensure that, for every
817
    // even/odd double-register pair to which a double may be allocated,
818
    // the word in the even single-register is stored to the first
819
    // memory word.  (Note that register numbers are completely
820
    // arbitrary, and are not tied to any machine-level encodings.)
821
#ifdef _LP64
822
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
823
      array->append(new ConstantIntValue((jint)0));
824
      array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
825
    } else if ( t->base() == Type::Long ) {
826
      array->append(new ConstantIntValue((jint)0));
827
      array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
828
    } else if ( t->base() == Type::RawPtr ) {
829
      // jsr/ret return address which must be restored into the full
830
      // width 64-bit stack slot.
831
      array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
832
    }
833
#else //_LP64
834
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
835
      // Repack the double/long as two jints.
836
      // The convention the interpreter uses is that the second local
837
      // holds the first raw word of the native double representation.
838
      // This is actually reasonable, since locals and stack arrays
839
      // grow downwards in all implementations.
840
      // (If, on some machine, the interpreter's Java locals or stack
841
      // were to grow upwards, the embedded doubles would be word-swapped.)
842
      array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
843
      array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
844
    }
845
#endif //_LP64
846
    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
847
             OptoReg::is_reg(regnum) ) {
848
      array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
849
                                                      ? Location::float_in_dbl : Location::normal ));
850
    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
851
      array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
852
                                                      ? Location::int_in_long : Location::normal ));
853
    } else if( t->base() == Type::NarrowOop ) {
854
      array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
855
    } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
856
               t->base() == Type::VectorD || t->base() == Type::VectorX ||
857
               t->base() == Type::VectorY || t->base() == Type::VectorZ) {
858
      array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
859
    } else if (C->regalloc()->is_oop(local)) {
860
      assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr ||
861
             t->base() == Type::AryPtr,
862
             "Unexpected type: %s", t->msg());
863
      array->append(new_loc_value( C->regalloc(), regnum, Location::oop ));
864
    } else {
865
      assert(t->base() == Type::Int || t->base() == Type::Half ||
866
             t->base() == Type::FloatCon || t->base() == Type::FloatBot,
867
             "Unexpected type: %s", t->msg());
868
      array->append(new_loc_value( C->regalloc(), regnum, Location::normal ));
869
    }
870
    return;
871
  }
872

873
  // No register.  It must be constant data.
874
  switch (t->base()) {
875
    case Type::Half:              // Second half of a double
876
      ShouldNotReachHere();       // Caller should skip 2nd halves
877
      break;
878
    case Type::AnyPtr:
879
      array->append(new ConstantOopWriteValue(nullptr));
880
      break;
881
    case Type::AryPtr:
882
    case Type::InstPtr:          // fall through
883
      array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
884
      break;
885
    case Type::NarrowOop:
886
      if (t == TypeNarrowOop::NULL_PTR) {
887
        array->append(new ConstantOopWriteValue(nullptr));
888
      } else {
889
        array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
890
      }
891
      break;
892
    case Type::Int:
893
      array->append(new ConstantIntValue(t->is_int()->get_con()));
894
      break;
895
    case Type::RawPtr:
896
      // A return address (T_ADDRESS).
897
      assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
898
#ifdef _LP64
899
      // Must be restored to the full-width 64-bit stack slot.
900
      array->append(new ConstantLongValue(t->is_ptr()->get_con()));
901
#else
902
      array->append(new ConstantIntValue(t->is_ptr()->get_con()));
903
#endif
904
      break;
905
    case Type::FloatCon: {
906
      float f = t->is_float_constant()->getf();
907
      array->append(new ConstantIntValue(jint_cast(f)));
908
      break;
909
    }
910
    case Type::DoubleCon: {
911
      jdouble d = t->is_double_constant()->getd();
912
#ifdef _LP64
913
      array->append(new ConstantIntValue((jint)0));
914
      array->append(new ConstantDoubleValue(d));
915
#else
916
      // Repack the double as two jints.
917
    // The convention the interpreter uses is that the second local
918
    // holds the first raw word of the native double representation.
919
    // This is actually reasonable, since locals and stack arrays
920
    // grow downwards in all implementations.
921
    // (If, on some machine, the interpreter's Java locals or stack
922
    // were to grow upwards, the embedded doubles would be word-swapped.)
923
    jlong_accessor acc;
924
    acc.long_value = jlong_cast(d);
925
    array->append(new ConstantIntValue(acc.words[1]));
926
    array->append(new ConstantIntValue(acc.words[0]));
927
#endif
928
      break;
929
    }
930
    case Type::Long: {
931
      jlong d = t->is_long()->get_con();
932
#ifdef _LP64
933
      array->append(new ConstantIntValue((jint)0));
934
      array->append(new ConstantLongValue(d));
935
#else
936
      // Repack the long as two jints.
937
    // The convention the interpreter uses is that the second local
938
    // holds the first raw word of the native double representation.
939
    // This is actually reasonable, since locals and stack arrays
940
    // grow downwards in all implementations.
941
    // (If, on some machine, the interpreter's Java locals or stack
942
    // were to grow upwards, the embedded doubles would be word-swapped.)
943
    jlong_accessor acc;
944
    acc.long_value = d;
945
    array->append(new ConstantIntValue(acc.words[1]));
946
    array->append(new ConstantIntValue(acc.words[0]));
947
#endif
948
      break;
949
    }
950
    case Type::Top:               // Add an illegal value here
951
      array->append(new LocationValue(Location()));
952
      break;
953
    default:
954
      ShouldNotReachHere();
955
      break;
956
  }
957
}
958

959
// Determine if this node starts a bundle
960
bool PhaseOutput::starts_bundle(const Node *n) const {
961
  return (_node_bundling_limit > n->_idx &&
962
          _node_bundling_base[n->_idx].starts_bundle());
963
}
964

965
// Determine if there is a monitor that has 'ov' as its owner.
966
bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const {
967
  for (int k = 0; k < monarray->length(); k++) {
968
    MonitorValue* mv = monarray->at(k);
969
    if (mv->owner() == ov) {
970
      return true;
971
    }
972
  }
973

974
  return false;
975
}
976

977
// Determine if there is a scalar replaced object description represented by 'ov'.
978
bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn,
979
                                             GrowableArray<ScopeValue*>* objs,
980
                                             ObjectValue* ov) const {
981
  for (int i = 0; i < jvms->scl_size(); i++) {
982
    Node* n = sfn->scalarized_obj(jvms, i);
983
    // Other kinds of nodes that we may encounter here, for instance constants
984
    // representing values of fields of objects scalarized, aren't relevant for
985
    // us, since they don't map to ObjectValue.
986
    if (!n->is_SafePointScalarObject()) {
987
      continue;
988
    }
989

990
    ObjectValue* other = (ObjectValue*) sv_for_node_id(objs, n->_idx);
991
    if (ov == other) {
992
      return true;
993
    }
994
  }
995
  return false;
996
}
997

998
//--------------------------Process_OopMap_Node--------------------------------
999
void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1000
  // Handle special safepoint nodes for synchronization
1001
  MachSafePointNode *sfn   = mach->as_MachSafePoint();
1002
  MachCallNode      *mcall;
1003

1004
  int safepoint_pc_offset = current_offset;
1005
  bool is_method_handle_invoke = false;
1006
  bool return_oop = false;
1007
  bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1008
  bool arg_escape = false;
1009

1010
  // Add the safepoint in the DebugInfoRecorder
1011
  if( !mach->is_MachCall() ) {
1012
    mcall = nullptr;
1013
    C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1014
  } else {
1015
    mcall = mach->as_MachCall();
1016

1017
    // Is the call a MethodHandle call?
1018
    if (mcall->is_MachCallJava()) {
1019
      if (mcall->as_MachCallJava()->_method_handle_invoke) {
1020
        assert(C->has_method_handle_invokes(), "must have been set during call generation");
1021
        is_method_handle_invoke = true;
1022
      }
1023
      arg_escape = mcall->as_MachCallJava()->_arg_escape;
1024
    }
1025

1026
    // Check if a call returns an object.
1027
    if (mcall->returns_pointer()) {
1028
      return_oop = true;
1029
    }
1030
    safepoint_pc_offset += mcall->ret_addr_offset();
1031
    C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1032
  }
1033

1034
  // Loop over the JVMState list to add scope information
1035
  // Do not skip safepoints with a null method, they need monitor info
1036
  JVMState* youngest_jvms = sfn->jvms();
1037
  int max_depth = youngest_jvms->depth();
1038

1039
  // Allocate the object pool for scalar-replaced objects -- the map from
1040
  // small-integer keys (which can be recorded in the local and ostack
1041
  // arrays) to descriptions of the object state.
1042
  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1043

1044
  // Visit scopes from oldest to youngest.
1045
  for (int depth = 1; depth <= max_depth; depth++) {
1046
    JVMState* jvms = youngest_jvms->of_depth(depth);
1047
    int idx;
1048
    ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1049
    // Safepoints that do not have method() set only provide oop-map and monitor info
1050
    // to support GC; these do not support deoptimization.
1051
    int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1052
    int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1053
    int num_mon  = jvms->nof_monitors();
1054
    assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1055
           "JVMS local count must match that of the method");
1056

1057
    // Add Local and Expression Stack Information
1058

1059
    // Insert locals into the locarray
1060
    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1061
    for( idx = 0; idx < num_locs; idx++ ) {
1062
      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1063
    }
1064

1065
    // Insert expression stack entries into the exparray
1066
    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1067
    for( idx = 0; idx < num_exps; idx++ ) {
1068
      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1069
    }
1070

1071
    // Add in mappings of the monitors
1072
    assert( !method ||
1073
            !method->is_synchronized() ||
1074
            method->is_native() ||
1075
            num_mon > 0 ||
1076
            !GenerateSynchronizationCode,
1077
            "monitors must always exist for synchronized methods");
1078

1079
    // Build the growable array of ScopeValues for exp stack
1080
    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1081

1082
    // Loop over monitors and insert into array
1083
    for (idx = 0; idx < num_mon; idx++) {
1084
      // Grab the node that defines this monitor
1085
      Node* box_node = sfn->monitor_box(jvms, idx);
1086
      Node* obj_node = sfn->monitor_obj(jvms, idx);
1087

1088
      // Create ScopeValue for object
1089
      ScopeValue *scval = nullptr;
1090

1091
      if (obj_node->is_SafePointScalarObject()) {
1092
        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1093
        scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1094
        if (scval == nullptr) {
1095
          const Type *t = spobj->bottom_type();
1096
          ciKlass* cik = t->is_oopptr()->exact_klass();
1097
          assert(cik->is_instance_klass() ||
1098
                 cik->is_array_klass(), "Not supported allocation.");
1099
          ObjectValue* sv = new ObjectValue(spobj->_idx,
1100
                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1101
          PhaseOutput::set_sv_for_object_node(objs, sv);
1102

1103
          uint first_ind = spobj->first_index(youngest_jvms);
1104
          for (uint i = 0; i < spobj->n_fields(); i++) {
1105
            Node* fld_node = sfn->in(first_ind+i);
1106
            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1107
          }
1108
          scval = sv;
1109
        }
1110
      } else if (obj_node->is_SafePointScalarMerge()) {
1111
        SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge();
1112
        ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
1113

1114
        if (mv == nullptr) {
1115
          GrowableArray<ScopeValue*> deps;
1116

1117
          int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms);
1118
          FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs);
1119
          assert(deps.length() == 1, "missing value");
1120

1121
          int selector_idx = smerge->selector_idx(youngest_jvms);
1122
          FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr);
1123
          assert(deps.length() == 2, "missing value");
1124

1125
          mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
1126
          set_sv_for_object_node(objs, mv);
1127

1128
          for (uint i = 1; i < smerge->req(); i++) {
1129
            Node* obj_node = smerge->in(i);
1130
            FillLocArray(mv->possible_objects()->length(), sfn, obj_node, mv->possible_objects(), objs);
1131
          }
1132
        }
1133
        scval = mv;
1134
      } else if (!obj_node->is_Con()) {
1135
        OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1136
        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1137
          scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1138
        } else {
1139
          scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1140
        }
1141
      } else {
1142
        const TypePtr *tp = obj_node->get_ptr_type();
1143
        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1144
      }
1145

1146
      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1147
      Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1148
      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1149
      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1150
    }
1151

1152
    // Mark ObjectValue nodes as root nodes if they are directly
1153
    // referenced in the JVMS.
1154
    for (int i = 0; i < objs->length(); i++) {
1155
      ScopeValue* sv = objs->at(i);
1156
      if (sv->is_object_merge()) {
1157
        ObjectMergeValue* merge = sv->as_ObjectMergeValue();
1158

