2
* Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/addnode.hpp"
28
#include "opto/connode.hpp"
29
#include "opto/convertnode.hpp"
30
#include "opto/memnode.hpp"
31
#include "opto/mulnode.hpp"
32
#include "opto/phaseX.hpp"
33
#include "opto/subnode.hpp"
34
#include "utilities/powerOfTwo.hpp"
36
// Portions of code courtesy of Clifford Click
39
//=============================================================================
40
//------------------------------hash-------------------------------------------
41
// Hash function over MulNodes. Needs to be commutative; i.e., I swap
42
// (commute) inputs to MulNodes willy-nilly so the hash function must return
43
// the same value in the presence of edge swapping.
44
uint MulNode::hash() const {
45
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
48
//------------------------------Identity---------------------------------------
49
// Multiplying a one preserves the other argument
50
Node* MulNode::Identity(PhaseGVN* phase) {
51
const Type *one = mul_id(); // The multiplicative identity
52
if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
53
if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
58
//------------------------------Ideal------------------------------------------
59
// We also canonicalize the Node, moving constants to the right input,
60
// and flatten expressions (so that 1+x+2 becomes x+3).
61
Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
64
Node* progress = nullptr; // Progress flag
66
// This code is used by And nodes too, but some conversions are
67
// only valid for the actual Mul nodes.
69
bool real_mul = (op == Op_MulI) || (op == Op_MulL) ||
70
(op == Op_MulF) || (op == Op_MulD);
72
// Convert "(-a)*(-b)" into "a*b".
73
if (real_mul && in1->is_Sub() && in2->is_Sub()) {
74
if (phase->type(in1->in(1))->is_zero_type() &&
75
phase->type(in2->in(1))->is_zero_type()) {
76
set_req_X(1, in1->in(2), phase);
77
set_req_X(2, in2->in(2), phase);
84
// convert "max(a,b) * min(a,b)" into "a*b".
85
if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode())
86
|| (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) {
87
Node *in11 = in(1)->in(1);
88
Node *in12 = in(1)->in(2);
90
Node *in21 = in(2)->in(1);
91
Node *in22 = in(2)->in(2);
93
if ((in11 == in21 && in12 == in22) ||
94
(in11 == in22 && in12 == in21)) {
95
set_req_X(1, in11, phase);
96
set_req_X(2, in12, phase);
103
const Type* t1 = phase->type(in1);
104
const Type* t2 = phase->type(in2);
106
// We are OK if right is a constant, or right is a load and
107
// left is a non-constant.
108
if( !(t2->singleton() ||
109
(in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
110
if( t1->singleton() || // Left input is a constant?
111
// Otherwise, sort inputs (commutativity) to help value numbering.
112
(in(1)->_idx > in(2)->_idx) ) {
117
progress = this; // Made progress
121
// If the right input is a constant, and the left input is a product of a
122
// constant, flatten the expression tree.
123
if( t2->singleton() && // Right input is a constant?
124
op != Op_MulF && // Float & double cannot reassociate
126
if( t2 == Type::TOP ) return nullptr;
129
// Check for dead loop
130
int op1 = mul1->Opcode();
131
if ((mul1 == this) || (in(2) == this) ||
132
((op1 == mul_opcode() || op1 == add_opcode()) &&
133
((mul1->in(1) == this) || (mul1->in(2) == this) ||
134
(mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) {
135
assert(false, "dead loop in MulNode::Ideal");
139
if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply?
140
// Mul of a constant?
141
const Type *t12 = phase->type( mul1->in(2) );
142
if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
143
// Compute new constant; check for overflow
144
const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
145
if( tcon01->singleton() ) {
146
// The Mul of the flattened expression
147
set_req_X(1, mul1->in(1), phase);
148
set_req_X(2, phase->makecon(tcon01), phase);
150
progress = this; // Made progress
154
// If the right input is a constant, and the left input is an add of a
155
// constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
156
const Node *add1 = in(1);
157
if( add1->Opcode() == add_opcode() ) { // Left input is an add?
158
// Add of a constant?
159
const Type *t12 = phase->type( add1->in(2) );
160
if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
161
assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
162
// Compute new constant; check for overflow
163
const Type *tcon01 = mul_ring(t2,t12);
164
if( tcon01->singleton() ) {
166
// Convert (X+con1)*con0 into X*con0
167
Node *mul = clone(); // mul = ()*con0
168
mul->set_req(1,add1->in(1)); // mul = X*con0
169
mul = phase->transform(mul);
171
Node *add2 = add1->clone();
172
add2->set_req(1, mul); // X*con0 + con0*con1
173
add2->set_req(2, phase->makecon(tcon01) );
177
} // End of is left input an add
178
} // End of is right input a Mul
183
//------------------------------Value-----------------------------------------
184
const Type* MulNode::Value(PhaseGVN* phase) const {
185
const Type *t1 = phase->type( in(1) );
186
const Type *t2 = phase->type( in(2) );
187
// Either input is TOP ==> the result is TOP
188
if( t1 == Type::TOP ) return Type::TOP;
189
if( t2 == Type::TOP ) return Type::TOP;
191
// Either input is ZERO ==> the result is ZERO.
192
// Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
194
if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
195
const Type *zero = add_id(); // The multiplicative zero
196
if( t1->higher_equal( zero ) ) return zero;
197
if( t2->higher_equal( zero ) ) return zero;
200
// Either input is BOTTOM ==> the result is the local BOTTOM
201
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
202
return bottom_type();
205
// Can't trust native compilers to properly fold strict double
206
// multiplication with round-to-zero on this platform.
208
return TypeD::DOUBLE;
212
return mul_ring(t1,t2); // Local flavor of type multiplication
215
MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) {
218
return new MulINode(in1, in2);
220
return new MulLNode(in1, in2);
222
fatal("Not implemented for %s", type2name(bt));
228
//=============================================================================
229
//------------------------------Ideal------------------------------------------
230
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
231
Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
232
const jint con = in(2)->find_int_con(0);
234
// If in(2) is not a constant, call Ideal() of the parent class to
235
// try to move constant to the right side.
236
return MulNode::Ideal(phase, can_reshape);
239
// Now we have a constant Node on the right and the constant in con.
241
// By one is handled by Identity call
245
// Check for negative constant; if so negate the final result
246
bool sign_flip = false;
248
unsigned int abs_con = uabs(con);
249
if (abs_con != (unsigned int)con) {
253
// Get low bit; check for being the only bit
255
unsigned int bit1 = submultiple_power_of_2(abs_con);
256
if (bit1 == abs_con) { // Found a power of 2?
257
res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)));
259
// Check for constant with 2 bits set
260
unsigned int bit2 = abs_con - bit1;
261
bit2 = bit2 & (0 - bit2); // Extract 2nd bit
262
if (bit2 + bit1 == abs_con) { // Found all bits in con?
263
Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))));
264
Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2))));
265
res = new AddINode(n2, n1);
266
} else if (is_power_of_2(abs_con + 1)) {
267
// Sleezy: power-of-2 - 1. Next time be generic.
268
unsigned int temp = abs_con + 1;
269
Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp))));
270
res = new SubINode(n1, in(1));
272
return MulNode::Ideal(phase, can_reshape);
276
if (sign_flip) { // Need to negate result?
277
res = phase->transform(res);// Transform, before making the zero con
278
res = new SubINode(phase->intcon(0),res);
281
return res; // Return final result
284
// This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong.
285
// In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi].
287
// In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is
288
// enough space to hold them all. We can therefore distinguish the following two cases for the product:
289
// - no overflow (i.e. product fits into x bits)
290
// - overflow (i.e. product does not fit into x bits)
292
// When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi]
293
// we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the
294
// cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen.
295
// The cross product consists of the following four multiplications with 2x-bit results:
296
// (1) left_lo * right_lo
297
// (2) left_lo * right_hi
298
// (3) left_hi * right_lo
299
// (4) left_hi * right_hi
301
// Let's define the following two functions:
302
// - Lx(i): Returns the lower x bits of the 2x-bit number i.
303
// - Ux(i): Returns the upper x bits of the 2x-bit number i.
