jdk

Форк
0
/
mulnode.cpp 
2141 строка · 80.3 Кб
1
/*
2
 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/addnode.hpp"
28
#include "opto/connode.hpp"
29
#include "opto/convertnode.hpp"
30
#include "opto/memnode.hpp"
31
#include "opto/mulnode.hpp"
32
#include "opto/phaseX.hpp"
33
#include "opto/subnode.hpp"
34
#include "utilities/powerOfTwo.hpp"
35

36
// Portions of code courtesy of Clifford Click
37

38

39
//=============================================================================
40
//------------------------------hash-------------------------------------------
41
// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
42
// (commute) inputs to MulNodes willy-nilly so the hash function must return
43
// the same value in the presence of edge swapping.
44
uint MulNode::hash() const {
45
  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
46
}
47

48
//------------------------------Identity---------------------------------------
49
// Multiplying a one preserves the other argument
50
Node* MulNode::Identity(PhaseGVN* phase) {
51
  const Type *one = mul_id();  // The multiplicative identity
52
  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
53
  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
54

55
  return this;
56
}
57

58
//------------------------------Ideal------------------------------------------
59
// We also canonicalize the Node, moving constants to the right input,
60
// and flatten expressions (so that 1+x+2 becomes x+3).
61
Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
62
  Node* in1 = in(1);
63
  Node* in2 = in(2);
64
  Node* progress = nullptr;        // Progress flag
65

66
  // This code is used by And nodes too, but some conversions are
67
  // only valid for the actual Mul nodes.
68
  uint op = Opcode();
69
  bool real_mul = (op == Op_MulI) || (op == Op_MulL) ||
70
                  (op == Op_MulF) || (op == Op_MulD);
71

72
  // Convert "(-a)*(-b)" into "a*b".
73
  if (real_mul && in1->is_Sub() && in2->is_Sub()) {
74
    if (phase->type(in1->in(1))->is_zero_type() &&
75
        phase->type(in2->in(1))->is_zero_type()) {
76
      set_req_X(1, in1->in(2), phase);
77
      set_req_X(2, in2->in(2), phase);
78
      in1 = in(1);
79
      in2 = in(2);
80
      progress = this;
81
    }
82
  }
83

84
  // convert "max(a,b) * min(a,b)" into "a*b".
85
  if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode())
86
      || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) {
87
    Node *in11 = in(1)->in(1);
88
    Node *in12 = in(1)->in(2);
89

90
    Node *in21 = in(2)->in(1);
91
    Node *in22 = in(2)->in(2);
92

93
    if ((in11 == in21 && in12 == in22) ||
94
        (in11 == in22 && in12 == in21)) {
95
      set_req_X(1, in11, phase);
96
      set_req_X(2, in12, phase);
97
      in1 = in(1);
98
      in2 = in(2);
99
      progress = this;
100
    }
101
  }
102

103
  const Type* t1 = phase->type(in1);
104
  const Type* t2 = phase->type(in2);
105

106
  // We are OK if right is a constant, or right is a load and
107
  // left is a non-constant.
108
  if( !(t2->singleton() ||
109
        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
110
    if( t1->singleton() ||       // Left input is a constant?
111
        // Otherwise, sort inputs (commutativity) to help value numbering.
112
        (in(1)->_idx > in(2)->_idx) ) {
113
      swap_edges(1, 2);
114
      const Type *t = t1;
115
      t1 = t2;
116
      t2 = t;
117
      progress = this;            // Made progress
118
    }
119
  }
120

121
  // If the right input is a constant, and the left input is a product of a
122
  // constant, flatten the expression tree.
123
  if( t2->singleton() &&        // Right input is a constant?
124
      op != Op_MulF &&          // Float & double cannot reassociate
125
      op != Op_MulD ) {
126
    if( t2 == Type::TOP ) return nullptr;
127
    Node *mul1 = in(1);
128
#ifdef ASSERT
129
    // Check for dead loop
130
    int op1 = mul1->Opcode();
131
    if ((mul1 == this) || (in(2) == this) ||
132
        ((op1 == mul_opcode() || op1 == add_opcode()) &&
133
         ((mul1->in(1) == this) || (mul1->in(2) == this) ||
134
          (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) {
135
      assert(false, "dead loop in MulNode::Ideal");
136
    }
137
#endif
138

139
    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
140
      // Mul of a constant?
141
      const Type *t12 = phase->type( mul1->in(2) );
142
      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
143
        // Compute new constant; check for overflow
144
        const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
145
        if( tcon01->singleton() ) {
146
          // The Mul of the flattened expression
147
          set_req_X(1, mul1->in(1), phase);
148
          set_req_X(2, phase->makecon(tcon01), phase);
149
          t2 = tcon01;
150
          progress = this;      // Made progress
151
        }
152
      }
153
    }
154
    // If the right input is a constant, and the left input is an add of a
155
    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
156
    const Node *add1 = in(1);
157
    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
158
      // Add of a constant?
159
      const Type *t12 = phase->type( add1->in(2) );
160
      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
161
        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
162
        // Compute new constant; check for overflow
163
        const Type *tcon01 = mul_ring(t2,t12);
164
        if( tcon01->singleton() ) {
165

166
        // Convert (X+con1)*con0 into X*con0
167
          Node *mul = clone();    // mul = ()*con0
168
          mul->set_req(1,add1->in(1));  // mul = X*con0
169
          mul = phase->transform(mul);
170

171
          Node *add2 = add1->clone();
172
          add2->set_req(1, mul);        // X*con0 + con0*con1
173
          add2->set_req(2, phase->makecon(tcon01) );
174
          progress = add2;
175
        }
176
      }
177
    } // End of is left input an add
178
  } // End of is right input a Mul
179

180
  return progress;
181
}
182

183
//------------------------------Value-----------------------------------------
184
const Type* MulNode::Value(PhaseGVN* phase) const {
185
  const Type *t1 = phase->type( in(1) );
186
  const Type *t2 = phase->type( in(2) );
187
  // Either input is TOP ==> the result is TOP
188
  if( t1 == Type::TOP ) return Type::TOP;
189
  if( t2 == Type::TOP ) return Type::TOP;
190

191
  // Either input is ZERO ==> the result is ZERO.
192
  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
193
  int op = Opcode();
194
  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
195
    const Type *zero = add_id();        // The multiplicative zero
196
    if( t1->higher_equal( zero ) ) return zero;
197
    if( t2->higher_equal( zero ) ) return zero;
198
  }
199

200
  // Either input is BOTTOM ==> the result is the local BOTTOM
201
  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
202
    return bottom_type();
203

204
#if defined(IA32)
205
  // Can't trust native compilers to properly fold strict double
206
  // multiplication with round-to-zero on this platform.
207
  if (op == Op_MulD) {
208
    return TypeD::DOUBLE;
209
  }
210
#endif
211

212
  return mul_ring(t1,t2);            // Local flavor of type multiplication
213
}
214