1159
        for (int j = 0; j< merge->possible_objects()->length(); j++) {
1160
          ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue();
1161
          bool is_root = locarray->contains(ov) ||
1162
                         exparray->contains(ov) ||
1163
                         contains_as_owner(monarray, ov) ||
1164
                         contains_as_scalarized_obj(jvms, sfn, objs, ov);
1165
          ov->set_root(is_root);
1166
        }
1167
      }
1168
    }
1169

1170
    // We dump the object pool first, since deoptimization reads it in first.
1171
    C->debug_info()->dump_object_pool(objs);
1172

1173
    // Build first class objects to pass to scope
1174
    DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1175
    DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1176
    DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1177

1178
    // Make method available for all Safepoints
1179
    ciMethod* scope_method = method ? method : C->method();
1180
    // Describe the scope here
1181
    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1182
    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1183
    // Now we can describe the scope.
1184
    methodHandle null_mh;
1185
    bool rethrow_exception = false;
1186
    C->debug_info()->describe_scope(
1187
      safepoint_pc_offset,
1188
      null_mh,
1189
      scope_method,
1190
      jvms->bci(),
1191
      jvms->should_reexecute(),
1192
      rethrow_exception,
1193
      is_method_handle_invoke,
1194
      return_oop,
1195
      has_ea_local_in_scope,
1196
      arg_escape,
1197
      locvals,
1198
      expvals,
1199
      monvals
1200
    );
1201
  } // End jvms loop
1202

1203
  // Mark the end of the scope set.
1204
  C->debug_info()->end_safepoint(safepoint_pc_offset);
1205
}
1206

1207

1208

1209
// A simplified version of Process_OopMap_Node, to handle non-safepoints.
1210
class NonSafepointEmitter {
1211
    Compile*  C;
1212
    JVMState* _pending_jvms;
1213
    int       _pending_offset;
1214

1215
    void emit_non_safepoint();
1216

1217
 public:
1218
    NonSafepointEmitter(Compile* compile) {
1219
      this->C = compile;
1220
      _pending_jvms = nullptr;
1221
      _pending_offset = 0;
1222
    }
1223

1224
    void observe_instruction(Node* n, int pc_offset) {
1225
      if (!C->debug_info()->recording_non_safepoints())  return;
1226

1227
      Node_Notes* nn = C->node_notes_at(n->_idx);
1228
      if (nn == nullptr || nn->jvms() == nullptr)  return;
1229
      if (_pending_jvms != nullptr &&
1230
          _pending_jvms->same_calls_as(nn->jvms())) {
1231
        // Repeated JVMS?  Stretch it up here.
1232
        _pending_offset = pc_offset;
1233
      } else {
1234
        if (_pending_jvms != nullptr &&
1235
            _pending_offset < pc_offset) {
1236
          emit_non_safepoint();
1237
        }
1238
        _pending_jvms = nullptr;
1239
        if (pc_offset > C->debug_info()->last_pc_offset()) {
1240
          // This is the only way _pending_jvms can become non-null:
1241
          _pending_jvms = nn->jvms();
1242
          _pending_offset = pc_offset;
1243
        }
1244
      }
1245
    }
1246

1247
    // Stay out of the way of real safepoints:
1248
    void observe_safepoint(JVMState* jvms, int pc_offset) {
1249
      if (_pending_jvms != nullptr &&
1250
          !_pending_jvms->same_calls_as(jvms) &&
1251
          _pending_offset < pc_offset) {
1252
        emit_non_safepoint();
1253
      }
1254
      _pending_jvms = nullptr;
1255
    }
1256

1257
    void flush_at_end() {
1258
      if (_pending_jvms != nullptr) {
1259
        emit_non_safepoint();
1260
      }
1261
      _pending_jvms = nullptr;
1262
    }
1263
};
1264

1265
void NonSafepointEmitter::emit_non_safepoint() {
1266
  JVMState* youngest_jvms = _pending_jvms;
1267
  int       pc_offset     = _pending_offset;
1268

1269
  // Clear it now:
1270
  _pending_jvms = nullptr;
1271

1272
  DebugInformationRecorder* debug_info = C->debug_info();
1273
  assert(debug_info->recording_non_safepoints(), "sanity");
1274

1275
  debug_info->add_non_safepoint(pc_offset);
1276
  int max_depth = youngest_jvms->depth();
1277

1278
  // Visit scopes from oldest to youngest.
1279
  for (int depth = 1; depth <= max_depth; depth++) {
1280
    JVMState* jvms = youngest_jvms->of_depth(depth);
1281
    ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1282
    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1283
    methodHandle null_mh;
1284
    debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1285
  }
1286

1287
  // Mark the end of the scope set.
1288
  debug_info->end_non_safepoint(pc_offset);
1289
}
1290

1291
//------------------------------init_buffer------------------------------------
1292
void PhaseOutput::estimate_buffer_size(int& const_req) {
1293

1294
  // Set the initially allocated size
1295
  const_req = initial_const_capacity;
1296

1297
  // The extra spacing after the code is necessary on some platforms.
1298
  // Sometimes we need to patch in a jump after the last instruction,
1299
  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1300

1301
  // Compute the byte offset where we can store the deopt pc.
1302
  if (C->fixed_slots() != 0) {
1303
    _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1304
  }
1305

1306
  // Compute prolog code size
1307
  _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1308
  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1309

1310
  if (C->has_mach_constant_base_node()) {
1311
    uint add_size = 0;
1312
    // Fill the constant table.
1313
    // Note:  This must happen before shorten_branches.
1314
    for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1315
      Block* b = C->cfg()->get_block(i);
1316

1317
      for (uint j = 0; j < b->number_of_nodes(); j++) {
1318
        Node* n = b->get_node(j);
1319

1320
        // If the node is a MachConstantNode evaluate the constant
1321
        // value section.
1322
        if (n->is_MachConstant()) {
1323
          MachConstantNode* machcon = n->as_MachConstant();
1324
          machcon->eval_constant(C);
1325
        } else if (n->is_Mach()) {
1326
          // On Power there are more nodes that issue constants.
1327
          add_size += (n->as_Mach()->ins_num_consts() * 8);
1328
        }
1329
      }
1330
    }
1331

1332
    // Calculate the offsets of the constants and the size of the
1333
    // constant table (including the padding to the next section).
1334
    constant_table().calculate_offsets_and_size();
1335
    const_req = constant_table().size() + add_size;
1336
  }
1337

1338
  // Initialize the space for the BufferBlob used to find and verify
1339
  // instruction size in MachNode::emit_size()
1340
  init_scratch_buffer_blob(const_req);
1341
}
1342

1343
CodeBuffer* PhaseOutput::init_buffer() {
1344
  int stub_req  = _buf_sizes._stub;
1345
  int code_req  = _buf_sizes._code;
1346
  int const_req = _buf_sizes._const;
1347

1348
  int pad_req   = NativeCall::byte_size();
1349

1350
  BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1351
  stub_req += bs->estimate_stub_size();
1352

1353
  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1354
  // class HandlerImpl is platform-specific and defined in the *.ad files.
1355
  int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1356
  int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1357
  stub_req += MAX_stubs_size;   // ensure per-stub margin
1358
  code_req += MAX_inst_size;    // ensure per-instruction margin
1359

1360
  if (StressCodeBuffers)
1361
    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1362

1363
  int total_req =
1364
          const_req +
1365
          code_req +
1366
          pad_req +
1367
          stub_req +
1368
          exception_handler_req +
1369
          deopt_handler_req;               // deopt handler
1370

1371
  if (C->has_method_handle_invokes())
1372
    total_req += deopt_handler_req;  // deopt MH handler
1373

1374
  CodeBuffer* cb = code_buffer();
1375
  cb->initialize(total_req, _buf_sizes._reloc);
1376

1377
  // Have we run out of code space?
1378
  if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1379
    C->record_failure("CodeCache is full");
1380
    return nullptr;
1381
  }
1382
  // Configure the code buffer.
1383
  cb->initialize_consts_size(const_req);
1384
  cb->initialize_stubs_size(stub_req);
1385
  cb->initialize_oop_recorder(C->env()->oop_recorder());
1386

1387
  // fill in the nop array for bundling computations
1388
  MachNode *_nop_list[Bundle::_nop_count];
1389
  Bundle::initialize_nops(_nop_list);
1390

1391
  return cb;
1392
}
1393

1394
//------------------------------fill_buffer------------------------------------
1395
void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) {
1396
  // blk_starts[] contains offsets calculated during short branches processing,
1397
  // offsets should not be increased during following steps.
1398

1399
  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1400
  // of a loop. It is used to determine the padding for loop alignment.
1401
  Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]);
1402

1403
  compute_loop_first_inst_sizes();
1404

1405
  // Create oopmap set.
1406
  _oop_map_set = new OopMapSet();
1407

1408
  // !!!!! This preserves old handling of oopmaps for now
1409
  C->debug_info()->set_oopmaps(_oop_map_set);
1410

1411
  uint nblocks  = C->cfg()->number_of_blocks();
1412
  // Count and start of implicit null check instructions
1413
  uint inct_cnt = 0;
1414
  uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1415

1416
  // Count and start of calls
1417
  uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1418

1419
  uint  return_offset = 0;
1420
  int nop_size = (new MachNopNode())->size(C->regalloc());
1421

1422
  int previous_offset = 0;
1423
  int current_offset  = 0;
1424
  int last_call_offset = -1;
1425
  int last_avoid_back_to_back_offset = -1;
1426
#ifdef ASSERT
1427
  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1428
  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1429
  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1430
  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1431
#endif
1432

1433
  // Create an array of unused labels, one for each basic block, if printing is enabled
1434
#if defined(SUPPORT_OPTO_ASSEMBLY)
1435
  int* node_offsets      = nullptr;
1436
  uint node_offset_limit = C->unique();
1437

1438
  if (C->print_assembly()) {
1439
    node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1440
  }
1441
  if (node_offsets != nullptr) {
1442
    // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1443
    memset(node_offsets, 0, node_offset_limit*sizeof(int));
1444
  }
1445
#endif
1446

1447
  NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1448

1449
  // Emit the constant table.
1450
  if (C->has_mach_constant_base_node()) {
1451
    if (!constant_table().emit(masm)) {
1452
      C->record_failure("consts section overflow");
1453
      return;
1454
    }
1455
  }
1456

1457
  // Create an array of labels, one for each basic block
1458
  Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1459
  for (uint i = 0; i <= nblocks; i++) {
1460
    blk_labels[i].init();
1461
  }
1462

1463
  // Now fill in the code buffer
1464
  Node* delay_slot = nullptr;
1465
  for (uint i = 0; i < nblocks; i++) {
1466
    Block* block = C->cfg()->get_block(i);
1467
    _block = block;
1468
    Node* head = block->head();
1469

1470
    // If this block needs to start aligned (i.e, can be reached other
1471
    // than by falling-thru from the previous block), then force the
1472
    // start of a new bundle.
1473
    if (Pipeline::requires_bundling() && starts_bundle(head)) {
1474
      masm->code()->flush_bundle(true);
1475
    }
1476

1477
#ifdef ASSERT
1478
    if (!block->is_connector()) {
1479
      stringStream st;
1480
      block->dump_head(C->cfg(), &st);
1481
      masm->block_comment(st.freeze());
1482
    }
1483
    jmp_target[i] = 0;
1484
    jmp_offset[i] = 0;
1485
    jmp_size[i]   = 0;
1486
    jmp_rule[i]   = 0;
1487
#endif
1488
    int blk_offset = current_offset;
1489

1490
    // Define the label at the beginning of the basic block
1491
    masm->bind(blk_labels[block->_pre_order]);
1492

1493
    uint last_inst = block->number_of_nodes();
1494

1495
    // Emit block normally, except for last instruction.
1496
    // Emit means "dump code bits into code buffer".
1497
    for (uint j = 0; j<last_inst; j++) {
1498
      _index = j;
1499

1500
      // Get the node
1501
      Node* n = block->get_node(j);
1502

1503
      // See if delay slots are supported
1504
      if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1505
        assert(delay_slot == nullptr, "no use of delay slot node");
1506
        assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1507

1508
        delay_slot = n;
1509
        continue;
1510
      }
1511

1512
      // If this starts a new instruction group, then flush the current one
1513
      // (but allow split bundles)
1514
      if (Pipeline::requires_bundling() && starts_bundle(n))
1515
        masm->code()->flush_bundle(false);
1516

1517
      // Special handling for SafePoint/Call Nodes
1518
      bool is_mcall = false;
1519
      if (n->is_Mach()) {
1520
        MachNode *mach = n->as_Mach();
1521
        is_mcall = n->is_MachCall();
1522
        bool is_sfn = n->is_MachSafePoint();
1523