305
// Let's first assume all products are positive where only overflows are possible but no underflows. If there is no
306
// overflow for a product p, then the upper x bits of the 2x-bit result p are all zero:
310
// If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type
312
// [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))]
314
// If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result
315
// (i.e. all values in the x-bit space could be possible):
316
// [result_lo,result_hi] = [NativeType_min,NativeType_max]
318
// However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with
319
// 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower
320
// x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed
321
// the lower x bits the same number of times:
322
// Ux((1)) = Ux((2)) = Ux((3)) = Ux((4))
324
// If all upper x bits are equal, we can conclude:
325
// Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4)))
326
// Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4)))
328
// Therefore, we can use the same precise x-bit result type as for the no-overflow case:
329
// [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))]
332
// Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur:
333
// Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the
334
// upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow,
335
// the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product
336
// is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore
337
// impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know
338
// that there is no underflow.
340
// To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize
341
// the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the
342
// normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we
343
// can compare the upper x bits in a unified way with N() being the normalization function:
344
// N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4)))
345
template<typename NativeType>
346
class IntegerTypeMultiplication {
349
NativeType _lo_right;
351
NativeType _hi_right;
355
static const Type* overflow_type();
356
static NativeType multiply_high(NativeType x, NativeType y);
357
const Type* create_type(NativeType lo, NativeType hi) const;
359
static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) {
360
return normalize_overflow_value(x, y, multiply_high(x, y));
363
bool cross_product_not_same_overflow_value() const {
364
const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right);
365
const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right);
366
const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right);
367
const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right);
368
return lo_lo_high_product != lo_hi_high_product ||
369
lo_hi_high_product != hi_lo_high_product ||
370
hi_lo_high_product != hi_hi_high_product;
373
bool does_product_overflow(NativeType x, NativeType y) const {
374
return multiply_high_signed_overflow_value(x, y) != 0;
377
static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) {
378
return java_multiply(x, y) < 0 ? result + 1 : result;
382
template<class IntegerType>
383
IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right)
384
: _lo_left(left->_lo), _lo_right(right->_lo),
385
_hi_left(left->_hi), _hi_right(right->_hi),
386
_widen_left(left->_widen), _widen_right(right->_widen) {}
388
// Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible
389
// values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these
390
// multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows
391
// If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows).
392
const Type* compute() const {
393
if (cross_product_not_same_overflow_value()) {
394
return overflow_type();
397
NativeType lo_lo_product = java_multiply(_lo_left, _lo_right);
398
NativeType lo_hi_product = java_multiply(_lo_left, _hi_right);
399
NativeType hi_lo_product = java_multiply(_hi_left, _lo_right);
400
NativeType hi_hi_product = java_multiply(_hi_left, _hi_right);
401
const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
402
const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
403
return create_type(min, max);
406
bool does_overflow() const {
407
return does_product_overflow(_lo_left, _lo_right) ||
408
does_product_overflow(_lo_left, _hi_right) ||
409
does_product_overflow(_hi_left, _lo_right) ||
410
does_product_overflow(_hi_left, _hi_right);
415
const Type* IntegerTypeMultiplication<jint>::overflow_type() {
420
jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) {
421
const jlong x_64 = x;
422
const jlong y_64 = y;
423
const jlong product = x_64 * y_64;
424
return (jint)((uint64_t)product >> 32u);
428
const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const {
429
return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right));
433
const Type* IntegerTypeMultiplication<jlong>::overflow_type() {
434
return TypeLong::LONG;
438
jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) {
439
return multiply_high_signed(x, y);
443
const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const {
444
return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right));
447
// Compute the product type of two integer ranges into this node.
448
const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const {
449
const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int());
450
return integer_multiplication.compute();
453
bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) {
454
const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right);
455
return integer_multiplication.does_overflow();
458
// Compute the product type of two long ranges into this node.
459
const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const {
460
const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long());
461
return integer_multiplication.compute();
464
//=============================================================================
465
//------------------------------Ideal------------------------------------------
466
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
467
Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
468
const jlong con = in(2)->find_long_con(0);
470
// If in(2) is not a constant, call Ideal() of the parent class to
471
// try to move constant to the right side.
472
return MulNode::Ideal(phase, can_reshape);
475
// Now we have a constant Node on the right and the constant in con.
477
// By one is handled by Identity call
481
// Check for negative constant; if so negate the final result
482
bool sign_flip = false;
483
julong abs_con = uabs(con);
484
if (abs_con != (julong)con) {
488
// Get low bit; check for being the only bit
490
julong bit1 = submultiple_power_of_2(abs_con);
491
if (bit1 == abs_con) { // Found a power of 2?
492
res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)));
495
// Check for constant with 2 bits set
496
julong bit2 = abs_con-bit1;
497
bit2 = bit2 & (0-bit2); // Extract 2nd bit
498
if (bit2 + bit1 == abs_con) { // Found all bits in con?
499
Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))));
500
Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2))));
501
res = new AddLNode(n2, n1);
503
} else if (is_power_of_2(abs_con+1)) {
504
// Sleezy: power-of-2 -1. Next time be generic.
505
julong temp = abs_con + 1;
506
Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp))));
507
res = new SubLNode(n1, in(1));
509
return MulNode::Ideal(phase, can_reshape);
513
if (sign_flip) { // Need to negate result?
514
res = phase->transform(res);// Transform, before making the zero con
515
res = new SubLNode(phase->longcon(0),res);
518
return res; // Return final result
521
//=============================================================================
522
//------------------------------mul_ring---------------------------------------
523
// Compute the product type of two double ranges into this node.
524
const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
525
if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
526
return TypeF::make( t0->getf() * t1->getf() );
529
//------------------------------Ideal---------------------------------------
530
// Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
531
Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
532
const TypeF *t2 = phase->type(in(2))->isa_float_constant();
535
if (t2 != nullptr && t2->getf() == 2) {
537
return new AddFNode(base, base);
540
return MulNode::Ideal(phase, can_reshape);
543
//=============================================================================
544
//------------------------------mul_ring---------------------------------------
545
// Compute the product type of two double ranges into this node.
546
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
547
if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
548
// We must be multiplying 2 double constants.
549
return TypeD::make( t0->getd() * t1->getd() );
552
//------------------------------Ideal---------------------------------------
553
// Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
554
Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) {
555
const TypeD *t2 = phase->type(in(2))->isa_double_constant();
558
if (t2 != nullptr && t2->getd() == 2) {
560
return new AddDNode(base, base);
563
return MulNode::Ideal(phase, can_reshape);
566
//=============================================================================
567
//------------------------------Value------------------------------------------
568
const Type* MulHiLNode::Value(PhaseGVN* phase) const {
569
const Type *t1 = phase->type( in(1) );
570
const Type *t2 = phase->type( in(2) );
571
const Type *bot = bottom_type();
572
return MulHiValue(t1, t2, bot);
575
const Type* UMulHiLNode::Value(PhaseGVN* phase) const {
576
const Type *t1 = phase->type( in(1) );
577
const Type *t2 = phase->type( in(2) );
578
const Type *bot = bottom_type();
579
return MulHiValue(t1, t2, bot);
582
// A common routine used by UMulHiLNode and MulHiLNode
583
const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) {
584
// Either input is TOP ==> the result is TOP
585
if( t1 == Type::TOP ) return Type::TOP;
586
if( t2 == Type::TOP ) return Type::TOP;
588
// Either input is BOTTOM ==> the result is the local BOTTOM
589
if( (t1 == bot) || (t2 == bot) ||
590
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
593
// It is not worth trying to constant fold this stuff!
594
return TypeLong::LONG;
597
//=============================================================================
598
//------------------------------mul_ring---------------------------------------
599
// Supplied function returns the product of the inputs IN THE CURRENT RING.
600
// For the logical operations the ring's MUL is really a logical AND function.