215
MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) {
216
  switch (bt) {
217
    case T_INT:
218
      return new MulINode(in1, in2);
219
    case T_LONG:
220
      return new MulLNode(in1, in2);
221
    default:
222
      fatal("Not implemented for %s", type2name(bt));
223
  }
224
  return nullptr;
225
}
226

227

228
//=============================================================================
229
//------------------------------Ideal------------------------------------------
230
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
231
Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
232
  const jint con = in(2)->find_int_con(0);
233
  if (con == 0) {
234
    // If in(2) is not a constant, call Ideal() of the parent class to
235
    // try to move constant to the right side.
236
    return MulNode::Ideal(phase, can_reshape);
237
  }
238

239
  // Now we have a constant Node on the right and the constant in con.
240
  if (con == 1) {
241
    // By one is handled by Identity call
242
    return nullptr;
243
  }
244

245
  // Check for negative constant; if so negate the final result
246
  bool sign_flip = false;
247

248
  unsigned int abs_con = uabs(con);
249
  if (abs_con != (unsigned int)con) {
250
    sign_flip = true;
251
  }
252

253
  // Get low bit; check for being the only bit
254
  Node *res = nullptr;
255
  unsigned int bit1 = submultiple_power_of_2(abs_con);
256
  if (bit1 == abs_con) {           // Found a power of 2?
257
    res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)));
258
  } else {
259
    // Check for constant with 2 bits set
260
    unsigned int bit2 = abs_con - bit1;
261
    bit2 = bit2 & (0 - bit2);          // Extract 2nd bit
262
    if (bit2 + bit1 == abs_con) {    // Found all bits in con?
263
      Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))));
264
      Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2))));
265
      res = new AddINode(n2, n1);
266
    } else if (is_power_of_2(abs_con + 1)) {
267
      // Sleezy: power-of-2 - 1.  Next time be generic.
268
      unsigned int temp = abs_con + 1;
269
      Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp))));
270
      res = new SubINode(n1, in(1));
271
    } else {
272
      return MulNode::Ideal(phase, can_reshape);
273
    }
274
  }
275

276
  if (sign_flip) {             // Need to negate result?
277
    res = phase->transform(res);// Transform, before making the zero con
278
    res = new SubINode(phase->intcon(0),res);
279
  }
280

281
  return res;                   // Return final result
282
}
283

284
// This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong.
285
// In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi].
286
//
287
// In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is
288
// enough space to hold them all. We can therefore distinguish the following two cases for the product:
289
// - no overflow (i.e. product fits into x bits)
290
// - overflow (i.e. product does not fit into x bits)
291
//
292
// When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi]
293
// we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the
294
// cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen.
295
// The cross product consists of the following four multiplications with 2x-bit results:
296
// (1) left_lo * right_lo
297
// (2) left_lo * right_hi
298
// (3) left_hi * right_lo
299
// (4) left_hi * right_hi
300
//
301
// Let's define the following two functions:
302
// - Lx(i): Returns the lower x bits of the 2x-bit number i.
303
// - Ux(i): Returns the upper x bits of the 2x-bit number i.
304
//
305
// Let's first assume all products are positive where only overflows are possible but no underflows. If there is no
306
// overflow for a product p, then the upper x bits of the 2x-bit result p are all zero:
307
//     Ux(p) = 0
308
//     Lx(p) = p
309
//
310
// If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type
311
// with x bits:
312
//      [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))]
313
//
314
// If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result
315
// (i.e. all values in the x-bit space could be possible):
316
//      [result_lo,result_hi] = [NativeType_min,NativeType_max]
317
//
318
// However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with
319
// 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower
320
// x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed
321
// the lower x bits the same number of times:
322
//     Ux((1)) = Ux((2)) = Ux((3)) = Ux((4))
323
//
324
// If all upper x bits are equal, we can conclude:
325
//     Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4)))
326
//     Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4)))
327
//
328
// Therefore, we can use the same precise x-bit result type as for the no-overflow case:
329
//     [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))]
330
//
331
//
332
// Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur:
333
// Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the
334
// upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow,
335
// the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product
336
// is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore
337
// impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know
338
// that there is no underflow.
339
//
340
// To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize
341
// the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the
342
// normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we
343
// can compare the upper x bits in a unified way with N() being the normalization function:
344
//     N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4)))
345
template<typename NativeType>
346
class IntegerTypeMultiplication {
347

348
  NativeType _lo_left;
349
  NativeType _lo_right;
350
  NativeType _hi_left;
351
  NativeType _hi_right;
352
  short _widen_left;
353
  short _widen_right;
354

355
  static const Type* overflow_type();
356
  static NativeType multiply_high(NativeType x, NativeType y);
357
  const Type* create_type(NativeType lo, NativeType hi) const;
358

359
  static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) {
360
    return normalize_overflow_value(x, y, multiply_high(x, y));
361
  }
362

363
  bool cross_product_not_same_overflow_value() const {
364
    const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right);
365
    const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right);
366
    const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right);
367
    const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right);
368
    return lo_lo_high_product != lo_hi_high_product ||
369
           lo_hi_high_product != hi_lo_high_product ||
370
           hi_lo_high_product != hi_hi_high_product;
371
  }
372

373
  bool does_product_overflow(NativeType x, NativeType y) const {
374
    return multiply_high_signed_overflow_value(x, y) != 0;
375
  }
376

377
  static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) {
378
    return java_multiply(x, y) < 0 ? result + 1 : result;
379
  }
380

381
 public:
382
  template<class IntegerType>
383
  IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right)
384
      : _lo_left(left->_lo), _lo_right(right->_lo),
385
        _hi_left(left->_hi), _hi_right(right->_hi),
386
        _widen_left(left->_widen), _widen_right(right->_widen)  {}
387

388
  // Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible
389
  // values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these
390
  // multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows
391
  // If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows).
392
  const Type* compute() const {
393
    if (cross_product_not_same_overflow_value()) {
394
      return overflow_type();
395
    }
396

397
    NativeType lo_lo_product = java_multiply(_lo_left, _lo_right);
398
    NativeType lo_hi_product = java_multiply(_lo_left, _hi_right);
399
    NativeType hi_lo_product = java_multiply(_hi_left, _lo_right);
400
    NativeType hi_hi_product = java_multiply(_hi_left, _hi_right);
401
    const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
402
    const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
403
    return create_type(min, max);
404
  }
405

406
  bool does_overflow() const {
407
    return does_product_overflow(_lo_left, _lo_right) ||
408
           does_product_overflow(_lo_left, _hi_right) ||
409
           does_product_overflow(_hi_left, _lo_right) ||
410
           does_product_overflow(_hi_left, _hi_right);
411
  }
412
};
413

414
template <>
415
const Type* IntegerTypeMultiplication<jint>::overflow_type() {
416
  return TypeInt::INT;
417
}
418