1524
        // If this requires all previous instructions be flushed, then do so
1525
        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1526
          masm->code()->flush_bundle(true);
1527
          current_offset = masm->offset();
1528
        }
1529

1530
        // A padding may be needed again since a previous instruction
1531
        // could be moved to delay slot.
1532

1533
        // align the instruction if necessary
1534
        int padding = mach->compute_padding(current_offset);
1535
        // Make sure safepoint node for polling is distinct from a call's
1536
        // return by adding a nop if needed.
1537
        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1538
          padding = nop_size;
1539
        }
1540
        if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1541
            current_offset == last_avoid_back_to_back_offset) {
1542
          // Avoid back to back some instructions.
1543
          padding = nop_size;
1544
        }
1545

1546
        if (padding > 0) {
1547
          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1548
          int nops_cnt = padding / nop_size;
1549
          MachNode *nop = new MachNopNode(nops_cnt);
1550
          block->insert_node(nop, j++);
1551
          last_inst++;
1552
          C->cfg()->map_node_to_block(nop, block);
1553
          // Ensure enough space.
1554
          masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1555
          if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1556
            C->record_failure("CodeCache is full");
1557
            return;
1558
          }
1559
          nop->emit(masm, C->regalloc());
1560
          masm->code()->flush_bundle(true);
1561
          current_offset = masm->offset();
1562
        }
1563

1564
        bool observe_safepoint = is_sfn;
1565
        // Remember the start of the last call in a basic block
1566
        if (is_mcall) {
1567
          MachCallNode *mcall = mach->as_MachCall();
1568

1569
          // This destination address is NOT PC-relative
1570
          mcall->method_set((intptr_t)mcall->entry_point());
1571

1572
          // Save the return address
1573
          call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1574

1575
          observe_safepoint = mcall->guaranteed_safepoint();
1576
        }
1577

1578
        // sfn will be valid whenever mcall is valid now because of inheritance
1579
        if (observe_safepoint) {
1580
          // Handle special safepoint nodes for synchronization
1581
          if (!is_mcall) {
1582
            MachSafePointNode *sfn = mach->as_MachSafePoint();
1583
            // !!!!! Stubs only need an oopmap right now, so bail out
1584
            if (sfn->jvms()->method() == nullptr) {
1585
              // Write the oopmap directly to the code blob??!!
1586
              continue;
1587
            }
1588
          } // End synchronization
1589

1590
          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1591
                                           current_offset);
1592
          Process_OopMap_Node(mach, current_offset);
1593
        } // End if safepoint
1594

1595
          // If this is a null check, then add the start of the previous instruction to the list
1596
        else if( mach->is_MachNullCheck() ) {
1597
          inct_starts[inct_cnt++] = previous_offset;
1598
        }
1599

1600
          // If this is a branch, then fill in the label with the target BB's label
1601
        else if (mach->is_MachBranch()) {
1602
          // This requires the TRUE branch target be in succs[0]
1603
          uint block_num = block->non_connector_successor(0)->_pre_order;
1604

1605
          // Try to replace long branch if delay slot is not used,
1606
          // it is mostly for back branches since forward branch's
1607
          // distance is not updated yet.
1608
          bool delay_slot_is_used = valid_bundle_info(n) &&
1609
                                    C->output()->node_bundling(n)->use_unconditional_delay();
1610
          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1611
            assert(delay_slot == nullptr, "not expecting delay slot node");
1612
            int br_size = n->size(C->regalloc());
1613
            int offset = blk_starts[block_num] - current_offset;
1614
            if (block_num >= i) {
1615
              // Current and following block's offset are not
1616
              // finalized yet, adjust distance by the difference
1617
              // between calculated and final offsets of current block.
1618
              offset -= (blk_starts[i] - blk_offset);
1619
            }
1620
            // In the following code a nop could be inserted before
1621
            // the branch which will increase the backward distance.
1622
            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1623
            if (needs_padding && offset <= 0)
1624
              offset -= nop_size;
1625

1626
            if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1627
              // We've got a winner.  Replace this branch.
1628
              MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1629

1630
              // Update the jmp_size.
1631
              int new_size = replacement->size(C->regalloc());
1632
              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1633
              // Insert padding between avoid_back_to_back branches.
1634
              if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1635
                MachNode *nop = new MachNopNode();
1636
                block->insert_node(nop, j++);
1637
                C->cfg()->map_node_to_block(nop, block);
1638
                last_inst++;
1639
                nop->emit(masm, C->regalloc());
1640
                masm->code()->flush_bundle(true);
1641
                current_offset = masm->offset();
1642
              }
1643
#ifdef ASSERT
1644
              jmp_target[i] = block_num;
1645
              jmp_offset[i] = current_offset - blk_offset;
1646
              jmp_size[i]   = new_size;
1647
              jmp_rule[i]   = mach->rule();
1648
#endif
1649
              block->map_node(replacement, j);
1650
              mach->subsume_by(replacement, C);
1651
              n    = replacement;
1652
              mach = replacement;
1653
            }
1654
          }
1655
          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1656
        } else if (mach->ideal_Opcode() == Op_Jump) {
1657
          for (uint h = 0; h < block->_num_succs; h++) {
1658
            Block* succs_block = block->_succs[h];
1659
            for (uint j = 1; j < succs_block->num_preds(); j++) {
1660
              Node* jpn = succs_block->pred(j);
1661
              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1662
                uint block_num = succs_block->non_connector()->_pre_order;
1663
                Label *blkLabel = &blk_labels[block_num];
1664
                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1665
              }
1666
            }
1667
          }
1668
        }
1669
#ifdef ASSERT
1670
          // Check that oop-store precedes the card-mark
1671
        else if (mach->ideal_Opcode() == Op_StoreCM) {
1672
          uint storeCM_idx = j;
1673
          int count = 0;
1674
          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1675
            Node *oop_store = mach->in(prec);  // Precedence edge
1676
            if (oop_store == nullptr) continue;
1677
            count++;
1678
            uint i4;
1679
            for (i4 = 0; i4 < last_inst; ++i4) {
1680
              if (block->get_node(i4) == oop_store) {
1681
                break;
1682
              }
1683
            }
1684
            // Note: This test can provide a false failure if other precedence
1685
            // edges have been added to the storeCMNode.
1686
            assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1687
          }
1688
          assert(count > 0, "storeCM expects at least one precedence edge");
1689
        }
1690
#endif
1691
        else if (!n->is_Proj()) {
1692
          // Remember the beginning of the previous instruction, in case
1693
          // it's followed by a flag-kill and a null-check.  Happens on
1694
          // Intel all the time, with add-to-memory kind of opcodes.
1695
          previous_offset = current_offset;
1696
        }
1697

1698
        // Not an else-if!
1699
        // If this is a trap based cmp then add its offset to the list.
1700
        if (mach->is_TrapBasedCheckNode()) {
1701
          inct_starts[inct_cnt++] = current_offset;
1702
        }
1703
      }
1704

1705
      // Verify that there is sufficient space remaining
1706
      masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1707
      if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1708
        C->record_failure("CodeCache is full");
1709
        return;
1710
      }
1711

1712
      // Save the offset for the listing
1713
#if defined(SUPPORT_OPTO_ASSEMBLY)
1714
      if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1715
        node_offsets[n->_idx] = masm->offset();
1716
      }
1717
#endif
1718
      assert(!C->failing(), "Should not reach here if failing.");
1719

1720
      // "Normal" instruction case
1721
      DEBUG_ONLY(uint instr_offset = masm->offset());
1722
      n->emit(masm, C->regalloc());
1723
      current_offset = masm->offset();
1724

1725
      // Above we only verified that there is enough space in the instruction section.
1726
      // However, the instruction may emit stubs that cause code buffer expansion.
1727
      // Bail out here if expansion failed due to a lack of code cache space.
1728
      if (C->failing()) {
1729
        return;
1730
      }
1731

1732
      assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1733
             "ret_addr_offset() not within emitted code");
1734

1735
#ifdef ASSERT
1736
      uint n_size = n->size(C->regalloc());
1737
      if (n_size < (current_offset-instr_offset)) {
1738
        MachNode* mach = n->as_Mach();
1739
        n->dump();
1740
        mach->dump_format(C->regalloc(), tty);
1741
        tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1742
        Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty);
1743
        tty->print_cr(" ------------------- ");
1744
        BufferBlob* blob = this->scratch_buffer_blob();
1745
        address blob_begin = blob->content_begin();
1746
        Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1747
        assert(false, "wrong size of mach node");
1748
      }
1749
#endif
1750
      non_safepoints.observe_instruction(n, current_offset);
1751

1752
      // mcall is last "call" that can be a safepoint
1753
      // record it so we can see if a poll will directly follow it
1754
      // in which case we'll need a pad to make the PcDesc sites unique
1755
      // see  5010568. This can be slightly inaccurate but conservative
1756
      // in the case that return address is not actually at current_offset.
1757
      // This is a small price to pay.
1758

1759
      if (is_mcall) {
1760
        last_call_offset = current_offset;
1761
      }
1762

1763
      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1764
        // Avoid back to back some instructions.
1765
        last_avoid_back_to_back_offset = current_offset;
1766
      }
1767

1768
      // See if this instruction has a delay slot
1769
      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1770
        guarantee(delay_slot != nullptr, "expecting delay slot node");
1771

1772
        // Back up 1 instruction
1773
        masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size());
1774

1775
        // Save the offset for the listing
1776
#if defined(SUPPORT_OPTO_ASSEMBLY)
1777
        if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) {
1778
          node_offsets[delay_slot->_idx] = masm->offset();
1779
        }
1780
#endif
1781

1782
        // Support a SafePoint in the delay slot
1783
        if (delay_slot->is_MachSafePoint()) {
1784
          MachNode *mach = delay_slot->as_Mach();
1785
          // !!!!! Stubs only need an oopmap right now, so bail out
1786
          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) {
1787
            // Write the oopmap directly to the code blob??!!
1788
            delay_slot = nullptr;
1789
            continue;
1790
          }
1791

1792
          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1793
          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1794
                                           adjusted_offset);
1795
          // Generate an OopMap entry
1796
          Process_OopMap_Node(mach, adjusted_offset);
1797
        }
1798

1799
        // Insert the delay slot instruction
1800
        delay_slot->emit(masm, C->regalloc());
1801

1802
        // Don't reuse it
1803
        delay_slot = nullptr;
1804
      }
1805

1806
    } // End for all instructions in block
1807

1808
    // If the next block is the top of a loop, pad this block out to align
1809
    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1810
    if (i < nblocks-1) {
1811
      Block *nb = C->cfg()->get_block(i + 1);
1812
      int padding = nb->alignment_padding(current_offset);
1813
      if( padding > 0 ) {
1814
        MachNode *nop = new MachNopNode(padding / nop_size);
1815
        block->insert_node(nop, block->number_of_nodes());
1816
        C->cfg()->map_node_to_block(nop, block);
1817
        nop->emit(masm, C->regalloc());
1818
        current_offset = masm->offset();
1819
      }
1820
    }
1821
    // Verify that the distance for generated before forward
1822
    // short branches is still valid.
1823
    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1824

1825
    // Save new block start offset
1826
    blk_starts[i] = blk_offset;
1827
  } // End of for all blocks
1828
  blk_starts[nblocks] = current_offset;
1829

1830
  non_safepoints.flush_at_end();
1831

1832
  // Offset too large?
1833
  if (C->failing())  return;
1834

1835
  // Define a pseudo-label at the end of the code
1836
  masm->bind( blk_labels[nblocks] );
1837

1838
  // Compute the size of the first block
1839
  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1840

1841
#ifdef ASSERT
1842
  for (uint i = 0; i < nblocks; i++) { // For all blocks
1843
    if (jmp_target[i] != 0) {
1844
      int br_size = jmp_size[i];
1845
      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1846
      if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1847
        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1848
        assert(false, "Displacement too large for short jmp");
1849
      }
1850
    }
1851
  }
1852
#endif
1853

1854
  if (!masm->code()->finalize_stubs()) {
1855
    C->record_failure("CodeCache is full");
1856
    return;
1857
  }
1858

1859
  BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1860
  bs->emit_stubs(*masm->code());
1861
  if (C->failing())  return;
1862

1863
  // Fill in stubs.
1864
  assert(masm->inst_mark() == nullptr, "should be.");
1865
  _stub_list.emit(*masm);
1866
  if (C->failing())  return;
1867

1868
#ifndef PRODUCT
1869
  // Information on the size of the method, without the extraneous code
1870
  Scheduling::increment_method_size(masm->offset());
1871
#endif
1872

1873
  // ------------------
1874
  // Fill in exception table entries.
1875
  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1876