601
// This also type-checks the inputs for sanity. Guaranteed never to
602
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
603
const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
604
const TypeInt *r0 = t0->is_int(); // Handy access
605
const TypeInt *r1 = t1->is_int();
606
int widen = MAX2(r0->_widen,r1->_widen);
608
// If either input is a constant, might be able to trim cases
609
if( !r0->is_con() && !r1->is_con() )
610
return TypeInt::INT; // No constants to be had
612
// Both constants? Return bits
613
if( r0->is_con() && r1->is_con() )
614
return TypeInt::make( r0->get_con() & r1->get_con() );
616
if( r0->is_con() && r0->get_con() > 0 )
617
return TypeInt::make(0, r0->get_con(), widen);
619
if( r1->is_con() && r1->get_con() > 0 )
620
return TypeInt::make(0, r1->get_con(), widen);
622
if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
623
return TypeInt::BOOL;
626
return TypeInt::INT; // No constants to be had
629
const Type* AndINode::Value(PhaseGVN* phase) const {
630
// patterns similar to (v << 2) & 3
631
if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_INT, true)) {
632
return TypeInt::ZERO;
635
return MulNode::Value(phase);
638
//------------------------------Identity---------------------------------------
639
// Masking off the high bits of an unsigned load is not required
640
Node* AndINode::Identity(PhaseGVN* phase) {
643
if (in(1) == in(2)) {
648
uint op = in1->Opcode();
649
const TypeInt* t2 = phase->type(in(2))->isa_int();
650
if (t2 && t2->is_con()) {
651
int con = t2->get_con();
652
// Masking off high bits which are always zero is useless.
653
const TypeInt* t1 = phase->type(in(1))->isa_int();
654
if (t1 != nullptr && t1->_lo >= 0) {
655
jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi));
656
if ((t1_support & con) == t1_support)
659
// Masking off the high bits of a unsigned-shift-right is not
661
if (op == Op_URShiftI) {
662
const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
663
if (t12 && t12->is_con()) { // Shift is by a constant
664
int shift = t12->get_con();
665
shift &= BitsPerJavaInteger - 1; // semantics of Java shifts
666
int mask = max_juint >> shift;
667
if ((mask & con) == mask) // If AND is useless, skip it
672
return MulNode::Identity(phase);
675
//------------------------------Ideal------------------------------------------
676
Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
677
// pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
678
Node* progress = AndIL_add_shift_and_mask(phase, T_INT);
679
if (progress != nullptr) {
683
// Convert "(~a) & (~b)" into "~(a | b)"
684
if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
685
Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1));
686
Node* tn = phase->transform(or_a_b);
687
return AddNode::make_not(phase, tn, T_INT);
690
// Special case constant AND mask
691
const TypeInt *t2 = phase->type( in(2) )->isa_int();
692
if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
693
const int mask = t2->get_con();
695
uint lop = load->Opcode();
697
// Masking bits off of a Character? Hi bits are already zero.
698
if( lop == Op_LoadUS &&
699
(mask & 0xFFFF0000) ) // Can we make a smaller mask?
700
return new AndINode(load,phase->intcon(mask&0xFFFF));
702
// Masking bits off of a Short? Loading a Character does some masking
704
load->outcnt() == 1 && load->unique_out() == this) {
705
if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
706
Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
707
ldus = phase->transform(ldus);
708
return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
711
// Masking sign bits off of a Byte? Do an unsigned byte load plus
713
if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
714
Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
715
ldub = phase->transform(ldub);
716
return new AndINode(ldub, phase->intcon(mask));
720
// Masking off sign bits? Dont make them!
721
if( lop == Op_RShiftI ) {
722
const TypeInt *t12 = phase->type(load->in(2))->isa_int();
723
if( t12 && t12->is_con() ) { // Shift is by a constant
724
int shift = t12->get_con();
725
shift &= BitsPerJavaInteger-1; // semantics of Java shifts
726
const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
727
// If the AND'ing of the 2 masks has no bits, then only original shifted
728
// bits survive. NO sign-extension bits survive the maskings.
729
if( (sign_bits_mask & mask) == 0 ) {
730
// Use zero-fill shift instead
731
Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
732
return new AndINode( zshift, in(2) );
737
// Check for 'negate/and-1', a pattern emitted when someone asks for
738
// 'mod 2'. Negate leaves the low order bit unchanged (think: complement
739
// plus 1) and the mask is of the low order bit. Skip the negate.
740
if( lop == Op_SubI && mask == 1 && load->in(1) &&
741
phase->type(load->in(1)) == TypeInt::ZERO )
742
return new AndINode( load->in(2), in(2) );
744
return MulNode::Ideal(phase, can_reshape);
747
//=============================================================================
748
//------------------------------mul_ring---------------------------------------
749
// Supplied function returns the product of the inputs IN THE CURRENT RING.
750
// For the logical operations the ring's MUL is really a logical AND function.
751
// This also type-checks the inputs for sanity. Guaranteed never to
752
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
753
const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
754
const TypeLong *r0 = t0->is_long(); // Handy access
755
const TypeLong *r1 = t1->is_long();
756
int widen = MAX2(r0->_widen,r1->_widen);
758
// If either input is a constant, might be able to trim cases
759
if( !r0->is_con() && !r1->is_con() )
760
return TypeLong::LONG; // No constants to be had
762
// Both constants? Return bits
763
if( r0->is_con() && r1->is_con() )
764
return TypeLong::make( r0->get_con() & r1->get_con() );
766
if( r0->is_con() && r0->get_con() > 0 )
767
return TypeLong::make(CONST64(0), r0->get_con(), widen);
769
if( r1->is_con() && r1->get_con() > 0 )
770
return TypeLong::make(CONST64(0), r1->get_con(), widen);
772
return TypeLong::LONG; // No constants to be had
775
const Type* AndLNode::Value(PhaseGVN* phase) const {
776
// patterns similar to (v << 2) & 3
777
if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_LONG, true)) {
778
return TypeLong::ZERO;
781
return MulNode::Value(phase);
784
//------------------------------Identity---------------------------------------
785
// Masking off the high bits of an unsigned load is not required
786
Node* AndLNode::Identity(PhaseGVN* phase) {
789
if (in(1) == in(2)) {
794
const TypeLong *t2 = phase->type( in(2) )->isa_long();
795
if( t2 && t2->is_con() ) {
796
jlong con = t2->get_con();
797
// Masking off high bits which are always zero is useless.
798
const TypeLong* t1 = phase->type( in(1) )->isa_long();
799
if (t1 != nullptr && t1->_lo >= 0) {
800
int bit_count = log2i_graceful(t1->_hi) + 1;
801
jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
802
if ((t1_support & con) == t1_support)
805
uint lop = usr->Opcode();
806
// Masking off the high bits of a unsigned-shift-right is not
808
if( lop == Op_URShiftL ) {
809
const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
810
if( t12 && t12->is_con() ) { // Shift is by a constant
811
int shift = t12->get_con();
812
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
813
jlong mask = max_julong >> shift;
814
if( (mask&con) == mask ) // If AND is useless, skip it
819
return MulNode::Identity(phase);
822
//------------------------------Ideal------------------------------------------
823
Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
824
// pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
825
Node* progress = AndIL_add_shift_and_mask(phase, T_LONG);
826
if (progress != nullptr) {
830
// Convert "(~a) & (~b)" into "~(a | b)"
831
if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
832
Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1));
833
Node* tn = phase->transform(or_a_b);
834
return AddNode::make_not(phase, tn, T_LONG);
837
// Special case constant AND mask
838
const TypeLong *t2 = phase->type( in(2) )->isa_long();
839
if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
840
const jlong mask = t2->get_con();
843
int op = in1->Opcode();
845
// Are we masking a long that was converted from an int with a mask
846
// that fits in 32-bits? Commute them and use an AndINode. Don't
847
// convert masks which would cause a sign extension of the integer
848
// value. This check includes UI2L masks (0x00000000FFFFFFFF) which
849
// would be optimized away later in Identity.
850
if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
851
Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
852
andi = phase->transform(andi);
853
return new ConvI2LNode(andi);
856
// Masking off sign bits? Dont make them!
857
if (op == Op_RShiftL) {
858
const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
859
if( t12 && t12->is_con() ) { // Shift is by a constant
860
int shift = t12->get_con();
861
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
862
const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1);
863
// If the AND'ing of the 2 masks has no bits, then only original shifted
864
// bits survive. NO sign-extension bits survive the maskings.