419
template <>
420
jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) {
421
  const jlong x_64 = x;
422
  const jlong y_64 = y;
423
  const jlong product = x_64 * y_64;
424
  return (jint)((uint64_t)product >> 32u);
425
}
426

427
template <>
428
const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const {
429
  return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right));
430
}
431

432
template <>
433
const Type* IntegerTypeMultiplication<jlong>::overflow_type() {
434
  return TypeLong::LONG;
435
}
436

437
template <>
438
jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) {
439
  return multiply_high_signed(x, y);
440
}
441

442
template <>
443
const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const {
444
  return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right));
445
}
446

447
// Compute the product type of two integer ranges into this node.
448
const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const {
449
  const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int());
450
  return integer_multiplication.compute();
451
}
452

453
bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) {
454
  const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right);
455
  return integer_multiplication.does_overflow();
456
}
457

458
// Compute the product type of two long ranges into this node.
459
const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const {
460
  const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long());
461
  return integer_multiplication.compute();
462
}
463

464
//=============================================================================
465
//------------------------------Ideal------------------------------------------
466
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
467
Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
468
  const jlong con = in(2)->find_long_con(0);
469
  if (con == 0) {
470
    // If in(2) is not a constant, call Ideal() of the parent class to
471
    // try to move constant to the right side.
472
    return MulNode::Ideal(phase, can_reshape);
473
  }
474

475
  // Now we have a constant Node on the right and the constant in con.
476
  if (con == 1) {
477
    // By one is handled by Identity call
478
    return nullptr;
479
  }
480

481
  // Check for negative constant; if so negate the final result
482
  bool sign_flip = false;
483
  julong abs_con = uabs(con);
484
  if (abs_con != (julong)con) {
485
    sign_flip = true;
486
  }
487

488
  // Get low bit; check for being the only bit
489
  Node *res = nullptr;
490
  julong bit1 = submultiple_power_of_2(abs_con);
491
  if (bit1 == abs_con) {           // Found a power of 2?
492
    res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)));
493
  } else {
494

495
    // Check for constant with 2 bits set
496
    julong bit2 = abs_con-bit1;
497
    bit2 = bit2 & (0-bit2);          // Extract 2nd bit
498
    if (bit2 + bit1 == abs_con) {    // Found all bits in con?
499
      Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))));
500
      Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2))));
501
      res = new AddLNode(n2, n1);
502

503
    } else if (is_power_of_2(abs_con+1)) {
504
      // Sleezy: power-of-2 -1.  Next time be generic.
505
      julong temp = abs_con + 1;
506
      Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp))));
507
      res = new SubLNode(n1, in(1));
508
    } else {
509
      return MulNode::Ideal(phase, can_reshape);
510
    }
511
  }
512

513
  if (sign_flip) {             // Need to negate result?
514
    res = phase->transform(res);// Transform, before making the zero con
515
    res = new SubLNode(phase->longcon(0),res);
516
  }
517

518
  return res;                   // Return final result
519
}
520

521
//=============================================================================
522
//------------------------------mul_ring---------------------------------------
523
// Compute the product type of two double ranges into this node.
524
const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
525
  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
526
  return TypeF::make( t0->getf() * t1->getf() );
527
}
528

529
//------------------------------Ideal---------------------------------------
530
// Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
531
Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
532
  const TypeF *t2 = phase->type(in(2))->isa_float_constant();
533

534
  // x * 2 -> x + x
535
  if (t2 != nullptr && t2->getf() == 2) {
536
    Node* base = in(1);
537
    return new AddFNode(base, base);
538
  }
539

540
  return MulNode::Ideal(phase, can_reshape);
541
}
542

543
//=============================================================================
544
//------------------------------mul_ring---------------------------------------
545
// Compute the product type of two double ranges into this node.
546
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
547
  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
548
  // We must be multiplying 2 double constants.
549
  return TypeD::make( t0->getd() * t1->getd() );
550
}
551

552
//------------------------------Ideal---------------------------------------
553
// Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
554
Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) {
555
  const TypeD *t2 = phase->type(in(2))->isa_double_constant();
556

557
  // x * 2 -> x + x
558
  if (t2 != nullptr && t2->getd() == 2) {
559
    Node* base = in(1);
560
    return new AddDNode(base, base);
561
  }
562

563
  return MulNode::Ideal(phase, can_reshape);
564
}
565

566
//=============================================================================
567
//------------------------------Value------------------------------------------
568
const Type* MulHiLNode::Value(PhaseGVN* phase) const {
569
  const Type *t1 = phase->type( in(1) );
570
  const Type *t2 = phase->type( in(2) );
571
  const Type *bot = bottom_type();
572
  return MulHiValue(t1, t2, bot);
573
}
574

575
const Type* UMulHiLNode::Value(PhaseGVN* phase) const {
576
  const Type *t1 = phase->type( in(1) );
577
  const Type *t2 = phase->type( in(2) );
578
  const Type *bot = bottom_type();
579
  return MulHiValue(t1, t2, bot);
580
}
581

582
// A common routine used by UMulHiLNode and MulHiLNode
583
const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) {
584
  // Either input is TOP ==> the result is TOP
585
  if( t1 == Type::TOP ) return Type::TOP;
586
  if( t2 == Type::TOP ) return Type::TOP;
587

588
  // Either input is BOTTOM ==> the result is the local BOTTOM
589
  if( (t1 == bot) || (t2 == bot) ||
590
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
591
    return bot;
592

593
  // It is not worth trying to constant fold this stuff!
594
  return TypeLong::LONG;
595
}
596

597
//=============================================================================
598
//------------------------------mul_ring---------------------------------------
599
// Supplied function returns the product of the inputs IN THE CURRENT RING.
600
// For the logical operations the ring's MUL is really a logical AND function.
601
// This also type-checks the inputs for sanity.  Guaranteed never to
602
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
603
const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
604
  const TypeInt *r0 = t0->is_int(); // Handy access
605
  const TypeInt *r1 = t1->is_int();
606
  int widen = MAX2(r0->_widen,r1->_widen);
607

608
  // If either input is a constant, might be able to trim cases
609
  if( !r0->is_con() && !r1->is_con() )
610
    return TypeInt::INT;        // No constants to be had
611

612
  // Both constants?  Return bits
613
  if( r0->is_con() && r1->is_con() )
614
    return TypeInt::make( r0->get_con() & r1->get_con() );
615

616
  if( r0->is_con() && r0->get_con() > 0 )
617
    return TypeInt::make(0, r0->get_con(), widen);
618

619
  if( r1->is_con() && r1->get_con() > 0 )
620
    return TypeInt::make(0, r1->get_con(), widen);
621

622
  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
623
    return TypeInt::BOOL;
624
  }
625

626
  return TypeInt::INT;          // No constants to be had
627
}
628

629
const Type* AndINode::Value(PhaseGVN* phase) const {
630
  // patterns similar to (v << 2) & 3
631
  if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_INT, true)) {
632
    return TypeInt::ZERO;
633
  }
634