1877
  // Only java methods have exception handlers and deopt handlers
1878
  // class HandlerImpl is platform-specific and defined in the *.ad files.
1879
  if (C->method()) {
1880
    // Emit the exception handler code.
1881
    _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm));
1882
    if (C->failing()) {
1883
      return; // CodeBuffer::expand failed
1884
    }
1885
    // Emit the deopt handler code.
1886
    _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm));
1887

1888
    // Emit the MethodHandle deopt handler code (if required).
1889
    if (C->has_method_handle_invokes() && !C->failing()) {
1890
      // We can use the same code as for the normal deopt handler, we
1891
      // just need a different entry point address.
1892
      _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm));
1893
    }
1894
  }
1895

1896
  // One last check for failed CodeBuffer::expand:
1897
  if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1898
    C->record_failure("CodeCache is full");
1899
    return;
1900
  }
1901

1902
#if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1903
  if (C->print_assembly()) {
1904
    tty->cr();
1905
    tty->print_cr("============================= C2-compiled nmethod ==============================");
1906
  }
1907
#endif
1908

1909
#if defined(SUPPORT_OPTO_ASSEMBLY)
1910
  // Dump the assembly code, including basic-block numbers
1911
  if (C->print_assembly()) {
1912
    ttyLocker ttyl;  // keep the following output all in one block
1913
    if (!VMThread::should_terminate()) {  // test this under the tty lock
1914
      // print_metadata and dump_asm may safepoint which makes us loose the ttylock.
1915
      // We call them first and write to a stringStream, then we retake the lock to
1916
      // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe.
1917
      ResourceMark rm;
1918
      stringStream method_metadata_str;
1919
      if (C->method() != nullptr) {
1920
        C->method()->print_metadata(&method_metadata_str);
1921
      }
1922
      stringStream dump_asm_str;
1923
      dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit);
1924

1925
      NoSafepointVerifier nsv;
1926
      ttyLocker ttyl2;
1927
      // This output goes directly to the tty, not the compiler log.
1928
      // To enable tools to match it up with the compilation activity,
1929
      // be sure to tag this tty output with the compile ID.
1930
      if (xtty != nullptr) {
1931
        xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1932
                   C->is_osr_compilation() ? " compile_kind='osr'" : "");
1933
      }
1934
      if (C->method() != nullptr) {
1935
        tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1936
        tty->print_raw(method_metadata_str.freeze());
1937
      } else if (C->stub_name() != nullptr) {
1938
        tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1939
      }
1940
      tty->cr();
1941
      tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1942
      tty->print_raw(dump_asm_str.freeze());
1943
      tty->print_cr("--------------------------------------------------------------------------------");
1944
      if (xtty != nullptr) {
1945
        xtty->tail("opto_assembly");
1946
      }
1947
    }
1948
  }
1949
#endif
1950
}
1951

1952
void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1953
  _inc_table.set_size(cnt);
1954

1955
  uint inct_cnt = 0;
1956
  for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1957
    Block* block = C->cfg()->get_block(i);
1958
    Node *n = nullptr;
1959
    int j;
1960

1961
    // Find the branch; ignore trailing NOPs.
1962
    for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1963
      n = block->get_node(j);
1964
      if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1965
        break;
1966
      }
1967
    }
1968

1969
    // If we didn't find anything, continue
1970
    if (j < 0) {
1971
      continue;
1972
    }
1973

1974
    // Compute ExceptionHandlerTable subtable entry and add it
1975
    // (skip empty blocks)
1976
    if (n->is_Catch()) {
1977

1978
      // Get the offset of the return from the call
1979
      uint call_return = call_returns[block->_pre_order];
1980
#ifdef ASSERT
1981
      assert( call_return > 0, "no call seen for this basic block" );
1982
      while (block->get_node(--j)->is_MachProj()) ;
1983
      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1984
#endif
1985
      // last instruction is a CatchNode, find it's CatchProjNodes
1986
      int nof_succs = block->_num_succs;
1987
      // allocate space
1988
      GrowableArray<intptr_t> handler_bcis(nof_succs);
1989
      GrowableArray<intptr_t> handler_pcos(nof_succs);
1990
      // iterate through all successors
1991
      for (int j = 0; j < nof_succs; j++) {
1992
        Block* s = block->_succs[j];
1993
        bool found_p = false;
1994
        for (uint k = 1; k < s->num_preds(); k++) {
1995
          Node* pk = s->pred(k);
1996
          if (pk->is_CatchProj() && pk->in(0) == n) {
1997
            const CatchProjNode* p = pk->as_CatchProj();
1998
            found_p = true;
1999
            // add the corresponding handler bci & pco information
2000
            if (p->_con != CatchProjNode::fall_through_index) {
2001
              // p leads to an exception handler (and is not fall through)
2002
              assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
2003
              // no duplicates, please
2004
              if (!handler_bcis.contains(p->handler_bci())) {
2005
                uint block_num = s->non_connector()->_pre_order;
2006
                handler_bcis.append(p->handler_bci());
2007
                handler_pcos.append(blk_labels[block_num].loc_pos());
2008
              }
2009
            }
2010
          }
2011
        }
2012
        assert(found_p, "no matching predecessor found");
2013
        // Note:  Due to empty block removal, one block may have
2014
        // several CatchProj inputs, from the same Catch.
2015
      }
2016

2017
      // Set the offset of the return from the call
2018
      assert(handler_bcis.find(-1) != -1, "must have default handler");
2019
      _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
2020
      continue;
2021
    }
2022

2023
    // Handle implicit null exception table updates
2024
    if (n->is_MachNullCheck()) {
2025
      uint block_num = block->non_connector_successor(0)->_pre_order;
2026
      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2027
      continue;
2028
    }
2029
    // Handle implicit exception table updates: trap instructions.
2030
    if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
2031
      uint block_num = block->non_connector_successor(0)->_pre_order;
2032
      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2033
      continue;
2034
    }
2035
  } // End of for all blocks fill in exception table entries
2036
}
2037

2038
// Static Variables
2039
#ifndef PRODUCT
2040
uint Scheduling::_total_nop_size = 0;
2041
uint Scheduling::_total_method_size = 0;
2042
uint Scheduling::_total_branches = 0;
2043
uint Scheduling::_total_unconditional_delays = 0;
2044
uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
2045
#endif
2046

2047
// Initializer for class Scheduling
2048

2049
Scheduling::Scheduling(Arena *arena, Compile &compile)
2050
        : _arena(arena),
2051
          _cfg(compile.cfg()),
2052
          _regalloc(compile.regalloc()),
2053
          _scheduled(arena),
2054
          _available(arena),
2055
          _reg_node(arena),
2056
          _pinch_free_list(arena),
2057
          _next_node(nullptr),
2058
          _bundle_instr_count(0),
2059
          _bundle_cycle_number(0),
2060
          _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2061
#ifndef PRODUCT
2062
        , _branches(0)
2063
        , _unconditional_delays(0)
2064
#endif
2065
{
2066
  // Create a MachNopNode
2067
  _nop = new MachNopNode();
2068

2069
  // Now that the nops are in the array, save the count
2070
  // (but allow entries for the nops)
2071
  _node_bundling_limit = compile.unique();
2072
  uint node_max = _regalloc->node_regs_max_index();
2073

2074
  compile.output()->set_node_bundling_limit(_node_bundling_limit);
2075

2076
  // This one is persistent within the Compile class
2077
  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2078

2079
  // Allocate space for fixed-size arrays
2080
  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
2081
  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2082

2083
  // Clear the arrays
2084
  for (uint i = 0; i < node_max; i++) {
2085
    ::new (&_node_bundling_base[i]) Bundle();
2086
  }
2087
  memset(_uses,               0, node_max * sizeof(short));
2088
  memset(_current_latency,    0, node_max * sizeof(unsigned short));
2089

2090
  // Clear the bundling information
2091
  memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2092

2093
  // Get the last node
2094
  Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2095

2096
  _next_node = block->get_node(block->number_of_nodes() - 1);
2097
}
2098

2099
#ifndef PRODUCT
2100
// Scheduling destructor
2101
Scheduling::~Scheduling() {
2102
  _total_branches             += _branches;
2103
  _total_unconditional_delays += _unconditional_delays;
2104
}
2105
#endif
2106

2107
// Step ahead "i" cycles
2108
void Scheduling::step(uint i) {
2109

2110
  Bundle *bundle = node_bundling(_next_node);
2111
  bundle->set_starts_bundle();
2112

2113
  // Update the bundle record, but leave the flags information alone
2114
  if (_bundle_instr_count > 0) {
2115
    bundle->set_instr_count(_bundle_instr_count);
2116
    bundle->set_resources_used(_bundle_use.resourcesUsed());
2117
  }
2118

2119
  // Update the state information
2120
  _bundle_instr_count = 0;
2121
  _bundle_cycle_number += i;
2122
  _bundle_use.step(i);
2123
}
2124

2125
void Scheduling::step_and_clear() {
2126
  Bundle *bundle = node_bundling(_next_node);
2127
  bundle->set_starts_bundle();
2128

2129
  // Update the bundle record
2130
  if (_bundle_instr_count > 0) {
2131
    bundle->set_instr_count(_bundle_instr_count);
2132
    bundle->set_resources_used(_bundle_use.resourcesUsed());
2133

2134
    _bundle_cycle_number += 1;
2135
  }
2136

2137
  // Clear the bundling information
2138
  _bundle_instr_count = 0;
2139
  _bundle_use.reset();
2140

2141
  memcpy(_bundle_use_elements,
2142
         Pipeline_Use::elaborated_elements,
2143
         sizeof(Pipeline_Use::elaborated_elements));
2144
}
2145

2146
// Perform instruction scheduling and bundling over the sequence of
2147
// instructions in backwards order.
2148
void PhaseOutput::ScheduleAndBundle() {
2149

2150
  // Don't optimize this if it isn't a method
2151
  if (!C->method())
2152
    return;
2153

2154
  // Don't optimize this if scheduling is disabled
2155
  if (!C->do_scheduling())
2156
    return;
2157

2158
  // Scheduling code works only with pairs (8 bytes) maximum.
2159
  // And when the scalable vector register is used, we may spill/unspill
2160
  // the whole reg regardless of the max vector size.
2161
  if (C->max_vector_size() > 8 ||
2162
      (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) {
2163
    return;
2164
  }
2165

2166
  Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2167

2168
  // Create a data structure for all the scheduling information
2169
  Scheduling scheduling(Thread::current()->resource_area(), *C);
2170

2171
  // Walk backwards over each basic block, computing the needed alignment
2172
  // Walk over all the basic blocks
2173
  scheduling.DoScheduling();
2174

2175
#ifndef PRODUCT
2176
  if (C->trace_opto_output()) {
2177
    // Buffer and print all at once
2178
    ResourceMark rm;
2179
    stringStream ss;
2180
    ss.print("\n---- After ScheduleAndBundle ----\n");
2181
    print_scheduling(&ss);
2182
    tty->print("%s", ss.as_string());
2183
  }
2184
#endif
2185
}
2186

2187
#ifndef PRODUCT
2188
// Separated out so that it can be called directly from debugger
2189
void PhaseOutput::print_scheduling() {
2190
  print_scheduling(tty);
2191
}
2192

2193
void PhaseOutput::print_scheduling(outputStream* output_stream) {
2194
  for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2195
    output_stream->print("\nBB#%03d:\n", i);
2196
    Block* block = C->cfg()->get_block(i);
2197
    for (uint j = 0; j < block->number_of_nodes(); j++) {
2198
      Node* n = block->get_node(j);
2199
      OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2200
      output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2201
      n->dump("\n", false, output_stream);
2202
    }
2203
  }
2204
}
2205
#endif
2206

2207
// See if this node fits into the present instruction bundle
2208
bool Scheduling::NodeFitsInBundle(Node *n) {
2209
  uint n_idx = n->_idx;
2210

2211
  // If this is the unconditional delay instruction, then it fits
2212
  if (n == _unconditional_delay_slot) {
2213
#ifndef PRODUCT
2214
    if (_cfg->C->trace_opto_output())
2215
      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2216
#endif
2217
    return (true);
2218
  }
2219

2220
  // If the node cannot be scheduled this cycle, skip it
2221
  if (_current_latency[n_idx] > _bundle_cycle_number) {
2222
#ifndef PRODUCT
2223
    if (_cfg->C->trace_opto_output())
2224
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2225
                 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2226
#endif
2227
    return (false);
2228
  }
2229

2230
  const Pipeline *node_pipeline = n->pipeline();
2231

2232
  uint instruction_count = node_pipeline->instructionCount();
2233
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2234
    instruction_count = 0;
2235
  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2236
    instruction_count++;
2237