865
if( (sign_bits_mask & mask) == 0 ) {
866
// Use zero-fill shift instead
867
Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
868
return new AndLNode(zshift, in(2));
873
return MulNode::Ideal(phase, can_reshape);
876
LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) {
879
return new LShiftINode(in1, in2);
881
return new LShiftLNode(in1, in2);
883
fatal("Not implemented for %s", type2name(bt));
888
//=============================================================================
890
static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) {
891
const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int();
892
if (tcount != nullptr && tcount->is_con()) {
893
*count = tcount->get_con();
899
static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, int nBits) {
901
if (const_shift_count(phase, shiftNode, &count)) {
902
int maskedShift = count & (nBits - 1);
903
if (maskedShift == 0) {
904
// Let Identity() handle 0 shift count.
908
if (count != maskedShift) {
909
shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
910
PhaseIterGVN* igvn = phase->is_IterGVN();
912
igvn->rehash_node_delayed(shiftNode);
920
//------------------------------Identity---------------------------------------
921
Node* LShiftINode::Identity(PhaseGVN* phase) {
923
if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
924
// Shift by a multiple of 32 does nothing
930
//------------------------------Ideal------------------------------------------
931
// If the right input is a constant, and the left input is an add of a
932
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
933
Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
934
int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
939
// Left input is an add?
941
int add1_op = add1->Opcode();
942
if( add1_op == Op_AddI ) { // Left input is an add?
943
assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
945
// Transform is legal, but check for profit. Avoid breaking 'i2s'
946
// and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
948
// Left input is an add of the same number?
949
if (add1->in(1) == add1->in(2)) {
950
// Convert "(x + x) << c0" into "x << (c0 + 1)"
951
// In general, this optimization cannot be applied for c0 == 31 since
952
// 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1)
953
return new LShiftINode(add1->in(1), phase->intcon(con + 1));
956
// Left input is an add of a constant?
957
const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
958
if( t12 && t12->is_con() ){ // Left input is an add of a con?
960
Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
961
// Compute X<<con0 + (con1<<con0)
962
return new AddINode( lsh, phase->intcon(t12->get_con() << con));
967
// Check for "(x >> C1) << C2"
968
if (add1_op == Op_RShiftI || add1_op == Op_URShiftI) {
970
const_shift_count(phase, add1, &add1Con);
972
// Special case C1 == C2, which just masks off low bits
973
if (add1Con > 0 && con == add1Con) {
974
// Convert to "(x & -(1 << C2))"
975
return new AndINode(add1->in(1), phase->intcon(java_negate(jint(1 << con))));
977
// Wait until the right shift has been sharpened to the correct count
978
if (add1Con > 0 && add1Con < BitsPerJavaInteger) {
979
// As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
980
// to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
981
if (phase->is_IterGVN()) {
983
// Creates "(x << (C2 - C1)) & -(1 << C2)"
984
Node* lshift = phase->transform(new LShiftINode(add1->in(1), phase->intcon(con - add1Con)));
985
return new AndINode(lshift, phase->intcon(java_negate(jint(1 << con))));
987
assert(con < add1Con, "must be (%d < %d)", con, add1Con);
988
// Creates "(x >> (C1 - C2)) & -(1 << C2)"
990
// Handle logical and arithmetic shifts
992
if (add1_op == Op_RShiftI) {
993
rshift = phase->transform(new RShiftINode(add1->in(1), phase->intcon(add1Con - con)));
995
rshift = phase->transform(new URShiftINode(add1->in(1), phase->intcon(add1Con - con)));
998
return new AndINode(rshift, phase->intcon(java_negate(jint(1 << con))));
1001
phase->record_for_igvn(this);
1007
// Check for "((x >> C1) & Y) << C2"
1008
if (add1_op == Op_AndI) {
1009
Node *add2 = add1->in(1);
1010
int add2_op = add2->Opcode();
1011
if (add2_op == Op_RShiftI || add2_op == Op_URShiftI) {
1012
// Special case C1 == C2, which just masks off low bits
1013
if (add2->in(2) == in(2)) {
1014
// Convert to "(x & (Y << C2))"
1015
Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1016
return new AndINode(add2->in(1), y_sh);
1020
const_shift_count(phase, add2, &add2Con);
1021
if (add2Con > 0 && add2Con < BitsPerJavaInteger) {
1022
if (phase->is_IterGVN()) {
1023
// Convert to "((x >> C1) << C2) & (Y << C2)"
1025
// Make "(x >> C1) << C2", which will get folded away by the rule above
1026
Node* x_sh = phase->transform(new LShiftINode(add2, phase->intcon(con)));
1027
// Make "Y << C2", which will simplify when Y is a constant
1028
Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1030
return new AndINode(x_sh, y_sh);
1032
phase->record_for_igvn(this);
1038
// Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
1039
// before shifting them away.
1040
const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
1041
if( add1_op == Op_AndI &&
1042
phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
1043
return new LShiftINode( add1->in(1), in(2) );
1048
//------------------------------Value------------------------------------------
1049
// A LShiftINode shifts its input2 left by input1 amount.
1050
const Type* LShiftINode::Value(PhaseGVN* phase) const {
1051
const Type *t1 = phase->type( in(1) );
1052
const Type *t2 = phase->type( in(2) );
1053
// Either input is TOP ==> the result is TOP
1054
if( t1 == Type::TOP ) return Type::TOP;
1055
if( t2 == Type::TOP ) return Type::TOP;
1057
// Left input is ZERO ==> the result is ZERO.
1058
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1059
// Shift by zero does nothing
1060
if( t2 == TypeInt::ZERO ) return t1;
1062
// Either input is BOTTOM ==> the result is BOTTOM
1063
if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
1064
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1065
return TypeInt::INT;
1067
const TypeInt *r1 = t1->is_int(); // Handy access
1068
const TypeInt *r2 = t2->is_int(); // Handy access
1071
return TypeInt::INT;
1073
uint shift = r2->get_con();
1074
shift &= BitsPerJavaInteger-1; // semantics of Java shifts
1075
// Shift by a multiple of 32 does nothing:
1076
if (shift == 0) return t1;
1078
// If the shift is a constant, shift the bounds of the type,
1079
// unless this could lead to an overflow.
1080
if (!r1->is_con()) {
1081
jint lo = r1->_lo, hi = r1->_hi;
1082
if (((lo << shift) >> shift) == lo &&
1083
((hi << shift) >> shift) == hi) {
1084
// No overflow. The range shifts up cleanly.
1085
return TypeInt::make((jint)lo << (jint)shift,
1086
(jint)hi << (jint)shift,
1087
MAX2(r1->_widen,r2->_widen));
1089
return TypeInt::INT;
1092
return TypeInt::make( (jint)r1->get_con() << (jint)shift );
1095
//=============================================================================
1096
//------------------------------Identity---------------------------------------
1097
Node* LShiftLNode::Identity(PhaseGVN* phase) {
1099
if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1100
// Shift by a multiple of 64 does nothing
1106
//------------------------------Ideal------------------------------------------
1107
// If the right input is a constant, and the left input is an add of a
1108
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1109
Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1110
int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1115
// Left input is an add?
1117
int add1_op = add1->Opcode();
1118
if( add1_op == Op_AddL ) { // Left input is an add?
1119
// Avoid dead data cycles from dead loops
1120
assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
1122
// Left input is an add of the same number?
1123
if (con != (BitsPerJavaLong - 1) && add1->in(1) == add1->in(2)) {
1124
// Convert "(x + x) << c0" into "x << (c0 + 1)"
1125
// Can only be applied if c0 != 63 because:
1126
// (x + x) << 63 = 2x << 63, while
1127
// (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1)
1128
// According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand
1129
// (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0).
1130
return new LShiftLNode(add1->in(1), phase->intcon(con + 1));
1133
// Left input is an add of a constant?
1134
const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
1135
if( t12 && t12->is_con() ){ // Left input is an add of a con?