635
  return MulNode::Value(phase);
636
}
637

638
//------------------------------Identity---------------------------------------
639
// Masking off the high bits of an unsigned load is not required
640
Node* AndINode::Identity(PhaseGVN* phase) {
641

642
  // x & x => x
643
  if (in(1) == in(2)) {
644
    return in(1);
645
  }
646

647
  Node* in1 = in(1);
648
  uint op = in1->Opcode();
649
  const TypeInt* t2 = phase->type(in(2))->isa_int();
650
  if (t2 && t2->is_con()) {
651
    int con = t2->get_con();
652
    // Masking off high bits which are always zero is useless.
653
    const TypeInt* t1 = phase->type(in(1))->isa_int();
654
    if (t1 != nullptr && t1->_lo >= 0) {
655
      jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi));
656
      if ((t1_support & con) == t1_support)
657
        return in1;
658
    }
659
    // Masking off the high bits of a unsigned-shift-right is not
660
    // needed either.
661
    if (op == Op_URShiftI) {
662
      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
663
      if (t12 && t12->is_con()) {  // Shift is by a constant
664
        int shift = t12->get_con();
665
        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
666
        int mask = max_juint >> shift;
667
        if ((mask & con) == mask)  // If AND is useless, skip it
668
          return in1;
669
      }
670
    }
671
  }
672
  return MulNode::Identity(phase);
673
}
674

675
//------------------------------Ideal------------------------------------------
676
Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
677
  // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
678
  Node* progress = AndIL_add_shift_and_mask(phase, T_INT);
679
  if (progress != nullptr) {
680
    return progress;
681
  }
682

683
  // Convert "(~a) & (~b)" into "~(a | b)"
684
  if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
685
    Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1));
686
    Node* tn = phase->transform(or_a_b);
687
    return AddNode::make_not(phase, tn, T_INT);
688
  }
689

690
  // Special case constant AND mask
691
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
692
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
693
  const int mask = t2->get_con();
694
  Node *load = in(1);
695
  uint lop = load->Opcode();
696

697
  // Masking bits off of a Character?  Hi bits are already zero.
698
  if( lop == Op_LoadUS &&
699
      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
700
    return new AndINode(load,phase->intcon(mask&0xFFFF));
701

702
  // Masking bits off of a Short?  Loading a Character does some masking
703
  if (can_reshape &&
704
      load->outcnt() == 1 && load->unique_out() == this) {
705
    if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
706
      Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
707
      ldus = phase->transform(ldus);
708
      return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
709
    }
710

711
    // Masking sign bits off of a Byte?  Do an unsigned byte load plus
712
    // an and.
713
    if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
714
      Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
715
      ldub = phase->transform(ldub);
716
      return new AndINode(ldub, phase->intcon(mask));
717
    }
718
  }
719

720
  // Masking off sign bits?  Dont make them!
721
  if( lop == Op_RShiftI ) {
722
    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
723
    if( t12 && t12->is_con() ) { // Shift is by a constant
724
      int shift = t12->get_con();
725
      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
726
      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
727
      // If the AND'ing of the 2 masks has no bits, then only original shifted
728
      // bits survive.  NO sign-extension bits survive the maskings.
729
      if( (sign_bits_mask & mask) == 0 ) {
730
        // Use zero-fill shift instead
731
        Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
732
        return new AndINode( zshift, in(2) );
733
      }
734
    }
735
  }
736

737
  // Check for 'negate/and-1', a pattern emitted when someone asks for
738
  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
739
  // plus 1) and the mask is of the low order bit.  Skip the negate.
740
  if( lop == Op_SubI && mask == 1 && load->in(1) &&
741
      phase->type(load->in(1)) == TypeInt::ZERO )
742
    return new AndINode( load->in(2), in(2) );
743

744
  return MulNode::Ideal(phase, can_reshape);
745
}
746

747
//=============================================================================
748
//------------------------------mul_ring---------------------------------------
749
// Supplied function returns the product of the inputs IN THE CURRENT RING.
750
// For the logical operations the ring's MUL is really a logical AND function.
751
// This also type-checks the inputs for sanity.  Guaranteed never to
752
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
753
const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
754
  const TypeLong *r0 = t0->is_long(); // Handy access
755
  const TypeLong *r1 = t1->is_long();
756
  int widen = MAX2(r0->_widen,r1->_widen);
757

758
  // If either input is a constant, might be able to trim cases
759
  if( !r0->is_con() && !r1->is_con() )
760
    return TypeLong::LONG;      // No constants to be had
761

762
  // Both constants?  Return bits
763
  if( r0->is_con() && r1->is_con() )
764
    return TypeLong::make( r0->get_con() & r1->get_con() );
765

766
  if( r0->is_con() && r0->get_con() > 0 )
767
    return TypeLong::make(CONST64(0), r0->get_con(), widen);
768

769
  if( r1->is_con() && r1->get_con() > 0 )
770
    return TypeLong::make(CONST64(0), r1->get_con(), widen);
771

772
  return TypeLong::LONG;        // No constants to be had
773
}
774

775
const Type* AndLNode::Value(PhaseGVN* phase) const {
776
  // patterns similar to (v << 2) & 3
777
  if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_LONG, true)) {
778
    return TypeLong::ZERO;
779
  }
780

781
  return MulNode::Value(phase);
782
}
783

784
//------------------------------Identity---------------------------------------
785
// Masking off the high bits of an unsigned load is not required
786
Node* AndLNode::Identity(PhaseGVN* phase) {
787

788
  // x & x => x
789
  if (in(1) == in(2)) {
790
    return in(1);
791
  }
792

793
  Node *usr = in(1);
794
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
795
  if( t2 && t2->is_con() ) {
796
    jlong con = t2->get_con();
797
    // Masking off high bits which are always zero is useless.
798
    const TypeLong* t1 = phase->type( in(1) )->isa_long();
799
    if (t1 != nullptr && t1->_lo >= 0) {
800
      int bit_count = log2i_graceful(t1->_hi) + 1;
801
      jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
802
      if ((t1_support & con) == t1_support)
803
        return usr;
804
    }
805
    uint lop = usr->Opcode();
806
    // Masking off the high bits of a unsigned-shift-right is not
807
    // needed either.
808
    if( lop == Op_URShiftL ) {
809
      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
810
      if( t12 && t12->is_con() ) {  // Shift is by a constant
811
        int shift = t12->get_con();
812
        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
813
        jlong mask = max_julong >> shift;
814
        if( (mask&con) == mask )  // If AND is useless, skip it
815
          return usr;
816
      }
817
    }
818
  }
819
  return MulNode::Identity(phase);
820
}
821

822
//------------------------------Ideal------------------------------------------
823
Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
824
  // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
825
  Node* progress = AndIL_add_shift_and_mask(phase, T_LONG);
826
  if (progress != nullptr) {
827
    return progress;
828
  }
829