2238
  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2239
#ifndef PRODUCT
2240
    if (_cfg->C->trace_opto_output())
2241
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2242
                 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2243
#endif
2244
    return (false);
2245
  }
2246

2247
  // Don't allow non-machine nodes to be handled this way
2248
  if (!n->is_Mach() && instruction_count == 0)
2249
    return (false);
2250

2251
  // See if there is any overlap
2252
  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2253

2254
  if (delay > 0) {
2255
#ifndef PRODUCT
2256
    if (_cfg->C->trace_opto_output())
2257
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2258
#endif
2259
    return false;
2260
  }
2261

2262
#ifndef PRODUCT
2263
  if (_cfg->C->trace_opto_output())
2264
    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2265
#endif
2266

2267
  return true;
2268
}
2269

2270
Node * Scheduling::ChooseNodeToBundle() {
2271
  uint siz = _available.size();
2272

2273
  if (siz == 0) {
2274

2275
#ifndef PRODUCT
2276
    if (_cfg->C->trace_opto_output())
2277
      tty->print("#   ChooseNodeToBundle: null\n");
2278
#endif
2279
    return (nullptr);
2280
  }
2281

2282
  // Fast path, if only 1 instruction in the bundle
2283
  if (siz == 1) {
2284
#ifndef PRODUCT
2285
    if (_cfg->C->trace_opto_output()) {
2286
      tty->print("#   ChooseNodeToBundle (only 1): ");
2287
      _available[0]->dump();
2288
    }
2289
#endif
2290
    return (_available[0]);
2291
  }
2292

2293
  // Don't bother, if the bundle is already full
2294
  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2295
    for ( uint i = 0; i < siz; i++ ) {
2296
      Node *n = _available[i];
2297

2298
      // Skip projections, we'll handle them another way
2299
      if (n->is_Proj())
2300
        continue;
2301

2302
      // This presupposed that instructions are inserted into the
2303
      // available list in a legality order; i.e. instructions that
2304
      // must be inserted first are at the head of the list
2305
      if (NodeFitsInBundle(n)) {
2306
#ifndef PRODUCT
2307
        if (_cfg->C->trace_opto_output()) {
2308
          tty->print("#   ChooseNodeToBundle: ");
2309
          n->dump();
2310
        }
2311
#endif
2312
        return (n);
2313
      }
2314
    }
2315
  }
2316

2317
  // Nothing fits in this bundle, choose the highest priority
2318
#ifndef PRODUCT
2319
  if (_cfg->C->trace_opto_output()) {
2320
    tty->print("#   ChooseNodeToBundle: ");
2321
    _available[0]->dump();
2322
  }
2323
#endif
2324

2325
  return _available[0];
2326
}
2327

2328
int Scheduling::compare_two_spill_nodes(Node* first, Node* second) {
2329
  assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), "");
2330

2331
  OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1));
2332
  OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first);
2333
  OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1));
2334
  OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second);
2335

2336
  // Comparison between stack -> reg and stack -> reg
2337
  if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) &&
2338
      OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) {
2339
    return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo);
2340
  }
2341

2342
  // Comparison between reg -> stack and reg -> stack
2343
  if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) &&
2344
      OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) {
2345
    return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo);
2346
  }
2347

2348
  return 0; // Not comparable
2349
}
2350

2351
void Scheduling::AddNodeToAvailableList(Node *n) {
2352
  assert( !n->is_Proj(), "projections never directly made available" );
2353
#ifndef PRODUCT
2354
  if (_cfg->C->trace_opto_output()) {
2355
    tty->print("#   AddNodeToAvailableList: ");
2356
    n->dump();
2357
  }
2358
#endif
2359

2360
  int latency = _current_latency[n->_idx];
2361

2362
  // Insert in latency order (insertion sort). If two MachSpillCopyNodes
2363
  // for stack spilling or unspilling have the same latency, we sort
2364
  // them in the order of stack offset. Some ports (e.g. aarch64) may also
2365
  // have more opportunities to do ld/st merging
2366
  uint i;
2367
  for (i = 0; i < _available.size(); i++) {
2368
    if (_current_latency[_available[i]->_idx] > latency) {
2369
      break;
2370
    } else if (_current_latency[_available[i]->_idx] == latency &&
2371
               n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() &&
2372
               compare_two_spill_nodes(n, _available[i]) > 0) {
2373
      break;
2374
    }
2375
  }
2376

2377
  // Special Check for compares following branches
2378
  if( n->is_Mach() && _scheduled.size() > 0 ) {
2379
    int op = n->as_Mach()->ideal_Opcode();
2380
    Node *last = _scheduled[0];
2381
    if( last->is_MachIf() && last->in(1) == n &&
2382
        ( op == Op_CmpI ||
2383
          op == Op_CmpU ||
2384
          op == Op_CmpUL ||
2385
          op == Op_CmpP ||
2386
          op == Op_CmpF ||
2387
          op == Op_CmpD ||
2388
          op == Op_CmpL ) ) {
2389

2390
      // Recalculate position, moving to front of same latency
2391
      for ( i=0 ; i < _available.size(); i++ )
2392
        if (_current_latency[_available[i]->_idx] >= latency)
2393
          break;
2394
    }
2395
  }
2396

2397
  // Insert the node in the available list
2398
  _available.insert(i, n);
2399

2400
#ifndef PRODUCT
2401
  if (_cfg->C->trace_opto_output())
2402
    dump_available();
2403
#endif
2404
}
2405

2406
void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2407
  for ( uint i=0; i < n->len(); i++ ) {
2408
    Node *def = n->in(i);
2409
    if (!def) continue;
2410
    if( def->is_Proj() )        // If this is a machine projection, then
2411
      def = def->in(0);         // propagate usage thru to the base instruction
2412

2413
    if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2414
      continue;
2415
    }
2416

2417
    // Compute the latency
2418
    uint l = _bundle_cycle_number + n->latency(i);
2419
    if (_current_latency[def->_idx] < l)
2420
      _current_latency[def->_idx] = l;
2421

2422
    // If this does not have uses then schedule it
2423
    if ((--_uses[def->_idx]) == 0)
2424
      AddNodeToAvailableList(def);
2425
  }
2426
}
2427

2428
void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2429
#ifndef PRODUCT
2430
  if (_cfg->C->trace_opto_output()) {
2431
    tty->print("#   AddNodeToBundle: ");
2432
    n->dump();
2433
  }
2434
#endif
2435

2436
  // Remove this from the available list
2437
  uint i;
2438
  for (i = 0; i < _available.size(); i++)
2439
    if (_available[i] == n)
2440
      break;
2441
  assert(i < _available.size(), "entry in _available list not found");
2442
  _available.remove(i);
2443

2444
  // See if this fits in the current bundle
2445
  const Pipeline *node_pipeline = n->pipeline();
2446
  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2447

2448
  // Check for instructions to be placed in the delay slot. We
2449
  // do this before we actually schedule the current instruction,
2450
  // because the delay slot follows the current instruction.
2451
  if (Pipeline::_branch_has_delay_slot &&
2452
      node_pipeline->hasBranchDelay() &&
2453
      !_unconditional_delay_slot) {
2454

2455
    uint siz = _available.size();
2456

2457
    // Conditional branches can support an instruction that
2458
    // is unconditionally executed and not dependent by the
2459
    // branch, OR a conditionally executed instruction if
2460
    // the branch is taken.  In practice, this means that
2461
    // the first instruction at the branch target is
2462
    // copied to the delay slot, and the branch goes to
2463
    // the instruction after that at the branch target
2464
    if ( n->is_MachBranch() ) {
2465

2466
      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2467
      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2468

2469
#ifndef PRODUCT
2470
      _branches++;
2471
#endif
2472

2473
      // At least 1 instruction is on the available list
2474
      // that is not dependent on the branch
2475
      for (uint i = 0; i < siz; i++) {
2476
        Node *d = _available[i];
2477
        const Pipeline *avail_pipeline = d->pipeline();
2478

2479
        // Don't allow safepoints in the branch shadow, that will
2480
        // cause a number of difficulties
2481
        if ( avail_pipeline->instructionCount() == 1 &&
2482
             !avail_pipeline->hasMultipleBundles() &&
2483
             !avail_pipeline->hasBranchDelay() &&
2484
             Pipeline::instr_has_unit_size() &&
2485
             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2486
             NodeFitsInBundle(d) &&
2487
             !node_bundling(d)->used_in_delay()) {
2488

2489
          if (d->is_Mach() && !d->is_MachSafePoint()) {
2490
            // A node that fits in the delay slot was found, so we need to
2491
            // set the appropriate bits in the bundle pipeline information so
2492
            // that it correctly indicates resource usage.  Later, when we
2493
            // attempt to add this instruction to the bundle, we will skip
2494
            // setting the resource usage.
2495
            _unconditional_delay_slot = d;
2496
            node_bundling(n)->set_use_unconditional_delay();
2497
            node_bundling(d)->set_used_in_unconditional_delay();
2498
            _bundle_use.add_usage(avail_pipeline->resourceUse());
2499
            _current_latency[d->_idx] = _bundle_cycle_number;
2500
            _next_node = d;
2501
            ++_bundle_instr_count;
2502
#ifndef PRODUCT
2503
            _unconditional_delays++;
2504
#endif
2505
            break;
2506
          }
2507
        }
2508
      }
2509
    }
2510

2511
    // No delay slot, add a nop to the usage
2512
    if (!_unconditional_delay_slot) {
2513
      // See if adding an instruction in the delay slot will overflow
2514
      // the bundle.
2515
      if (!NodeFitsInBundle(_nop)) {
2516
#ifndef PRODUCT
2517
        if (_cfg->C->trace_opto_output())
2518
          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2519
#endif
2520
        step(1);
2521
      }
2522

2523
      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2524
      _next_node = _nop;
2525
      ++_bundle_instr_count;
2526
    }
2527

2528
    // See if the instruction in the delay slot requires a
2529
    // step of the bundles
2530
    if (!NodeFitsInBundle(n)) {
2531
#ifndef PRODUCT
2532
      if (_cfg->C->trace_opto_output())
2533
        tty->print("#  *** STEP(branch won't fit) ***\n");
2534
#endif
2535
      // Update the state information
2536
      _bundle_instr_count = 0;
2537
      _bundle_cycle_number += 1;
2538
      _bundle_use.step(1);
2539
    }
2540
  }
2541

2542
  // Get the number of instructions
2543
  uint instruction_count = node_pipeline->instructionCount();
2544
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2545
    instruction_count = 0;
2546

2547
  // Compute the latency information
2548
  uint delay = 0;
2549

2550
  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2551
    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2552
    if (relative_latency < 0)
2553
      relative_latency = 0;
2554

2555
    delay = _bundle_use.full_latency(relative_latency, node_usage);
2556

2557
    // Does not fit in this bundle, start a new one
2558
    if (delay > 0) {
2559
      step(delay);
2560

2561
#ifndef PRODUCT
2562
      if (_cfg->C->trace_opto_output())
2563
        tty->print("#  *** STEP(%d) ***\n", delay);
2564
#endif
2565
    }
2566
  }
2567

2568
  // If this was placed in the delay slot, ignore it
2569
  if (n != _unconditional_delay_slot) {
2570

2571
    if (delay == 0) {
2572
      if (node_pipeline->hasMultipleBundles()) {
2573
#ifndef PRODUCT
2574
        if (_cfg->C->trace_opto_output())
2575
          tty->print("#  *** STEP(multiple instructions) ***\n");
2576
#endif
2577
        step(1);
2578
      }
2579

2580
      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2581
#ifndef PRODUCT
2582
        if (_cfg->C->trace_opto_output())
2583
          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2584
                     instruction_count + _bundle_instr_count,
2585
                     Pipeline::_max_instrs_per_cycle);
2586
#endif
2587
        step(1);
2588
      }
2589
    }
2590

2591
    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2592
      _bundle_instr_count++;
2593

2594
    // Set the node's latency
2595
    _current_latency[n->_idx] = _bundle_cycle_number;
2596

2597
    // Now merge the functional unit information
2598
    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2599
      _bundle_use.add_usage(node_usage);
2600

2601
    // Increment the number of instructions in this bundle
2602
    _bundle_instr_count += instruction_count;
2603

2604
    // Remember this node for later
2605
    if (n->is_Mach())
2606
      _next_node = n;
2607
  }
2608

2609
  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2610
  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2611
  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2612
  // into the block.  All other scheduled nodes get put in the schedule here.
2613
  int op = n->Opcode();
2614
  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2615
      (op != Op_Node &&         // Not an unused antidepedence node and
2616
       // not an unallocated boxlock
2617
       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2618