1136
// Compute X << con0
1137
Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
1138
// Compute X<<con0 + (con1<<con0)
1139
return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
1143
// Check for "(x >> C1) << C2"
1144
if (add1_op == Op_RShiftL || add1_op == Op_URShiftL) {
1146
const_shift_count(phase, add1, &add1Con);
1148
// Special case C1 == C2, which just masks off low bits
1149
if (add1Con > 0 && con == add1Con) {
1150
// Convert to "(x & -(1 << C2))"
1151
return new AndLNode(add1->in(1), phase->longcon(java_negate(jlong(CONST64(1) << con))));
1153
// Wait until the right shift has been sharpened to the correct count
1154
if (add1Con > 0 && add1Con < BitsPerJavaLong) {
1155
// As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1156
// to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1157
if (phase->is_IterGVN()) {
1158
if (con > add1Con) {
1159
// Creates "(x << (C2 - C1)) & -(1 << C2)"
1160
Node* lshift = phase->transform(new LShiftLNode(add1->in(1), phase->intcon(con - add1Con)));
1161
return new AndLNode(lshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1163
assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1164
// Creates "(x >> (C1 - C2)) & -(1 << C2)"
1166
// Handle logical and arithmetic shifts
1168
if (add1_op == Op_RShiftL) {
1169
rshift = phase->transform(new RShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1171
rshift = phase->transform(new URShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1174
return new AndLNode(rshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1177
phase->record_for_igvn(this);
1183
// Check for "((x >> C1) & Y) << C2"
1184
if (add1_op == Op_AndL) {
1185
Node* add2 = add1->in(1);
1186
int add2_op = add2->Opcode();
1187
if (add2_op == Op_RShiftL || add2_op == Op_URShiftL) {
1188
// Special case C1 == C2, which just masks off low bits
1189
if (add2->in(2) == in(2)) {
1190
// Convert to "(x & (Y << C2))"
1191
Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1192
return new AndLNode(add2->in(1), y_sh);
1196
const_shift_count(phase, add2, &add2Con);
1197
if (add2Con > 0 && add2Con < BitsPerJavaLong) {
1198
if (phase->is_IterGVN()) {
1199
// Convert to "((x >> C1) << C2) & (Y << C2)"
1201
// Make "(x >> C1) << C2", which will get folded away by the rule above
1202
Node* x_sh = phase->transform(new LShiftLNode(add2, phase->intcon(con)));
1203
// Make "Y << C2", which will simplify when Y is a constant
1204
Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1206
return new AndLNode(x_sh, y_sh);
1208
phase->record_for_igvn(this);
1214
// Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
1215
// before shifting them away.
1216
const jlong bits_mask = jlong(max_julong >> con);
1217
if( add1_op == Op_AndL &&
1218
phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
1219
return new LShiftLNode( add1->in(1), in(2) );
1224
//------------------------------Value------------------------------------------
1225
// A LShiftLNode shifts its input2 left by input1 amount.
1226
const Type* LShiftLNode::Value(PhaseGVN* phase) const {
1227
const Type *t1 = phase->type( in(1) );
1228
const Type *t2 = phase->type( in(2) );
1229
// Either input is TOP ==> the result is TOP
1230
if( t1 == Type::TOP ) return Type::TOP;
1231
if( t2 == Type::TOP ) return Type::TOP;
1233
// Left input is ZERO ==> the result is ZERO.
1234
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1235
// Shift by zero does nothing
1236
if( t2 == TypeInt::ZERO ) return t1;
1238
// Either input is BOTTOM ==> the result is BOTTOM
1239
if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
1240
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1241
return TypeLong::LONG;
1243
const TypeLong *r1 = t1->is_long(); // Handy access
1244
const TypeInt *r2 = t2->is_int(); // Handy access
1247
return TypeLong::LONG;
1249
uint shift = r2->get_con();
1250
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
1251
// Shift by a multiple of 64 does nothing:
1252
if (shift == 0) return t1;
1254
// If the shift is a constant, shift the bounds of the type,
1255
// unless this could lead to an overflow.
1256
if (!r1->is_con()) {
1257
jlong lo = r1->_lo, hi = r1->_hi;
1258
if (((lo << shift) >> shift) == lo &&
1259
((hi << shift) >> shift) == hi) {
1260
// No overflow. The range shifts up cleanly.
1261
return TypeLong::make((jlong)lo << (jint)shift,
1262
(jlong)hi << (jint)shift,
1263
MAX2(r1->_widen,r2->_widen));
1265
return TypeLong::LONG;
1268
return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
1271
//=============================================================================
1272
//------------------------------Identity---------------------------------------
1273
Node* RShiftINode::Identity(PhaseGVN* phase) {
1275
if (const_shift_count(phase, this, &count)) {
1276
if ((count & (BitsPerJavaInteger - 1)) == 0) {
1277
// Shift by a multiple of 32 does nothing
1280
// Check for useless sign-masking
1281
if (in(1)->Opcode() == Op_LShiftI &&
1282
in(1)->req() == 3 &&
1283
in(1)->in(2) == in(2)) {
1284
count &= BitsPerJavaInteger-1; // semantics of Java shifts
1285
// Compute masks for which this shifting doesn't change
1286
int lo = (-1 << (BitsPerJavaInteger - ((uint)count)-1)); // FFFF8000
1287
int hi = ~lo; // 00007FFF
1288
const TypeInt* t11 = phase->type(in(1)->in(1))->isa_int();
1289
if (t11 == nullptr) {
1292
// Does actual value fit inside of mask?
1293
if (lo <= t11->_lo && t11->_hi <= hi) {
1294
return in(1)->in(1); // Then shifting is a nop
1301
//------------------------------Ideal------------------------------------------
1302
Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1303
// Inputs may be TOP if they are dead.
1304
const TypeInt *t1 = phase->type(in(1))->isa_int();
1305
if (!t1) return nullptr; // Left input is an integer
1306
const TypeInt *t3; // type of in(1).in(2)
1307
int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
1312
// Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
1313
// Such expressions arise normally from shift chains like (byte)(x >> 24).
1314
const Node *mask = in(1);
1315
if( mask->Opcode() == Op_AndI &&
1316
(t3 = phase->type(mask->in(2))->isa_int()) &&
1318
Node *x = mask->in(1);
1319
jint maskbits = t3->get_con();
1320
// Convert to "(x >> shift) & (mask >> shift)"
1321
Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
1322
return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
1325
// Check for "(short[i] <<16)>>16" which simply sign-extends
1326
const Node *shl = in(1);
1327
if( shl->Opcode() != Op_LShiftI ) return nullptr;
1330
(t3 = phase->type(shl->in(2))->isa_int()) &&
1332
Node *ld = shl->in(1);
1333
if( ld->Opcode() == Op_LoadS ) {
1334
// Sign extension is just useless here. Return a RShiftI of zero instead
1335
// returning 'ld' directly. We cannot return an old Node directly as
1336
// that is the job of 'Identity' calls and Identity calls only work on
1337
// direct inputs ('ld' is an extra Node removed from 'this'). The
1338
// combined optimization requires Identity only return direct inputs.
1339
set_req_X(1, ld, phase);
1340
set_req_X(2, phase->intcon(0), phase);
1343
else if (can_reshape &&
1344
ld->Opcode() == Op_LoadUS &&
1345
ld->outcnt() == 1 && ld->unique_out() == shl)
1346
// Replace zero-extension-load with sign-extension-load
1347
return ld->as_Load()->convert_to_signed_load(*phase);
1350
// Check for "(byte[i] <<24)>>24" which simply sign-extends
1352
(t3 = phase->type(shl->in(2))->isa_int()) &&
1354
Node *ld = shl->in(1);
1355
if (ld->Opcode() == Op_LoadB) {
1356
// Sign extension is just useless here
1357
set_req_X(1, ld, phase);
1358
set_req_X(2, phase->intcon(0), phase);
1366
//------------------------------Value------------------------------------------
1367
// A RShiftINode shifts its input2 right by input1 amount.
1368
const Type* RShiftINode::Value(PhaseGVN* phase) const {
1369
const Type *t1 = phase->type( in(1) );
1370
const Type *t2 = phase->type( in(2) );
1371
// Either input is TOP ==> the result is TOP
1372
if( t1 == Type::TOP ) return Type::TOP;
1373
if( t2 == Type::TOP ) return Type::TOP;
1375
// Left input is ZERO ==> the result is ZERO.