830
  // Convert "(~a) & (~b)" into "~(a | b)"
831
  if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
832
    Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1));
833
    Node* tn = phase->transform(or_a_b);
834
    return AddNode::make_not(phase, tn, T_LONG);
835
  }
836

837
  // Special case constant AND mask
838
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
839
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
840
  const jlong mask = t2->get_con();
841

842
  Node* in1 = in(1);
843
  int op = in1->Opcode();
844

845
  // Are we masking a long that was converted from an int with a mask
846
  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
847
  // convert masks which would cause a sign extension of the integer
848
  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
849
  // would be optimized away later in Identity.
850
  if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
851
    Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
852
    andi = phase->transform(andi);
853
    return new ConvI2LNode(andi);
854
  }
855

856
  // Masking off sign bits?  Dont make them!
857
  if (op == Op_RShiftL) {
858
    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
859
    if( t12 && t12->is_con() ) { // Shift is by a constant
860
      int shift = t12->get_con();
861
      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
862
      const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1);
863
      // If the AND'ing of the 2 masks has no bits, then only original shifted
864
      // bits survive.  NO sign-extension bits survive the maskings.
865
      if( (sign_bits_mask & mask) == 0 ) {
866
        // Use zero-fill shift instead
867
        Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
868
        return new AndLNode(zshift, in(2));
869
      }
870
    }
871
  }
872

873
  return MulNode::Ideal(phase, can_reshape);
874
}
875

876
LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) {
877
  switch (bt) {
878
    case T_INT:
879
      return new LShiftINode(in1, in2);
880
    case T_LONG:
881
      return new LShiftLNode(in1, in2);
882
    default:
883
      fatal("Not implemented for %s", type2name(bt));
884
  }
885
  return nullptr;
886
}
887

888
//=============================================================================
889

890
static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) {
891
  const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int();
892
  if (tcount != nullptr && tcount->is_con()) {
893
    *count = tcount->get_con();
894
    return true;
895
  }
896
  return false;
897
}
898

899
static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, int nBits) {
900
  int count = 0;
901
  if (const_shift_count(phase, shiftNode, &count)) {
902
    int maskedShift = count & (nBits - 1);
903
    if (maskedShift == 0) {
904
      // Let Identity() handle 0 shift count.
905
      return 0;
906
    }
907

908
    if (count != maskedShift) {
909
      shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
910
      PhaseIterGVN* igvn = phase->is_IterGVN();
911
      if (igvn) {
912
        igvn->rehash_node_delayed(shiftNode);
913
      }
914
    }
915
    return maskedShift;
916
  }
917
  return 0;
918
}
919

920
//------------------------------Identity---------------------------------------
921
Node* LShiftINode::Identity(PhaseGVN* phase) {
922
  int count = 0;
923
  if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
924
    // Shift by a multiple of 32 does nothing
925
    return in(1);
926
  }
927
  return this;
928
}
929

930
//------------------------------Ideal------------------------------------------
931
// If the right input is a constant, and the left input is an add of a
932
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
933
Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
934
  int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
935
  if (con == 0) {
936
    return nullptr;
937
  }
938

939
  // Left input is an add?
940
  Node *add1 = in(1);
941
  int add1_op = add1->Opcode();
942
  if( add1_op == Op_AddI ) {    // Left input is an add?
943
    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
944

945
    // Transform is legal, but check for profit.  Avoid breaking 'i2s'
946
    // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
947
    if( con < 16 ) {
948
      // Left input is an add of the same number?
949
      if (add1->in(1) == add1->in(2)) {
950
        // Convert "(x + x) << c0" into "x << (c0 + 1)"
951
        // In general, this optimization cannot be applied for c0 == 31 since
952
        // 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1)
953
        return new LShiftINode(add1->in(1), phase->intcon(con + 1));
954
      }
955

956
      // Left input is an add of a constant?
957
      const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
958
      if( t12 && t12->is_con() ){ // Left input is an add of a con?
959
        // Compute X << con0
960
        Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
961
        // Compute X<<con0 + (con1<<con0)
962
        return new AddINode( lsh, phase->intcon(t12->get_con() << con));
963
      }
964
    }
965
  }
966

967
  // Check for "(x >> C1) << C2"
968
  if (add1_op == Op_RShiftI || add1_op == Op_URShiftI) {
969
    int add1Con = 0;
970
    const_shift_count(phase, add1, &add1Con);
971

972
    // Special case C1 == C2, which just masks off low bits
973
    if (add1Con > 0 && con == add1Con) {
974
      // Convert to "(x & -(1 << C2))"
975
      return new AndINode(add1->in(1), phase->intcon(java_negate(jint(1 << con))));
976
    } else {
977
      // Wait until the right shift has been sharpened to the correct count
978
      if (add1Con > 0 && add1Con < BitsPerJavaInteger) {
979
        // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
980
        // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
981
        if (phase->is_IterGVN()) {
982
          if (con > add1Con) {
983
            // Creates "(x << (C2 - C1)) & -(1 << C2)"
984
            Node* lshift = phase->transform(new LShiftINode(add1->in(1), phase->intcon(con - add1Con)));
985
            return new AndINode(lshift, phase->intcon(java_negate(jint(1 << con))));
986
          } else {
987
            assert(con < add1Con, "must be (%d < %d)", con, add1Con);
988
            // Creates "(x >> (C1 - C2)) & -(1 << C2)"
989

990
            // Handle logical and arithmetic shifts
991
            Node* rshift;
992
            if (add1_op == Op_RShiftI) {
993
              rshift = phase->transform(new RShiftINode(add1->in(1), phase->intcon(add1Con - con)));
994
            } else {
995
              rshift = phase->transform(new URShiftINode(add1->in(1), phase->intcon(add1Con - con)));
996
            }
997

998
            return new AndINode(rshift, phase->intcon(java_negate(jint(1 << con))));
999
          }
1000
        } else {
1001
          phase->record_for_igvn(this);
1002
        }
1003
      }
1004
    }
1005
  }
1006

1007
  // Check for "((x >> C1) & Y) << C2"
1008
  if (add1_op == Op_AndI) {
1009
    Node *add2 = add1->in(1);
1010
    int add2_op = add2->Opcode();
1011
    if (add2_op == Op_RShiftI || add2_op == Op_URShiftI) {
1012
      // Special case C1 == C2, which just masks off low bits
1013
      if (add2->in(2) == in(2)) {
1014
        // Convert to "(x & (Y << C2))"
1015
        Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1016
        return new AndINode(add2->in(1), y_sh);
1017
      }
1018

1019
      int add2Con = 0;
1020
      const_shift_count(phase, add2, &add2Con);
1021
      if (add2Con > 0 && add2Con < BitsPerJavaInteger) {
1022
        if (phase->is_IterGVN()) {
1023
          // Convert to "((x >> C1) << C2) & (Y << C2)"
1024

1025
          // Make "(x >> C1) << C2", which will get folded away by the rule above
1026
          Node* x_sh = phase->transform(new LShiftINode(add2, phase->intcon(con)));
1027
          // Make "Y << C2", which will simplify when Y is a constant
1028
          Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1029