2619
    // Push any trailing projections
2620
    if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2621
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2622
        Node *foi = n->fast_out(i);
2623
        if( foi->is_Proj() )
2624
          _scheduled.push(foi);
2625
      }
2626
    }
2627

2628
    // Put the instruction in the schedule list
2629
    _scheduled.push(n);
2630
  }
2631

2632
#ifndef PRODUCT
2633
  if (_cfg->C->trace_opto_output())
2634
    dump_available();
2635
#endif
2636

2637
  // Walk all the definitions, decrementing use counts, and
2638
  // if a definition has a 0 use count, place it in the available list.
2639
  DecrementUseCounts(n,bb);
2640
}
2641

2642
// This method sets the use count within a basic block.  We will ignore all
2643
// uses outside the current basic block.  As we are doing a backwards walk,
2644
// any node we reach that has a use count of 0 may be scheduled.  This also
2645
// avoids the problem of cyclic references from phi nodes, as long as phi
2646
// nodes are at the front of the basic block.  This method also initializes
2647
// the available list to the set of instructions that have no uses within this
2648
// basic block.
2649
void Scheduling::ComputeUseCount(const Block *bb) {
2650
#ifndef PRODUCT
2651
  if (_cfg->C->trace_opto_output())
2652
    tty->print("# -> ComputeUseCount\n");
2653
#endif
2654

2655
  // Clear the list of available and scheduled instructions, just in case
2656
  _available.clear();
2657
  _scheduled.clear();
2658

2659
  // No delay slot specified
2660
  _unconditional_delay_slot = nullptr;
2661

2662
#ifdef ASSERT
2663
  for( uint i=0; i < bb->number_of_nodes(); i++ )
2664
    assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2665
#endif
2666

2667
  // Force the _uses count to never go to zero for unscheduable pieces
2668
  // of the block
2669
  for( uint k = 0; k < _bb_start; k++ )
2670
    _uses[bb->get_node(k)->_idx] = 1;
2671
  for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2672
    _uses[bb->get_node(l)->_idx] = 1;
2673

2674
  // Iterate backwards over the instructions in the block.  Don't count the
2675
  // branch projections at end or the block header instructions.
2676
  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2677
    Node *n = bb->get_node(j);
2678
    if( n->is_Proj() ) continue; // Projections handled another way
2679

2680
    // Account for all uses
2681
    for ( uint k = 0; k < n->len(); k++ ) {
2682
      Node *inp = n->in(k);
2683
      if (!inp) continue;
2684
      assert(inp != n, "no cycles allowed" );
2685
      if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2686
        if (inp->is_Proj()) { // Skip through Proj's
2687
          inp = inp->in(0);
2688
        }
2689
        ++_uses[inp->_idx];     // Count 1 block-local use
2690
      }
2691
    }
2692

2693
    // If this instruction has a 0 use count, then it is available
2694
    if (!_uses[n->_idx]) {
2695
      _current_latency[n->_idx] = _bundle_cycle_number;
2696
      AddNodeToAvailableList(n);
2697
    }
2698

2699
#ifndef PRODUCT
2700
    if (_cfg->C->trace_opto_output()) {
2701
      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2702
      n->dump();
2703
    }
2704
#endif
2705
  }
2706

2707
#ifndef PRODUCT
2708
  if (_cfg->C->trace_opto_output())
2709
    tty->print("# <- ComputeUseCount\n");
2710
#endif
2711
}
2712

2713
// This routine performs scheduling on each basic block in reverse order,
2714
// using instruction latencies and taking into account function unit
2715
// availability.
2716
void Scheduling::DoScheduling() {
2717
#ifndef PRODUCT
2718
  if (_cfg->C->trace_opto_output())
2719
    tty->print("# -> DoScheduling\n");
2720
#endif
2721

2722
  Block *succ_bb = nullptr;
2723
  Block *bb;
2724
  Compile* C = Compile::current();
2725

2726
  // Walk over all the basic blocks in reverse order
2727
  for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2728
    bb = _cfg->get_block(i);
2729

2730
#ifndef PRODUCT
2731
    if (_cfg->C->trace_opto_output()) {
2732
      tty->print("#  Schedule BB#%03d (initial)\n", i);
2733
      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2734
        bb->get_node(j)->dump();
2735
      }
2736
    }
2737
#endif
2738

2739
    // On the head node, skip processing
2740
    if (bb == _cfg->get_root_block()) {
2741
      continue;
2742
    }
2743

2744
    // Skip empty, connector blocks
2745
    if (bb->is_connector())
2746
      continue;
2747

2748
    // If the following block is not the sole successor of
2749
    // this one, then reset the pipeline information
2750
    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2751
#ifndef PRODUCT
2752
      if (_cfg->C->trace_opto_output()) {
2753
        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2754
                   _next_node->_idx, _bundle_instr_count);
2755
      }
2756
#endif
2757
      step_and_clear();
2758
    }
2759

2760
    // Leave untouched the starting instruction, any Phis, a CreateEx node
2761
    // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2762
    _bb_end = bb->number_of_nodes()-1;
2763
    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2764
      Node *n = bb->get_node(_bb_start);
2765
      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2766
      // Also, MachIdealNodes do not get scheduled
2767
      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2768
      MachNode *mach = n->as_Mach();
2769
      int iop = mach->ideal_Opcode();
2770
      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2771
      if( iop == Op_Con ) continue;      // Do not schedule Top
2772
      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2773
          mach->pipeline() == MachNode::pipeline_class() &&
2774
          !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2775
        continue;
2776
      break;                    // Funny loop structure to be sure...
2777
    }
2778
    // Compute last "interesting" instruction in block - last instruction we
2779
    // might schedule.  _bb_end points just after last schedulable inst.  We
2780
    // normally schedule conditional branches (despite them being forced last
2781
    // in the block), because they have delay slots we can fill.  Calls all
2782
    // have their delay slots filled in the template expansions, so we don't
2783
    // bother scheduling them.
2784
    Node *last = bb->get_node(_bb_end);
2785
    // Ignore trailing NOPs.
2786
    while (_bb_end > 0 && last->is_Mach() &&
2787
           last->as_Mach()->ideal_Opcode() == Op_Con) {
2788
      last = bb->get_node(--_bb_end);
2789
    }
2790
    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2791
    if( last->is_Catch() ||
2792
        (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2793
      // There might be a prior call.  Skip it.
2794
      while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2795
    } else if( last->is_MachNullCheck() ) {
2796
      // Backup so the last null-checked memory instruction is
2797
      // outside the schedulable range. Skip over the nullcheck,
2798
      // projection, and the memory nodes.
2799
      Node *mem = last->in(1);
2800
      do {
2801
        _bb_end--;
2802
      } while (mem != bb->get_node(_bb_end));
2803
    } else {
2804
      // Set _bb_end to point after last schedulable inst.
2805
      _bb_end++;
2806
    }
2807

2808
    assert( _bb_start <= _bb_end, "inverted block ends" );
2809

2810
    // Compute the register antidependencies for the basic block
2811
    ComputeRegisterAntidependencies(bb);
2812
    if (C->failing())  return;  // too many D-U pinch points
2813

2814
    // Compute the usage within the block, and set the list of all nodes
2815
    // in the block that have no uses within the block.
2816
    ComputeUseCount(bb);
2817

2818
    // Schedule the remaining instructions in the block
2819
    while ( _available.size() > 0 ) {
2820
      Node *n = ChooseNodeToBundle();
2821
      guarantee(n != nullptr, "no nodes available");
2822
      AddNodeToBundle(n,bb);
2823
    }
2824

2825
    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2826
#ifdef ASSERT
2827
    for( uint l = _bb_start; l < _bb_end; l++ ) {
2828
      Node *n = bb->get_node(l);
2829
      uint m;
2830
      for( m = 0; m < _bb_end-_bb_start; m++ )
2831
        if( _scheduled[m] == n )
2832
          break;
2833
      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2834
    }
2835
#endif
2836

2837
    // Now copy the instructions (in reverse order) back to the block
2838
    for ( uint k = _bb_start; k < _bb_end; k++ )
2839
      bb->map_node(_scheduled[_bb_end-k-1], k);
2840

2841
#ifndef PRODUCT
2842
    if (_cfg->C->trace_opto_output()) {
2843
      tty->print("#  Schedule BB#%03d (final)\n", i);
2844
      uint current = 0;
2845
      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2846
        Node *n = bb->get_node(j);
2847
        if( valid_bundle_info(n) ) {
2848
          Bundle *bundle = node_bundling(n);
2849
          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2850
            tty->print("*** Bundle: ");
2851
            bundle->dump();
2852
          }
2853
          n->dump();
2854
        }
2855
      }
2856
    }
2857
#endif
2858
#ifdef ASSERT
2859
    verify_good_schedule(bb,"after block local scheduling");
2860
#endif
2861
  }
2862

2863
#ifndef PRODUCT
2864
  if (_cfg->C->trace_opto_output())
2865
    tty->print("# <- DoScheduling\n");
2866
#endif
2867

2868
  // Record final node-bundling array location
2869
  _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2870

2871
} // end DoScheduling
2872

2873
// Verify that no live-range used in the block is killed in the block by a
2874
// wrong DEF.  This doesn't verify live-ranges that span blocks.
2875

2876
// Check for edge existence.  Used to avoid adding redundant precedence edges.
2877
static bool edge_from_to( Node *from, Node *to ) {
2878
  for( uint i=0; i<from->len(); i++ )
2879
    if( from->in(i) == to )
2880
      return true;
2881
  return false;
2882
}
2883

2884
#ifdef ASSERT
2885
void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2886
  // Check for bad kills
2887
  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2888
    Node *prior_use = _reg_node[def];
2889
    if( prior_use && !edge_from_to(prior_use,n) ) {
2890
      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2891
      n->dump();
2892
      tty->print_cr("...");
2893
      prior_use->dump();
2894
      assert(edge_from_to(prior_use,n), "%s", msg);
2895
    }
2896
    _reg_node.map(def,nullptr); // Kill live USEs
2897
  }
2898
}
2899

2900
void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2901

2902
  // Zap to something reasonable for the verify code
2903
  _reg_node.clear();
2904

2905
  // Walk over the block backwards.  Check to make sure each DEF doesn't
2906
  // kill a live value (other than the one it's supposed to).  Add each
2907
  // USE to the live set.
2908
  for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2909
    Node *n = b->get_node(i);
2910
    int n_op = n->Opcode();
2911
    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2912
      // Fat-proj kills a slew of registers
2913
      RegMaskIterator rmi(n->out_RegMask());
2914
      while (rmi.has_next()) {
2915
        OptoReg::Name kill = rmi.next();
2916
        verify_do_def(n, kill, msg);
2917
      }
2918
    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2919
      // Get DEF'd registers the normal way
2920
      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2921
      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2922
    }
2923

2924
    // Now make all USEs live
2925
    for( uint i=1; i<n->req(); i++ ) {
2926
      Node *def = n->in(i);
2927
      assert(def != nullptr, "input edge required");
2928
      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2929
      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2930
      if( OptoReg::is_valid(reg_lo) ) {
2931
        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2932
        _reg_node.map(reg_lo,n);
2933
      }
2934
      if( OptoReg::is_valid(reg_hi) ) {
2935
        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2936
        _reg_node.map(reg_hi,n);
2937
      }
2938
    }
2939

2940
  }
2941

2942
  // Zap to something reasonable for the Antidependence code
2943
  _reg_node.clear();
2944
}
2945
#endif
2946

2947
// Conditionally add precedence edges.  Avoid putting edges on Projs.
2948
static void add_prec_edge_from_to( Node *from, Node *to ) {
2949
  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2950
    assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" );
2951
    from = from->in(0);
2952
  }
2953
  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2954
      !edge_from_to( from, to ) ) // Avoid duplicate edge
2955
    from->add_prec(to);
2956
}
2957

2958
void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2959
  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2960
    return;
2961

2962
  if (OptoReg::is_reg(def_reg)) {
2963
    VMReg vmreg = OptoReg::as_VMReg(def_reg);
2964
    if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
2965
      // This is one of the high slots of a vector register.
2966
      // ScheduleAndBundle already checked there are no live wide
2967
      // vectors in this method so it can be safely ignored.
2968
      return;
2969
    }
2970
  }
2971

2972
  Node *pinch = _reg_node[def_reg]; // Get pinch point
2973
  if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2974
      is_def ) {    // Check for a true def (not a kill)
2975
    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2976
    return;
2977
  }
2978

2979
  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2980
  debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2981

2982
  // After some number of kills there _may_ be a later def
2983
  Node *later_def = nullptr;
2984