1376
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1377
// Shift by zero does nothing
1378
if( t2 == TypeInt::ZERO ) return t1;
1380
// Either input is BOTTOM ==> the result is BOTTOM
1381
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1382
return TypeInt::INT;
1384
const TypeInt *r1 = t1->is_int(); // Handy access
1385
const TypeInt *r2 = t2->is_int(); // Handy access
1387
// If the shift is a constant, just shift the bounds of the type.
1388
// For example, if the shift is 31, we just propagate sign bits.
1389
if (!r1->is_con() && r2->is_con()) {
1390
uint shift = r2->get_con();
1391
shift &= BitsPerJavaInteger-1; // semantics of Java shifts
1392
// Shift by a multiple of 32 does nothing:
1393
if (shift == 0) return t1;
1394
// Calculate reasonably aggressive bounds for the result.
1395
// This is necessary if we are to correctly type things
1396
// like (x<<24>>24) == ((byte)x).
1397
jint lo = (jint)r1->_lo >> (jint)shift;
1398
jint hi = (jint)r1->_hi >> (jint)shift;
1399
assert(lo <= hi, "must have valid bounds");
1400
const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1402
// Make sure we get the sign-capture idiom correct.
1403
if (shift == BitsPerJavaInteger-1) {
1404
if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0");
1405
if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1411
if (!r1->is_con() || !r2->is_con()) {
1412
// If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1414
return TypeInt::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1417
// Conversely, if the left input is negative then the result must be negative.
1418
if (r1->_hi <= -1) {
1419
return TypeInt::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1422
return TypeInt::INT;
1425
// Signed shift right
1426
return TypeInt::make(r1->get_con() >> (r2->get_con() & 31));
1429
//=============================================================================
1430
//------------------------------Identity---------------------------------------
1431
Node* RShiftLNode::Identity(PhaseGVN* phase) {
1432
const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1433
return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1436
//------------------------------Value------------------------------------------
1437
// A RShiftLNode shifts its input2 right by input1 amount.
1438
const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1439
const Type *t1 = phase->type( in(1) );
1440
const Type *t2 = phase->type( in(2) );
1441
// Either input is TOP ==> the result is TOP
1442
if( t1 == Type::TOP ) return Type::TOP;
1443
if( t2 == Type::TOP ) return Type::TOP;
1445
// Left input is ZERO ==> the result is ZERO.
1446
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1447
// Shift by zero does nothing
1448
if( t2 == TypeInt::ZERO ) return t1;
1450
// Either input is BOTTOM ==> the result is BOTTOM
1451
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1452
return TypeLong::LONG;
1454
const TypeLong *r1 = t1->is_long(); // Handy access
1455
const TypeInt *r2 = t2->is_int (); // Handy access
1457
// If the shift is a constant, just shift the bounds of the type.
1458
// For example, if the shift is 63, we just propagate sign bits.
1459
if (!r1->is_con() && r2->is_con()) {
1460
uint shift = r2->get_con();
1461
shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
1462
// Shift by a multiple of 64 does nothing:
1463
if (shift == 0) return t1;
1464
// Calculate reasonably aggressive bounds for the result.
1465
// This is necessary if we are to correctly type things
1466
// like (x<<24>>24) == ((byte)x).
1467
jlong lo = (jlong)r1->_lo >> (jlong)shift;
1468
jlong hi = (jlong)r1->_hi >> (jlong)shift;
1469
assert(lo <= hi, "must have valid bounds");
1470
const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1472
// Make sure we get the sign-capture idiom correct.
1473
if (shift == (2*BitsPerJavaInteger)-1) {
1474
if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0");
1475
if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1481
if (!r1->is_con() || !r2->is_con()) {
1482
// If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1484
return TypeLong::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1487
// Conversely, if the left input is negative then the result must be negative.
1488
if (r1->_hi <= -1) {
1489
return TypeLong::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1492
return TypeLong::LONG;
1495
return TypeLong::make(r1->get_con() >> (r2->get_con() & 63));
1498
//=============================================================================
1499
//------------------------------Identity---------------------------------------
1500
Node* URShiftINode::Identity(PhaseGVN* phase) {
1502
if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1503
// Shift by a multiple of 32 does nothing
1507
// Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1508
// Happens during new-array length computation.
1509
// Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1511
if (add->Opcode() == Op_AddI) {
1512
const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1513
if (t2 && t2->is_con(wordSize - 1) &&
1514
add->in(1)->Opcode() == Op_LShiftI) {
1515
// Check that shift_counts are LogBytesPerWord.
1516
Node *lshift_count = add->in(1)->in(2);
1517
const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1518
if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1519
t_lshift_count == phase->type(in(2))) {
1520
Node *x = add->in(1)->in(1);
1521
const TypeInt *t_x = phase->type(x)->isa_int();
1522
if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1529
return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1532
//------------------------------Ideal------------------------------------------
1533
Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1534
int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1539
// We'll be wanting the right-shift amount as a mask of that many bits
1540
const int mask = right_n_bits(BitsPerJavaInteger - con);
1542
int in1_op = in(1)->Opcode();
1544
// Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1545
if( in1_op == Op_URShiftI ) {
1546
const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1547
if( t12 && t12->is_con() ) { // Right input is a constant
1548
assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1549
const int con2 = t12->get_con() & 31; // Shift count is always masked
1550
const int con3 = con+con2;
1551
if( con3 < 32 ) // Only merge shifts if total is < 32
1552
return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1556
// Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
1557
// The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1558
// If Q is "X << z" the rounding is useless. Look for patterns like
1559
// ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
1561
const TypeInt *t2 = phase->type(in(2))->isa_int();
1562
if (in1_op == Op_AddI) {
1563
Node *lshl = add->in(1);
1564
if( lshl->Opcode() == Op_LShiftI &&
1565
phase->type(lshl->in(2)) == t2 ) {
1566
Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1567
Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1568
return new AndINode( sum, phase->intcon(mask) );
1572
// Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
1573
// This shortens the mask. Also, if we are extracting a high byte and
1574
// storing it to a buffer, the mask will be removed completely.
1576
if( in1_op == Op_AndI ) {
1577
const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1578
if( t3 && t3->is_con() ) { // Right input is a constant
1579
jint mask2 = t3->get_con();
1580
mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
1581
Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1582
return new AndINode(newshr, phase->intcon(mask2));
1583
// The negative values are easier to materialize than positive ones.
1584
// A typical case from address arithmetic is ((x & ~15) >> 4).
1585
// It's better to change that to ((x >> 4) & ~0) versus
1586
// ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64.
1590
// Check for "(X << z ) >>> z" which simply zero-extends
1592
if( in1_op == Op_LShiftI &&
1593
phase->type(shl->in(2)) == t2 )
1594
return new AndINode( shl->in(1), phase->intcon(mask) );
1596
// Check for (x >> n) >>> 31. Replace with (x >>> 31)
1598
if ( in1_op == Op_RShiftI ) {
1599
Node *in11 = shr->in(1);
1600
Node *in12 = shr->in(2);
1601
const TypeInt *t11 = phase->type(in11)->isa_int();
1602
const TypeInt *t12 = phase->type(in12)->isa_int();
1603
if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) {
1604
return new URShiftINode(in11, phase->intcon(31));
1611
//------------------------------Value------------------------------------------
1612
// A URShiftINode shifts its input2 right by input1 amount.
1613
const Type* URShiftINode::Value(PhaseGVN* phase) const {
1614
// (This is a near clone of RShiftINode::Value.)
1615
const Type *t1 = phase->type( in(1) );
1616
const Type *t2 = phase->type( in(2) );
1617
// Either input is TOP ==> the result is TOP
1618
if( t1 == Type::TOP ) return Type::TOP;
1619
if( t2 == Type::TOP ) return Type::TOP;
1621
// Left input is ZERO ==> the result is ZERO.
1622
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1623
// Shift by zero does nothing
1624
if( t2 == TypeInt::ZERO ) return t1;
1626
// Either input is BOTTOM ==> the result is BOTTOM
1627
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1628
return TypeInt::INT;
1630
if (t2 == TypeInt::INT)
1631
return TypeInt::INT;
1633
const TypeInt *r1 = t1->is_int(); // Handy access
1634
const TypeInt *r2 = t2->is_int(); // Handy access
1637
uint shift = r2->get_con();
1638
shift &= BitsPerJavaInteger-1; // semantics of Java shifts
1639
// Shift by a multiple of 32 does nothing:
1640
if (shift == 0) return t1;
1641
// Calculate reasonably aggressive bounds for the result.