1030
          return new AndINode(x_sh, y_sh);
1031
        } else {
1032
          phase->record_for_igvn(this);
1033
        }
1034
      }
1035
    }
1036
  }
1037

1038
  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
1039
  // before shifting them away.
1040
  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
1041
  if( add1_op == Op_AndI &&
1042
      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
1043
    return new LShiftINode( add1->in(1), in(2) );
1044

1045
  return nullptr;
1046
}
1047

1048
//------------------------------Value------------------------------------------
1049
// A LShiftINode shifts its input2 left by input1 amount.
1050
const Type* LShiftINode::Value(PhaseGVN* phase) const {
1051
  const Type *t1 = phase->type( in(1) );
1052
  const Type *t2 = phase->type( in(2) );
1053
  // Either input is TOP ==> the result is TOP
1054
  if( t1 == Type::TOP ) return Type::TOP;
1055
  if( t2 == Type::TOP ) return Type::TOP;
1056

1057
  // Left input is ZERO ==> the result is ZERO.
1058
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1059
  // Shift by zero does nothing
1060
  if( t2 == TypeInt::ZERO ) return t1;
1061

1062
  // Either input is BOTTOM ==> the result is BOTTOM
1063
  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
1064
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1065
    return TypeInt::INT;
1066

1067
  const TypeInt *r1 = t1->is_int(); // Handy access
1068
  const TypeInt *r2 = t2->is_int(); // Handy access
1069

1070
  if (!r2->is_con())
1071
    return TypeInt::INT;
1072

1073
  uint shift = r2->get_con();
1074
  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1075
  // Shift by a multiple of 32 does nothing:
1076
  if (shift == 0)  return t1;
1077

1078
  // If the shift is a constant, shift the bounds of the type,
1079
  // unless this could lead to an overflow.
1080
  if (!r1->is_con()) {
1081
    jint lo = r1->_lo, hi = r1->_hi;
1082
    if (((lo << shift) >> shift) == lo &&
1083
        ((hi << shift) >> shift) == hi) {
1084
      // No overflow.  The range shifts up cleanly.
1085
      return TypeInt::make((jint)lo << (jint)shift,
1086
                           (jint)hi << (jint)shift,
1087
                           MAX2(r1->_widen,r2->_widen));
1088
    }
1089
    return TypeInt::INT;
1090
  }
1091

1092
  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
1093
}
1094

1095
//=============================================================================
1096
//------------------------------Identity---------------------------------------
1097
Node* LShiftLNode::Identity(PhaseGVN* phase) {
1098
  int count = 0;
1099
  if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1100
    // Shift by a multiple of 64 does nothing
1101
    return in(1);
1102
  }
1103
  return this;
1104
}
1105

1106
//------------------------------Ideal------------------------------------------
1107
// If the right input is a constant, and the left input is an add of a
1108
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1109
Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1110
  int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1111
  if (con == 0) {
1112
    return nullptr;
1113
  }
1114

1115
  // Left input is an add?
1116
  Node *add1 = in(1);
1117
  int add1_op = add1->Opcode();
1118
  if( add1_op == Op_AddL ) {    // Left input is an add?
1119
    // Avoid dead data cycles from dead loops
1120
    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
1121

1122
    // Left input is an add of the same number?
1123
    if (con != (BitsPerJavaLong - 1) && add1->in(1) == add1->in(2)) {
1124
      // Convert "(x + x) << c0" into "x << (c0 + 1)"
1125
      // Can only be applied if c0 != 63 because:
1126
      // (x + x) << 63 = 2x << 63, while
1127
      // (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1)
1128
      // According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand
1129
      // (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0).
1130
      return new LShiftLNode(add1->in(1), phase->intcon(con + 1));
1131
    }
1132

1133
    // Left input is an add of a constant?
1134
    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
1135
    if( t12 && t12->is_con() ){ // Left input is an add of a con?
1136
      // Compute X << con0
1137
      Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
1138
      // Compute X<<con0 + (con1<<con0)
1139
      return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
1140
    }
1141
  }
1142

1143
  // Check for "(x >> C1) << C2"
1144
  if (add1_op == Op_RShiftL || add1_op == Op_URShiftL) {
1145
    int add1Con = 0;
1146
    const_shift_count(phase, add1, &add1Con);
1147

1148
    // Special case C1 == C2, which just masks off low bits
1149
    if (add1Con > 0 && con == add1Con) {
1150
      // Convert to "(x & -(1 << C2))"
1151
      return new AndLNode(add1->in(1), phase->longcon(java_negate(jlong(CONST64(1) << con))));
1152
    } else {
1153
      // Wait until the right shift has been sharpened to the correct count
1154
      if (add1Con > 0 && add1Con < BitsPerJavaLong) {
1155
        // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1156
        // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1157
        if (phase->is_IterGVN()) {
1158
          if (con > add1Con) {
1159
            // Creates "(x << (C2 - C1)) & -(1 << C2)"
1160
            Node* lshift = phase->transform(new LShiftLNode(add1->in(1), phase->intcon(con - add1Con)));
1161
            return new AndLNode(lshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1162
          } else {
1163
            assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1164
            // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1165

1166
            // Handle logical and arithmetic shifts
1167
            Node* rshift;
1168
            if (add1_op == Op_RShiftL) {
1169
              rshift = phase->transform(new RShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1170
            } else {
1171
              rshift = phase->transform(new URShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1172
            }
1173

1174
            return new AndLNode(rshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1175
          }
1176
        } else {
1177
          phase->record_for_igvn(this);
1178
        }
1179
      }
1180
    }
1181
  }
1182

1183
  // Check for "((x >> C1) & Y) << C2"
1184
  if (add1_op == Op_AndL) {
1185
    Node* add2 = add1->in(1);
1186
    int add2_op = add2->Opcode();
1187
    if (add2_op == Op_RShiftL || add2_op == Op_URShiftL) {
1188
      // Special case C1 == C2, which just masks off low bits
1189
      if (add2->in(2) == in(2)) {
1190
        // Convert to "(x & (Y << C2))"
1191
        Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1192
        return new AndLNode(add2->in(1), y_sh);
1193
      }
1194

1195
      int add2Con = 0;
1196
      const_shift_count(phase, add2, &add2Con);
1197
      if (add2Con > 0 && add2Con < BitsPerJavaLong) {
1198
        if (phase->is_IterGVN()) {
1199
          // Convert to "((x >> C1) << C2) & (Y << C2)"
1200

1201
          // Make "(x >> C1) << C2", which will get folded away by the rule above
1202
          Node* x_sh = phase->transform(new LShiftLNode(add2, phase->intcon(con)));
1203
          // Make "Y << C2", which will simplify when Y is a constant
1204
          Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1205