2985
  Compile* C = Compile::current();
2986

2987
  // Finding a kill requires a real pinch-point.
2988
  // Check for not already having a pinch-point.
2989
  // Pinch points are Op_Node's.
2990
  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2991
    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2992
    if ( _pinch_free_list.size() > 0) {
2993
      pinch = _pinch_free_list.pop();
2994
    } else {
2995
      pinch = new Node(1); // Pinch point to-be
2996
    }
2997
    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2998
      DEBUG_ONLY( pinch->dump(); );
2999
      assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index());
3000
      _cfg->C->record_method_not_compilable("too many D-U pinch points");
3001
      return;
3002
    }
3003
    _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
3004
    _reg_node.map(def_reg,pinch); // Record pinch-point
3005
    //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
3006
    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
3007
      pinch->init_req(0, C->top());     // set not null for the next call
3008
      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
3009
      later_def = nullptr;           // and no later def
3010
    }
3011
    pinch->set_req(0,later_def);  // Hook later def so we can find it
3012
  } else {                        // Else have valid pinch point
3013
    if( pinch->in(0) )            // If there is a later-def
3014
      later_def = pinch->in(0);   // Get it
3015
  }
3016

3017
  // Add output-dependence edge from later def to kill
3018
  if( later_def )               // If there is some original def
3019
    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
3020

3021
  // See if current kill is also a use, and so is forced to be the pinch-point.
3022
  if( pinch->Opcode() == Op_Node ) {
3023
    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
3024
    for( uint i=1; i<uses->req(); i++ ) {
3025
      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
3026
          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
3027
        // Yes, found a use/kill pinch-point
3028
        pinch->set_req(0,nullptr);  //
3029
        pinch->replace_by(kill); // Move anti-dep edges up
3030
        pinch = kill;
3031
        _reg_node.map(def_reg,pinch);
3032
        return;
3033
      }
3034
    }
3035
  }
3036

3037
  // Add edge from kill to pinch-point
3038
  add_prec_edge_from_to(kill,pinch);
3039
}
3040

3041
void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
3042
  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
3043
    return;
3044
  Node *pinch = _reg_node[use_reg]; // Get pinch point
3045
  // Check for no later def_reg/kill in block
3046
  if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
3047
      // Use has to be block-local as well
3048
      _cfg->get_block_for_node(use) == b) {
3049
    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
3050
        pinch->req() == 1 ) {   // pinch not yet in block?
3051
      pinch->del_req(0);        // yank pointer to later-def, also set flag
3052
      // Insert the pinch-point in the block just after the last use
3053
      b->insert_node(pinch, b->find_node(use) + 1);
3054
      _bb_end++;                // Increase size scheduled region in block
3055
    }
3056

3057
    add_prec_edge_from_to(pinch,use);
3058
  }
3059
}
3060

3061
// We insert antidependences between the reads and following write of
3062
// allocated registers to prevent illegal code motion. Hopefully, the
3063
// number of added references should be fairly small, especially as we
3064
// are only adding references within the current basic block.
3065
void Scheduling::ComputeRegisterAntidependencies(Block *b) {
3066

3067
#ifdef ASSERT
3068
  verify_good_schedule(b,"before block local scheduling");
3069
#endif
3070

3071
  // A valid schedule, for each register independently, is an endless cycle
3072
  // of: a def, then some uses (connected to the def by true dependencies),
3073
  // then some kills (defs with no uses), finally the cycle repeats with a new
3074
  // def.  The uses are allowed to float relative to each other, as are the
3075
  // kills.  No use is allowed to slide past a kill (or def).  This requires
3076
  // antidependencies between all uses of a single def and all kills that
3077
  // follow, up to the next def.  More edges are redundant, because later defs
3078
  // & kills are already serialized with true or antidependencies.  To keep
3079
  // the edge count down, we add a 'pinch point' node if there's more than
3080
  // one use or more than one kill/def.
3081

3082
  // We add dependencies in one bottom-up pass.
3083

3084
  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
3085

3086
  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
3087
  // register.  If not, we record the DEF/KILL in _reg_node, the
3088
  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
3089
  // "pinch point", a new Node that's in the graph but not in the block.
3090
  // We put edges from the prior and current DEF/KILLs to the pinch point.
3091
  // We put the pinch point in _reg_node.  If there's already a pinch point
3092
  // we merely add an edge from the current DEF/KILL to the pinch point.
3093

3094
  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
3095
  // put an edge from the pinch point to the USE.
3096

3097
  // To be expedient, the _reg_node array is pre-allocated for the whole
3098
  // compilation.  _reg_node is lazily initialized; it either contains a null,
3099
  // or a valid def/kill/pinch-point, or a leftover node from some prior
3100
  // block.  Leftover node from some prior block is treated like a null (no
3101
  // prior def, so no anti-dependence needed).  Valid def is distinguished by
3102
  // it being in the current block.
3103
  bool fat_proj_seen = false;
3104
  uint last_safept = _bb_end-1;
3105
  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
3106
  Node* last_safept_node = end_node;
3107
  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
3108
    Node *n = b->get_node(i);
3109
    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
3110
    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
3111
      // Fat-proj kills a slew of registers
3112
      // This can add edges to 'n' and obscure whether or not it was a def,
3113
      // hence the is_def flag.
3114
      fat_proj_seen = true;
3115
      RegMaskIterator rmi(n->out_RegMask());
3116
      while (rmi.has_next()) {
3117
        OptoReg::Name kill = rmi.next();
3118
        anti_do_def(b, n, kill, is_def);
3119
      }
3120
    } else {
3121
      // Get DEF'd registers the normal way
3122
      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
3123
      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
3124
    }
3125

3126
    // Kill projections on a branch should appear to occur on the
3127
    // branch, not afterwards, so grab the masks from the projections
3128
    // and process them.
3129
    if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
3130
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3131
        Node* use = n->fast_out(i);
3132
        if (use->is_Proj()) {
3133
          RegMaskIterator rmi(use->out_RegMask());
3134
          while (rmi.has_next()) {
3135
            OptoReg::Name kill = rmi.next();
3136
            anti_do_def(b, n, kill, false);
3137
          }
3138
        }
3139
      }
3140
    }
3141

3142
    // Check each register used by this instruction for a following DEF/KILL
3143
    // that must occur afterward and requires an anti-dependence edge.
3144
    for( uint j=0; j<n->req(); j++ ) {
3145
      Node *def = n->in(j);
3146
      if( def ) {
3147
        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3148
        anti_do_use( b, n, _regalloc->get_reg_first(def) );
3149
        anti_do_use( b, n, _regalloc->get_reg_second(def) );
3150
      }
3151
    }
3152
    // Do not allow defs of new derived values to float above GC
3153
    // points unless the base is definitely available at the GC point.
3154

3155
    Node *m = b->get_node(i);
3156

3157
    // Add precedence edge from following safepoint to use of derived pointer
3158
    if( last_safept_node != end_node &&
3159
        m != last_safept_node) {
3160
      for (uint k = 1; k < m->req(); k++) {
3161
        const Type *t = m->in(k)->bottom_type();
3162
        if( t->isa_oop_ptr() &&
3163
            t->is_ptr()->offset() != 0 ) {
3164
          last_safept_node->add_prec( m );
3165
          break;
3166
        }
3167
      }
3168
    }
3169

3170
    if( n->jvms() ) {           // Precedence edge from derived to safept
3171
      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3172
      if( b->get_node(last_safept) != last_safept_node ) {
3173
        last_safept = b->find_node(last_safept_node);
3174
      }
3175
      for( uint j=last_safept; j > i; j-- ) {
3176
        Node *mach = b->get_node(j);
3177
        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3178
          mach->add_prec( n );
3179
      }
3180
      last_safept = i;
3181
      last_safept_node = m;
3182
    }
3183
  }
3184

3185
  if (fat_proj_seen) {
3186
    // Garbage collect pinch nodes that were not consumed.
3187
    // They are usually created by a fat kill MachProj for a call.
3188
    garbage_collect_pinch_nodes();
3189
  }
3190
}
3191

3192
// Garbage collect pinch nodes for reuse by other blocks.
3193
//
3194
// The block scheduler's insertion of anti-dependence
3195
// edges creates many pinch nodes when the block contains
3196
// 2 or more Calls.  A pinch node is used to prevent a
3197
// combinatorial explosion of edges.  If a set of kills for a
3198
// register is anti-dependent on a set of uses (or defs), rather
3199
// than adding an edge in the graph between each pair of kill
3200
// and use (or def), a pinch is inserted between them:
3201
//
3202
//            use1   use2  use3
3203
//                \   |   /
3204
//                 \  |  /
3205
//                  pinch
3206
//                 /  |  \
3207
//                /   |   \
3208
//            kill1 kill2 kill3
3209
//
3210
// One pinch node is created per register killed when
3211
// the second call is encountered during a backwards pass
3212
// over the block.  Most of these pinch nodes are never
3213
// wired into the graph because the register is never
3214
// used or def'ed in the block.
3215
//
3216
void Scheduling::garbage_collect_pinch_nodes() {
3217
#ifndef PRODUCT
3218
  if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3219
#endif
3220
  int trace_cnt = 0;
3221
  for (uint k = 0; k < _reg_node.max(); k++) {
3222
    Node* pinch = _reg_node[k];
3223
    if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3224
        // no predecence input edges
3225
        (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3226
      cleanup_pinch(pinch);
3227
      _pinch_free_list.push(pinch);
3228
      _reg_node.map(k, nullptr);
3229
#ifndef PRODUCT
3230
      if (_cfg->C->trace_opto_output()) {
3231
        trace_cnt++;
3232
        if (trace_cnt > 40) {
3233
          tty->print("\n");
3234
          trace_cnt = 0;
3235
        }
3236
        tty->print(" %d", pinch->_idx);
3237
      }
3238
#endif
3239
    }
3240
  }
3241
#ifndef PRODUCT
3242
  if (_cfg->C->trace_opto_output()) tty->print("\n");
3243
#endif
3244
}
3245

3246
// Clean up a pinch node for reuse.
3247
void Scheduling::cleanup_pinch( Node *pinch ) {
3248
  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3249

3250
  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3251
    Node* use = pinch->last_out(i);
3252
    uint uses_found = 0;
3253
    for (uint j = use->req(); j < use->len(); j++) {
3254
      if (use->in(j) == pinch) {
3255
        use->rm_prec(j);
3256
        uses_found++;
3257
      }
3258
    }
3259
    assert(uses_found > 0, "must be a precedence edge");
3260
    i -= uses_found;    // we deleted 1 or more copies of this edge
3261
  }
3262
  // May have a later_def entry
3263
  pinch->set_req(0, nullptr);
3264
}
3265

3266
#ifndef PRODUCT
3267

3268
void Scheduling::dump_available() const {
3269
  tty->print("#Availist  ");
3270
  for (uint i = 0; i < _available.size(); i++)
3271
    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3272
  tty->cr();
3273
}
3274

3275
// Print Scheduling Statistics
3276
void Scheduling::print_statistics() {
3277
  // Print the size added by nops for bundling
3278
  tty->print("Nops added %d bytes to total of %d bytes",
3279
             _total_nop_size, _total_method_size);
3280
  if (_total_method_size > 0)
3281
    tty->print(", for %.2f%%",
3282
               ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3283
  tty->print("\n");
3284

3285
  // Print the number of branch shadows filled
3286
  if (Pipeline::_branch_has_delay_slot) {
3287
    tty->print("Of %d branches, %d had unconditional delay slots filled",
3288
               _total_branches, _total_unconditional_delays);
3289
    if (_total_branches > 0)
3290
      tty->print(", for %.2f%%",
3291
                 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3292
    tty->print("\n");
3293
  }
3294

3295
  uint total_instructions = 0, total_bundles = 0;
3296

3297
  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3298
    uint bundle_count   = _total_instructions_per_bundle[i];
3299
    total_instructions += bundle_count * i;
3300
    total_bundles      += bundle_count;
3301
  }
3302

3303
  if (total_bundles > 0)
3304
    tty->print("Average ILP (excluding nops) is %.2f\n",
3305
               ((double)total_instructions) / ((double)total_bundles));
3306
}
3307
#endif
3308

3309
//-----------------------init_scratch_buffer_blob------------------------------
3310
// Construct a temporary BufferBlob and cache it for this compile.
3311
void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3312
  // If there is already a scratch buffer blob allocated and the
3313
  // constant section is big enough, use it.  Otherwise free the
3314
  // current and allocate a new one.
3315
  BufferBlob* blob = scratch_buffer_blob();
3316
  if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3317
    // Use the current blob.
3318
  } else {
3319
    if (blob != nullptr) {
3320
      BufferBlob::free(blob);
3321
    }
3322