1642
jint lo = (juint)r1->_lo >> (juint)shift;
1643
jint hi = (juint)r1->_hi >> (juint)shift;
1644
if (r1->_hi >= 0 && r1->_lo < 0) {
1645
// If the type has both negative and positive values,
1646
// there are two separate sub-domains to worry about:
1647
// The positive half and the negative half.
1649
jint neg_hi = (juint)-1 >> (juint)shift;
1650
jint pos_lo = (juint) 0 >> (juint)shift;
1652
lo = MIN2(neg_lo, pos_lo); // == 0
1653
hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
1655
assert(lo <= hi, "must have valid bounds");
1656
const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1658
// Make sure we get the sign-capture idiom correct.
1659
if (shift == BitsPerJavaInteger-1) {
1660
if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1661
if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1");
1668
// Do not support shifted oops in info for GC
1670
// else if( t1->base() == Type::InstPtr ) {
1672
// const TypeInstPtr *o = t1->is_instptr();
1673
// if( t1->singleton() )
1674
// return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1676
// else if( t1->base() == Type::KlassPtr ) {
1677
// const TypeKlassPtr *o = t1->is_klassptr();
1678
// if( t1->singleton() )
1679
// return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1682
return TypeInt::INT;
1685
//=============================================================================
1686
//------------------------------Identity---------------------------------------
1687
Node* URShiftLNode::Identity(PhaseGVN* phase) {
1689
if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1690
// Shift by a multiple of 64 does nothing
1696
//------------------------------Ideal------------------------------------------
1697
Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1698
int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1703
// We'll be wanting the right-shift amount as a mask of that many bits
1704
const jlong mask = jlong(max_julong >> con);
1706
// Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
1707
// The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1708
// If Q is "X << z" the rounding is useless. Look for patterns like
1709
// ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
1711
const TypeInt *t2 = phase->type(in(2))->isa_int();
1712
if (add->Opcode() == Op_AddL) {
1713
Node *lshl = add->in(1);
1714
if( lshl->Opcode() == Op_LShiftL &&
1715
phase->type(lshl->in(2)) == t2 ) {
1716
Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1717
Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1718
return new AndLNode( sum, phase->longcon(mask) );
1722
// Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
1723
// This shortens the mask. Also, if we are extracting a high byte and
1724
// storing it to a buffer, the mask will be removed completely.
1726
if( andi->Opcode() == Op_AndL ) {
1727
const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1728
if( t3 && t3->is_con() ) { // Right input is a constant
1729
jlong mask2 = t3->get_con();
1730
mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
1731
Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1732
return new AndLNode(newshr, phase->longcon(mask2));
1736
// Check for "(X << z ) >>> z" which simply zero-extends
1738
if( shl->Opcode() == Op_LShiftL &&
1739
phase->type(shl->in(2)) == t2 )
1740
return new AndLNode( shl->in(1), phase->longcon(mask) );
1742
// Check for (x >> n) >>> 63. Replace with (x >>> 63)
1744
if ( shr->Opcode() == Op_RShiftL ) {
1745
Node *in11 = shr->in(1);
1746
Node *in12 = shr->in(2);
1747
const TypeLong *t11 = phase->type(in11)->isa_long();
1748
const TypeInt *t12 = phase->type(in12)->isa_int();
1749
if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) {
1750
return new URShiftLNode(in11, phase->intcon(63));
1756
//------------------------------Value------------------------------------------
1757
// A URShiftINode shifts its input2 right by input1 amount.
1758
const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1759
// (This is a near clone of RShiftLNode::Value.)
1760
const Type *t1 = phase->type( in(1) );
1761
const Type *t2 = phase->type( in(2) );
1762
// Either input is TOP ==> the result is TOP
1763
if( t1 == Type::TOP ) return Type::TOP;
1764
if( t2 == Type::TOP ) return Type::TOP;
1766
// Left input is ZERO ==> the result is ZERO.
1767
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1768
// Shift by zero does nothing
1769
if( t2 == TypeInt::ZERO ) return t1;
1771
// Either input is BOTTOM ==> the result is BOTTOM
1772
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1773
return TypeLong::LONG;
1775
if (t2 == TypeInt::INT)
1776
return TypeLong::LONG;
1778
const TypeLong *r1 = t1->is_long(); // Handy access
1779
const TypeInt *r2 = t2->is_int (); // Handy access
1782
uint shift = r2->get_con();
1783
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
1784
// Shift by a multiple of 64 does nothing:
1785
if (shift == 0) return t1;
1786
// Calculate reasonably aggressive bounds for the result.
1787
jlong lo = (julong)r1->_lo >> (juint)shift;
1788
jlong hi = (julong)r1->_hi >> (juint)shift;
1789
if (r1->_hi >= 0 && r1->_lo < 0) {
1790
// If the type has both negative and positive values,
1791
// there are two separate sub-domains to worry about:
1792
// The positive half and the negative half.
1794
jlong neg_hi = (julong)-1 >> (juint)shift;
1795
jlong pos_lo = (julong) 0 >> (juint)shift;
1797
//lo = MIN2(neg_lo, pos_lo); // == 0
1798
lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1799
//hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
1800
hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1802
assert(lo <= hi, "must have valid bounds");
1803
const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1805
// Make sure we get the sign-capture idiom correct.
1806
if (shift == BitsPerJavaLong - 1) {
1807
if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1808
if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1");
1814
return TypeLong::LONG; // Give up
1817
//=============================================================================
1818
//------------------------------Ideal------------------------------------------
1819
Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1820
// We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c"
1821
// This reduces the number of rules in the matcher, as we only need to check
1822
// for negations on the second argument, and not the symmetric case where
1823
// the first argument is negated.
1824
if (in(1)->is_Neg() && !in(2)->is_Neg()) {
1831
//=============================================================================
1832
//------------------------------Value------------------------------------------
1833
const Type* FmaDNode::Value(PhaseGVN* phase) const {
1834
const Type *t1 = phase->type(in(1));
1835
if (t1 == Type::TOP) return Type::TOP;
1836
if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1837
const Type *t2 = phase->type(in(2));
1838
if (t2 == Type::TOP) return Type::TOP;
1839
if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1840
const Type *t3 = phase->type(in(3));
1841
if (t3 == Type::TOP) return Type::TOP;
1842
if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1843
#ifndef __STDC_IEC_559__
1844
return Type::DOUBLE;
1846
double d1 = t1->getd();
1847
double d2 = t2->getd();
1848
double d3 = t3->getd();
1849
return TypeD::make(fma(d1, d2, d3));
1853
//=============================================================================
1854
//------------------------------Value------------------------------------------
1855
const Type* FmaFNode::Value(PhaseGVN* phase) const {
1856
const Type *t1 = phase->type(in(1));
1857
if (t1 == Type::TOP) return Type::TOP;
1858
if (t1->base() != Type::FloatCon) return Type::FLOAT;
1859
const Type *t2 = phase->type(in(2));
1860
if (t2 == Type::TOP) return Type::TOP;
1861
if (t2->base() != Type::FloatCon) return Type::FLOAT;
1862
const Type *t3 = phase->type(in(3));
1863
if (t3 == Type::TOP) return Type::TOP;
1864
if (t3->base() != Type::FloatCon) return Type::FLOAT;
1865
#ifndef __STDC_IEC_559__
1868
float f1 = t1->getf();
1869
float f2 = t2->getf();
1870
float f3 = t3->getf();
1871
return TypeF::make(fma(f1, f2, f3));
1875
//=============================================================================
1876
//------------------------------hash-------------------------------------------
1877
// Hash function for MulAddS2INode. Operation is commutative with commutative pairs.
1878
// The hash function must return the same value when edge swapping is performed.