1206
          return new AndLNode(x_sh, y_sh);
1207
        } else {
1208
          phase->record_for_igvn(this);
1209
        }
1210
      }
1211
    }
1212
  }
1213

1214
  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
1215
  // before shifting them away.
1216
  const jlong bits_mask = jlong(max_julong >> con);
1217
  if( add1_op == Op_AndL &&
1218
      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
1219
    return new LShiftLNode( add1->in(1), in(2) );
1220

1221
  return nullptr;
1222
}
1223

1224
//------------------------------Value------------------------------------------
1225
// A LShiftLNode shifts its input2 left by input1 amount.
1226
const Type* LShiftLNode::Value(PhaseGVN* phase) const {
1227
  const Type *t1 = phase->type( in(1) );
1228
  const Type *t2 = phase->type( in(2) );
1229
  // Either input is TOP ==> the result is TOP
1230
  if( t1 == Type::TOP ) return Type::TOP;
1231
  if( t2 == Type::TOP ) return Type::TOP;
1232

1233
  // Left input is ZERO ==> the result is ZERO.
1234
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1235
  // Shift by zero does nothing
1236
  if( t2 == TypeInt::ZERO ) return t1;
1237

1238
  // Either input is BOTTOM ==> the result is BOTTOM
1239
  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
1240
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1241
    return TypeLong::LONG;
1242

1243
  const TypeLong *r1 = t1->is_long(); // Handy access
1244
  const TypeInt  *r2 = t2->is_int();  // Handy access
1245

1246
  if (!r2->is_con())
1247
    return TypeLong::LONG;
1248

1249
  uint shift = r2->get_con();
1250
  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1251
  // Shift by a multiple of 64 does nothing:
1252
  if (shift == 0)  return t1;
1253

1254
  // If the shift is a constant, shift the bounds of the type,
1255
  // unless this could lead to an overflow.
1256
  if (!r1->is_con()) {
1257
    jlong lo = r1->_lo, hi = r1->_hi;
1258
    if (((lo << shift) >> shift) == lo &&
1259
        ((hi << shift) >> shift) == hi) {
1260
      // No overflow.  The range shifts up cleanly.
1261
      return TypeLong::make((jlong)lo << (jint)shift,
1262
                            (jlong)hi << (jint)shift,
1263
                            MAX2(r1->_widen,r2->_widen));
1264
    }
1265
    return TypeLong::LONG;
1266
  }
1267

1268
  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
1269
}
1270

1271
//=============================================================================
1272
//------------------------------Identity---------------------------------------
1273
Node* RShiftINode::Identity(PhaseGVN* phase) {
1274
  int count = 0;
1275
  if (const_shift_count(phase, this, &count)) {
1276
    if ((count & (BitsPerJavaInteger - 1)) == 0) {
1277
      // Shift by a multiple of 32 does nothing
1278
      return in(1);
1279
    }
1280
    // Check for useless sign-masking
1281
    if (in(1)->Opcode() == Op_LShiftI &&
1282
        in(1)->req() == 3 &&
1283
        in(1)->in(2) == in(2)) {
1284
      count &= BitsPerJavaInteger-1; // semantics of Java shifts
1285
      // Compute masks for which this shifting doesn't change
1286
      int lo = (-1 << (BitsPerJavaInteger - ((uint)count)-1)); // FFFF8000
1287
      int hi = ~lo;               // 00007FFF
1288
      const TypeInt* t11 = phase->type(in(1)->in(1))->isa_int();
1289
      if (t11 == nullptr) {
1290
        return this;
1291
      }
1292
      // Does actual value fit inside of mask?
1293
      if (lo <= t11->_lo && t11->_hi <= hi) {
1294
        return in(1)->in(1);      // Then shifting is a nop
1295
      }
1296
    }
1297
  }
1298
  return this;
1299
}
1300

1301
//------------------------------Ideal------------------------------------------
1302
Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1303
  // Inputs may be TOP if they are dead.
1304
  const TypeInt *t1 = phase->type(in(1))->isa_int();
1305
  if (!t1) return nullptr;        // Left input is an integer
1306
  const TypeInt *t3;  // type of in(1).in(2)
1307
  int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
1308
  if (shift == 0) {
1309
    return nullptr;
1310
  }
1311

1312
  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
1313
  // Such expressions arise normally from shift chains like (byte)(x >> 24).
1314
  const Node *mask = in(1);
1315
  if( mask->Opcode() == Op_AndI &&
1316
      (t3 = phase->type(mask->in(2))->isa_int()) &&
1317
      t3->is_con() ) {
1318
    Node *x = mask->in(1);
1319
    jint maskbits = t3->get_con();
1320
    // Convert to "(x >> shift) & (mask >> shift)"
1321
    Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
1322
    return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
1323
  }
1324

1325
  // Check for "(short[i] <<16)>>16" which simply sign-extends
1326
  const Node *shl = in(1);
1327
  if( shl->Opcode() != Op_LShiftI ) return nullptr;
1328

1329
  if( shift == 16 &&
1330
      (t3 = phase->type(shl->in(2))->isa_int()) &&
1331
      t3->is_con(16) ) {
1332
    Node *ld = shl->in(1);
1333
    if( ld->Opcode() == Op_LoadS ) {
1334
      // Sign extension is just useless here.  Return a RShiftI of zero instead
1335
      // returning 'ld' directly.  We cannot return an old Node directly as
1336
      // that is the job of 'Identity' calls and Identity calls only work on
1337
      // direct inputs ('ld' is an extra Node removed from 'this').  The
1338
      // combined optimization requires Identity only return direct inputs.
1339
      set_req_X(1, ld, phase);
1340
      set_req_X(2, phase->intcon(0), phase);
1341
      return this;
1342
    }
1343
    else if (can_reshape &&
1344
             ld->Opcode() == Op_LoadUS &&
1345
             ld->outcnt() == 1 && ld->unique_out() == shl)
1346
      // Replace zero-extension-load with sign-extension-load
1347
      return ld->as_Load()->convert_to_signed_load(*phase);
1348
  }
1349

1350
  // Check for "(byte[i] <<24)>>24" which simply sign-extends
1351
  if( shift == 24 &&
1352
      (t3 = phase->type(shl->in(2))->isa_int()) &&
1353
      t3->is_con(24) ) {
1354
    Node *ld = shl->in(1);
1355
    if (ld->Opcode() == Op_LoadB) {
1356
      // Sign extension is just useless here
1357
      set_req_X(1, ld, phase);
1358
      set_req_X(2, phase->intcon(0), phase);
1359
      return this;
1360
    }
1361
  }
1362

1363
  return nullptr;
1364
}
1365

1366
//------------------------------Value------------------------------------------
1367
// A RShiftINode shifts its input2 right by input1 amount.
1368
const Type* RShiftINode::Value(PhaseGVN* phase) const {
1369
  const Type *t1 = phase->type( in(1) );
1370
  const Type *t2 = phase->type( in(2) );
1371
  // Either input is TOP ==> the result is TOP
1372
  if( t1 == Type::TOP ) return Type::TOP;
1373
  if( t2 == Type::TOP ) return Type::TOP;
1374