3323
    ResourceMark rm;
3324
    _scratch_const_size = const_size;
3325
    int size = C2Compiler::initial_code_buffer_size(const_size);
3326
    blob = BufferBlob::create("Compile::scratch_buffer", size);
3327
    // Record the buffer blob for next time.
3328
    set_scratch_buffer_blob(blob);
3329
    // Have we run out of code space?
3330
    if (scratch_buffer_blob() == nullptr) {
3331
      // Let CompilerBroker disable further compilations.
3332
      C->record_failure("Not enough space for scratch buffer in CodeCache");
3333
      return;
3334
    }
3335
  }
3336

3337
  // Initialize the relocation buffers
3338
  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3339
  set_scratch_locs_memory(locs_buf);
3340
}
3341

3342

3343
//-----------------------scratch_emit_size-------------------------------------
3344
// Helper function that computes size by emitting code
3345
uint PhaseOutput::scratch_emit_size(const Node* n) {
3346
  // Start scratch_emit_size section.
3347
  set_in_scratch_emit_size(true);
3348

3349
  // Emit into a trash buffer and count bytes emitted.
3350
  // This is a pretty expensive way to compute a size,
3351
  // but it works well enough if seldom used.
3352
  // All common fixed-size instructions are given a size
3353
  // method by the AD file.
3354
  // Note that the scratch buffer blob and locs memory are
3355
  // allocated at the beginning of the compile task, and
3356
  // may be shared by several calls to scratch_emit_size.
3357
  // The allocation of the scratch buffer blob is particularly
3358
  // expensive, since it has to grab the code cache lock.
3359
  BufferBlob* blob = this->scratch_buffer_blob();
3360
  assert(blob != nullptr, "Initialize BufferBlob at start");
3361
  assert(blob->size() > MAX_inst_size, "sanity");
3362
  relocInfo* locs_buf = scratch_locs_memory();
3363
  address blob_begin = blob->content_begin();
3364
  address blob_end   = (address)locs_buf;
3365
  assert(blob->contains(blob_end), "sanity");
3366
  CodeBuffer buf(blob_begin, blob_end - blob_begin);
3367
  buf.initialize_consts_size(_scratch_const_size);
3368
  buf.initialize_stubs_size(MAX_stubs_size);
3369
  assert(locs_buf != nullptr, "sanity");
3370
  int lsize = MAX_locs_size / 3;
3371
  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3372
  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3373
  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3374
  // Mark as scratch buffer.
3375
  buf.consts()->set_scratch_emit();
3376
  buf.insts()->set_scratch_emit();
3377
  buf.stubs()->set_scratch_emit();
3378

3379
  // Do the emission.
3380

3381
  Label fakeL; // Fake label for branch instructions.
3382
  Label*   saveL = nullptr;
3383
  uint save_bnum = 0;
3384
  bool is_branch = n->is_MachBranch();
3385
  C2_MacroAssembler masm(&buf);
3386
  masm.bind(fakeL);
3387
  if (is_branch) {
3388
    n->as_MachBranch()->save_label(&saveL, &save_bnum);
3389
    n->as_MachBranch()->label_set(&fakeL, 0);
3390
  }
3391
  n->emit(&masm, C->regalloc());
3392

3393
  // Emitting into the scratch buffer should not fail
3394
  assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3395

3396
  if (is_branch) // Restore label.
3397
    n->as_MachBranch()->label_set(saveL, save_bnum);
3398

3399
  // End scratch_emit_size section.
3400
  set_in_scratch_emit_size(false);
3401

3402
  return buf.insts_size();
3403
}
3404

3405
void PhaseOutput::install() {
3406
  if (!C->should_install_code()) {
3407
    return;
3408
  } else if (C->stub_function() != nullptr) {
3409
    install_stub(C->stub_name());
3410
  } else {
3411
    install_code(C->method(),
3412
                 C->entry_bci(),
3413
                 CompileBroker::compiler2(),
3414
                 C->has_unsafe_access(),
3415
                 SharedRuntime::is_wide_vector(C->max_vector_size()));
3416
  }
3417
}
3418

3419
void PhaseOutput::install_code(ciMethod*         target,
3420
                               int               entry_bci,
3421
                               AbstractCompiler* compiler,
3422
                               bool              has_unsafe_access,
3423
                               bool              has_wide_vectors) {
3424
  // Check if we want to skip execution of all compiled code.
3425
  {
3426
#ifndef PRODUCT
3427
    if (OptoNoExecute) {
3428
      C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3429
      return;
3430
    }
3431
#endif
3432
    Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3433

3434
    if (C->is_osr_compilation()) {
3435
      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3436
      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3437
    } else {
3438
      if (!target->is_static()) {
3439
        // The UEP of an nmethod ensures that the VEP is padded. However, the padding of the UEP is placed
3440
        // before the inline cache check, so we don't have to execute any nop instructions when dispatching
3441
        // through the UEP, yet we can ensure that the VEP is aligned appropriately.
3442
        _code_offsets.set_value(CodeOffsets::Entry, _first_block_size - MacroAssembler::ic_check_size());
3443
      }
3444
      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3445
      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3446
    }
3447

3448
    C->env()->register_method(target,
3449
                                     entry_bci,
3450
                                     &_code_offsets,
3451
                                     _orig_pc_slot_offset_in_bytes,
3452
                                     code_buffer(),
3453
                                     frame_size_in_words(),
3454
                                     oop_map_set(),
3455
                                     &_handler_table,
3456
                                     inc_table(),
3457
                                     compiler,
3458
                                     has_unsafe_access,
3459
                                     SharedRuntime::is_wide_vector(C->max_vector_size()),
3460
                                     C->has_monitors(),
3461
                                     C->has_scoped_access(),
3462
                                     0);
3463

3464
    if (C->log() != nullptr) { // Print code cache state into compiler log
3465
      C->log()->code_cache_state();
3466
    }
3467
  }
3468
}
3469
void PhaseOutput::install_stub(const char* stub_name) {
3470
  // Entry point will be accessed using stub_entry_point();
3471
  if (code_buffer() == nullptr) {
3472
    Matcher::soft_match_failure();
3473
  } else {
3474
    if (PrintAssembly && (WizardMode || Verbose))
3475
      tty->print_cr("### Stub::%s", stub_name);
3476

3477
    if (!C->failing()) {
3478
      assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3479

3480
      // Make the NMethod
3481
      // For now we mark the frame as never safe for profile stackwalking
3482
      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3483
                                                      code_buffer(),
3484
                                                      CodeOffsets::frame_never_safe,
3485
                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
3486
                                                      frame_size_in_words(),
3487
                                                      oop_map_set(),
3488
                                                      false);
3489
      assert(rs != nullptr && rs->is_runtime_stub(), "sanity check");
3490

3491
      C->set_stub_entry_point(rs->entry_point());
3492
    }
3493
  }
3494
}
3495

3496
// Support for bundling info
3497
Bundle* PhaseOutput::node_bundling(const Node *n) {
3498
  assert(valid_bundle_info(n), "oob");
3499
  return &_node_bundling_base[n->_idx];
3500
}
3501

3502
bool PhaseOutput::valid_bundle_info(const Node *n) {
3503
  return (_node_bundling_limit > n->_idx);
3504
}
3505

3506
//------------------------------frame_size_in_words-----------------------------
3507
// frame_slots in units of words
3508
int PhaseOutput::frame_size_in_words() const {
3509
  // shift is 0 in LP32 and 1 in LP64
3510
  const int shift = (LogBytesPerWord - LogBytesPerInt);
3511
  int words = _frame_slots >> shift;
3512
  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3513
  return words;
3514
}
3515

3516
// To bang the stack of this compiled method we use the stack size
3517
// that the interpreter would need in case of a deoptimization. This
3518
// removes the need to bang the stack in the deoptimization blob which
3519
// in turn simplifies stack overflow handling.
3520
int PhaseOutput::bang_size_in_bytes() const {
3521
  return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3522
}
3523

3524
//------------------------------dump_asm---------------------------------------
3525
// Dump formatted assembly
3526
#if defined(SUPPORT_OPTO_ASSEMBLY)
3527
void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3528

3529
  int pc_digits = 3; // #chars required for pc
3530
  int sb_chars  = 3; // #chars for "start bundle" indicator
3531
  int tab_size  = 8;
3532
  if (pcs != nullptr) {
3533
    int max_pc = 0;
3534
    for (uint i = 0; i < pc_limit; i++) {
3535
      max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3536
    }
3537
    pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3538
  }
3539
  int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3540

3541
  bool cut_short = false;
3542
  st->print_cr("#");
3543
  st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3544
  st->print_cr("#");
3545

3546
  // For all blocks
3547
  int pc = 0x0;                 // Program counter
3548
  char starts_bundle = ' ';
3549
  C->regalloc()->dump_frame();
3550

3551
  Node *n = nullptr;
3552
  for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3553
    if (VMThread::should_terminate()) {
3554
      cut_short = true;
3555
      break;
3556
    }
3557
    Block* block = C->cfg()->get_block(i);
3558
    if (block->is_connector() && !Verbose) {
3559
      continue;
3560
    }
3561
    n = block->head();
3562
    if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3563
      pc = pcs[n->_idx];
3564
      st->print("%*.*x", pc_digits, pc_digits, pc);
3565
    }
3566
    st->fill_to(prefix_len);
3567
    block->dump_head(C->cfg(), st);
3568
    if (block->is_connector()) {
3569
      st->fill_to(prefix_len);
3570
      st->print_cr("# Empty connector block");
3571
    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3572
      st->fill_to(prefix_len);
3573
      st->print_cr("# Block is sole successor of call");
3574
    }
3575

3576
    // For all instructions
3577
    Node *delay = nullptr;
3578
    for (uint j = 0; j < block->number_of_nodes(); j++) {
3579
      if (VMThread::should_terminate()) {
3580
        cut_short = true;
3581
        break;
3582
      }
3583
      n = block->get_node(j);
3584
      if (valid_bundle_info(n)) {
3585
        Bundle* bundle = node_bundling(n);
3586
        if (bundle->used_in_unconditional_delay()) {
3587
          delay = n;
3588
          continue;
3589
        }
3590
        if (bundle->starts_bundle()) {
3591
          starts_bundle = '+';
3592
        }
3593
      }
3594

3595
      if (WizardMode) {
3596
        n->dump();
3597
      }
3598

3599
      if( !n->is_Region() &&    // Dont print in the Assembly
3600
          !n->is_Phi() &&       // a few noisely useless nodes
3601
          !n->is_Proj() &&
3602
          !n->is_MachTemp() &&
3603
          !n->is_SafePointScalarObject() &&
3604
          !n->is_Catch() &&     // Would be nice to print exception table targets
3605
          !n->is_MergeMem() &&  // Not very interesting
3606
          !n->is_top() &&       // Debug info table constants
3607
          !(n->is_Con() && !n->is_Mach())// Debug info table constants
3608
          ) {
3609
        if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3610
          pc = pcs[n->_idx];
3611
          st->print("%*.*x", pc_digits, pc_digits, pc);
3612
        } else {
3613
          st->fill_to(pc_digits);
3614
        }
3615
        st->print(" %c ", starts_bundle);
3616
        starts_bundle = ' ';
3617
        st->fill_to(prefix_len);
3618
        n->format(C->regalloc(), st);
3619
        st->cr();
3620
      }
3621

3622
      // If we have an instruction with a delay slot, and have seen a delay,
3623
      // then back up and print it
3624
      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3625
        // Coverity finding - Explicit null dereferenced.
3626
        guarantee(delay != nullptr, "no unconditional delay instruction");
3627
        if (WizardMode) delay->dump();
3628

3629
        if (node_bundling(delay)->starts_bundle())
3630
          starts_bundle = '+';
3631
        if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3632
          pc = pcs[n->_idx];
3633
          st->print("%*.*x", pc_digits, pc_digits, pc);
3634
        } else {
3635
          st->fill_to(pc_digits);
3636
        }
3637
        st->print(" %c ", starts_bundle);
3638
        starts_bundle = ' ';
3639
        st->fill_to(prefix_len);
3640
        delay->format(C->regalloc(), st);
3641
        st->cr();
3642
        delay = nullptr;
3643
      }
3644

3645
      // Dump the exception table as well
3646
      if( n->is_Catch() && (Verbose || WizardMode) ) {
3647
        // Print the exception table for this offset
3648
        _handler_table.print_subtable_for(pc);
3649
      }
3650
      st->bol(); // Make sure we start on a new line
3651
    }
3652
    st->cr(); // one empty line between blocks
3653
    assert(cut_short || delay == nullptr, "no unconditional delay branch");
3654
  } // End of per-block dump
3655

3656
  if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3657
}
3658
#endif
3659

3660
#ifndef PRODUCT
3661
void PhaseOutput::print_statistics() {
3662
  Scheduling::print_statistics();
3663
}
3664
#endif
3665

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.