1879
uint MulAddS2INode::hash() const {
1880
return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode();
1883
//------------------------------Rotate Operations ------------------------------
1885
Node* RotateLeftNode::Identity(PhaseGVN* phase) {
1886
const Type* t1 = phase->type(in(1));
1887
if (t1 == Type::TOP) {
1891
assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1892
int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1893
if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1894
// Rotate by a multiple of 32/64 does nothing
1900
const Type* RotateLeftNode::Value(PhaseGVN* phase) const {
1901
const Type* t1 = phase->type(in(1));
1902
const Type* t2 = phase->type(in(2));
1903
// Either input is TOP ==> the result is TOP
1904
if (t1 == Type::TOP || t2 == Type::TOP) {
1908
if (t1->isa_int()) {
1909
const TypeInt* r1 = t1->is_int();
1910
const TypeInt* r2 = t2->is_int();
1912
// Left input is ZERO ==> the result is ZERO.
1913
if (r1 == TypeInt::ZERO) {
1914
return TypeInt::ZERO;
1916
// Rotate by zero does nothing
1917
if (r2 == TypeInt::ZERO) {
1920
if (r1->is_con() && r2->is_con()) {
1921
juint r1_con = (juint)r1->get_con();
1922
juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
1923
return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift)));
1925
return TypeInt::INT;
1927
assert(t1->isa_long(), "Type must be a long");
1928
const TypeLong* r1 = t1->is_long();
1929
const TypeInt* r2 = t2->is_int();
1931
// Left input is ZERO ==> the result is ZERO.
1932
if (r1 == TypeLong::ZERO) {
1933
return TypeLong::ZERO;
1935
// Rotate by zero does nothing
1936
if (r2 == TypeInt::ZERO) {
1939
if (r1->is_con() && r2->is_con()) {
1940
julong r1_con = (julong)r1->get_con();
1941
julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
1942
return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift)));
1944
return TypeLong::LONG;
1948
Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1949
const Type* t1 = phase->type(in(1));
1950
const Type* t2 = phase->type(in(2));
1951
if (t2->isa_int() && t2->is_int()->is_con()) {
1952
if (t1->isa_int()) {
1953
int lshift = t2->is_int()->get_con() & 31;
1954
return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT);
1955
} else if (t1 != Type::TOP) {
1956
assert(t1->isa_long(), "Type must be a long");
1957
int lshift = t2->is_int()->get_con() & 63;
1958
return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG);
1964
Node* RotateRightNode::Identity(PhaseGVN* phase) {
1965
const Type* t1 = phase->type(in(1));
1966
if (t1 == Type::TOP) {
1970
assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1971
int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1972
if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1973
// Rotate by a multiple of 32/64 does nothing
1979
const Type* RotateRightNode::Value(PhaseGVN* phase) const {
1980
const Type* t1 = phase->type(in(1));
1981
const Type* t2 = phase->type(in(2));
1982
// Either input is TOP ==> the result is TOP
1983
if (t1 == Type::TOP || t2 == Type::TOP) {
1987
if (t1->isa_int()) {
1988
const TypeInt* r1 = t1->is_int();
1989
const TypeInt* r2 = t2->is_int();
1991
// Left input is ZERO ==> the result is ZERO.
1992
if (r1 == TypeInt::ZERO) {
1993
return TypeInt::ZERO;
1995
// Rotate by zero does nothing
1996
if (r2 == TypeInt::ZERO) {
1999
if (r1->is_con() && r2->is_con()) {
2000
juint r1_con = (juint)r1->get_con();
2001
juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2002
return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift)));
2004
return TypeInt::INT;
2006
assert(t1->isa_long(), "Type must be a long");
2007
const TypeLong* r1 = t1->is_long();
2008
const TypeInt* r2 = t2->is_int();
2009
// Left input is ZERO ==> the result is ZERO.
2010
if (r1 == TypeLong::ZERO) {
2011
return TypeLong::ZERO;
2013
// Rotate by zero does nothing
2014
if (r2 == TypeInt::ZERO) {
2017
if (r1->is_con() && r2->is_con()) {
2018
julong r1_con = (julong)r1->get_con();
2019
julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2020
return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift)));
2022
return TypeLong::LONG;
2026
// Given an expression (AndX shift mask) or (AndX mask shift),
2027
// determine if the AndX must always produce zero, because the
2028
// the shift (x<<N) is bitwise disjoint from the mask #M.
2029
// The X in AndX must be I or L, depending on bt.
2030
// Specifically, the following cases fold to zero,
2031
// when the shift value N is large enough to zero out
2032
// all the set positions of the and-mask M.
2033
// (AndI (LShiftI _ #N) #M) => #0
2034
// (AndL (LShiftL _ #N) #M) => #0
2035
// (AndL (ConvI2L (LShiftI _ #N)) #M) => #0
2036
// The M and N values must satisfy ((-1 << N) & M) == 0.
2037
// Because the optimization might work for a non-constant
2038
// mask M, we check the AndX for both operand orders.
2039
bool MulNode::AndIL_shift_and_mask_is_always_zero(PhaseGVN* phase, Node* shift, Node* mask, BasicType bt, bool check_reverse) {
2040
if (mask == nullptr || shift == nullptr) {
2043
const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt);
2044
if (mask_t == nullptr || phase->type(shift)->isa_integer(bt) == nullptr) {
2047
shift = shift->uncast();
2048
if (shift == nullptr) {
2051
if (phase->type(shift)->isa_integer(bt) == nullptr) {
2054
BasicType shift_bt = bt;
2055
if (bt == T_LONG && shift->Opcode() == Op_ConvI2L) {
2057
Node* val = shift->in(1);
2058
if (val == nullptr) {
2061
val = val->uncast();
2062
if (val == nullptr) {
2065
if (val->Opcode() == Op_LShiftI) {
2068
if (phase->type(shift)->isa_integer(bt) == nullptr) {
2073
if (shift->Opcode() != Op_LShift(shift_bt)) {
2074
if (check_reverse &&
2075
(mask->Opcode() == Op_LShift(bt) ||
2076
(bt == T_LONG && mask->Opcode() == Op_ConvI2L))) {
2077
// try it the other way around
2078
return AndIL_shift_and_mask_is_always_zero(phase, mask, shift, bt, false);
2082
Node* shift2 = shift->in(2);
2083
if (shift2 == nullptr) {
2086
const Type* shift2_t = phase->type(shift2);
2087
if (!shift2_t->isa_int() || !shift2_t->is_int()->is_con()) {
2091
jint shift_con = shift2_t->is_int()->get_con() & ((shift_bt == T_INT ? BitsPerJavaInteger : BitsPerJavaLong) - 1);
2092
if ((((jlong)1) << shift_con) > mask_t->hi_as_long() && mask_t->lo_as_long() >= 0) {
2099
// Given an expression (AndX (AddX v1 (LShiftX v2 #N)) #M)
2100
// determine if the AndX must always produce (AndX v1 #M),
2101
// because the shift (v2<<N) is bitwise disjoint from the mask #M.
2102
// The X in AndX will be I or L, depending on bt.
2103
// Specifically, the following cases fold,
2104
// when the shift value N is large enough to zero out
2105
// all the set positions of the and-mask M.
2106
// (AndI (AddI v1 (LShiftI _ #N)) #M) => (AndI v1 #M)
2107
// (AndL (AddI v1 (LShiftL _ #N)) #M) => (AndL v1 #M)
2108
// (AndL (AddL v1 (ConvI2L (LShiftI _ #N))) #M) => (AndL v1 #M)
2109
// The M and N values must satisfy ((-1 << N) & M) == 0.
2110
// Because the optimization might work for a non-constant
2111
// mask M, and because the AddX operands can come in either
2112
// order, we check for every operand order.
2113
Node* MulNode::AndIL_add_shift_and_mask(PhaseGVN* phase, BasicType bt) {
2116
if (add == nullptr || mask == nullptr) {
2120
if (add->Opcode() == Op_Add(bt)) {
2122
} else if (mask->Opcode() == Op_Add(bt)) {
2128
Node* add1 = add->in(1);
2129
Node* add2 = add->in(2);
2130
if (add1 != nullptr && add2 != nullptr) {
2131
if (AndIL_shift_and_mask_is_always_zero(phase, add1, mask, bt, false)) {
2132
set_req_X(addidx, add2, phase);
2134
} else if (AndIL_shift_and_mask_is_always_zero(phase, add2, mask, bt, false)) {
2135
set_req_X(addidx, add1, phase);