1375
  // Left input is ZERO ==> the result is ZERO.
1376
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1377
  // Shift by zero does nothing
1378
  if( t2 == TypeInt::ZERO ) return t1;
1379

1380
  // Either input is BOTTOM ==> the result is BOTTOM
1381
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1382
    return TypeInt::INT;
1383

1384
  const TypeInt *r1 = t1->is_int(); // Handy access
1385
  const TypeInt *r2 = t2->is_int(); // Handy access
1386

1387
  // If the shift is a constant, just shift the bounds of the type.
1388
  // For example, if the shift is 31, we just propagate sign bits.
1389
  if (!r1->is_con() && r2->is_con()) {
1390
    uint shift = r2->get_con();
1391
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1392
    // Shift by a multiple of 32 does nothing:
1393
    if (shift == 0)  return t1;
1394
    // Calculate reasonably aggressive bounds for the result.
1395
    // This is necessary if we are to correctly type things
1396
    // like (x<<24>>24) == ((byte)x).
1397
    jint lo = (jint)r1->_lo >> (jint)shift;
1398
    jint hi = (jint)r1->_hi >> (jint)shift;
1399
    assert(lo <= hi, "must have valid bounds");
1400
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1401
#ifdef ASSERT
1402
    // Make sure we get the sign-capture idiom correct.
1403
    if (shift == BitsPerJavaInteger-1) {
1404
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1405
      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1406
    }
1407
#endif
1408
    return ti;
1409
  }
1410

1411
  if (!r1->is_con() || !r2->is_con()) {
1412
    // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1413
    if (r1->_lo >= 0) {
1414
      return TypeInt::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1415
    }
1416

1417
    // Conversely, if the left input is negative then the result must be negative.
1418
    if (r1->_hi <= -1) {
1419
      return TypeInt::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1420
    }
1421

1422
    return TypeInt::INT;
1423
  }
1424

1425
  // Signed shift right
1426
  return TypeInt::make(r1->get_con() >> (r2->get_con() & 31));
1427
}
1428

1429
//=============================================================================
1430
//------------------------------Identity---------------------------------------
1431
Node* RShiftLNode::Identity(PhaseGVN* phase) {
1432
  const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1433
  return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1434
}
1435

1436
//------------------------------Value------------------------------------------
1437
// A RShiftLNode shifts its input2 right by input1 amount.
1438
const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1439
  const Type *t1 = phase->type( in(1) );
1440
  const Type *t2 = phase->type( in(2) );
1441
  // Either input is TOP ==> the result is TOP
1442
  if( t1 == Type::TOP ) return Type::TOP;
1443
  if( t2 == Type::TOP ) return Type::TOP;
1444

1445
  // Left input is ZERO ==> the result is ZERO.
1446
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1447
  // Shift by zero does nothing
1448
  if( t2 == TypeInt::ZERO ) return t1;
1449

1450
  // Either input is BOTTOM ==> the result is BOTTOM
1451
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1452
    return TypeLong::LONG;
1453

1454
  const TypeLong *r1 = t1->is_long(); // Handy access
1455
  const TypeInt  *r2 = t2->is_int (); // Handy access
1456

1457
  // If the shift is a constant, just shift the bounds of the type.
1458
  // For example, if the shift is 63, we just propagate sign bits.
1459
  if (!r1->is_con() && r2->is_con()) {
1460
    uint shift = r2->get_con();
1461
    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1462
    // Shift by a multiple of 64 does nothing:
1463
    if (shift == 0)  return t1;
1464
    // Calculate reasonably aggressive bounds for the result.
1465
    // This is necessary if we are to correctly type things
1466
    // like (x<<24>>24) == ((byte)x).
1467
    jlong lo = (jlong)r1->_lo >> (jlong)shift;
1468
    jlong hi = (jlong)r1->_hi >> (jlong)shift;
1469
    assert(lo <= hi, "must have valid bounds");
1470
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1471
    #ifdef ASSERT
1472
    // Make sure we get the sign-capture idiom correct.
1473
    if (shift == (2*BitsPerJavaInteger)-1) {
1474
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1475
      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1476
    }
1477
    #endif
1478
    return tl;
1479
  }
1480

1481
  if (!r1->is_con() || !r2->is_con()) {
1482
    // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1483
    if (r1->_lo >= 0) {
1484
      return TypeLong::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1485
    }
1486

1487
    // Conversely, if the left input is negative then the result must be negative.
1488
    if (r1->_hi <= -1) {
1489
      return TypeLong::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1490
    }
1491

1492
    return TypeLong::LONG;
1493
  }
1494

1495
  return TypeLong::make(r1->get_con() >> (r2->get_con() & 63));
1496
}
1497

1498
//=============================================================================
1499
//------------------------------Identity---------------------------------------
1500
Node* URShiftINode::Identity(PhaseGVN* phase) {
1501
  int count = 0;
1502
  if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1503
    // Shift by a multiple of 32 does nothing
1504
    return in(1);
1505
  }
1506

1507
  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1508
  // Happens during new-array length computation.
1509
  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1510
  Node *add = in(1);
1511
  if (add->Opcode() == Op_AddI) {
1512
    const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1513
    if (t2 && t2->is_con(wordSize - 1) &&
1514
        add->in(1)->Opcode() == Op_LShiftI) {
1515
      // Check that shift_counts are LogBytesPerWord.
1516
      Node          *lshift_count   = add->in(1)->in(2);
1517
      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1518
      if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1519
          t_lshift_count == phase->type(in(2))) {
1520
        Node          *x   = add->in(1)->in(1);
1521
        const TypeInt *t_x = phase->type(x)->isa_int();
1522
        if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1523
          return x;
1524
        }
1525
      }
1526
    }
1527
  }
1528

1529
  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1530
}
1531

1532
//------------------------------Ideal------------------------------------------
1533
Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1534
  int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1535
  if (con == 0) {
1536
    return nullptr;
1537
  }
1538

1539
  // We'll be wanting the right-shift amount as a mask of that many bits
1540
  const int mask = right_n_bits(BitsPerJavaInteger - con);
1541

1542
  int in1_op = in(1)->Opcode();
1543

1544
  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1545
  if( in1_op == Op_URShiftI ) {
1546
    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1547
    if( t12 && t12->is_con() ) { // Right input is a constant
1548
      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1549
      const int con2 = t12->get_con() & 31; // Shift count is always masked
1550
      const int con3 = con+con2;
1551
      if( con3 < 32 )           // Only merge shifts if total is < 32
1552
        return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1553
    }
1554
  }
1555

1556
  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1557
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1558
  // If Q is "X << z" the rounding is useless.  Look for patterns like
1559
  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1560
  Node *add = in(1);
1561
  const TypeInt *t2 = phase->type(in(2))->isa_int();
1562
  if (in1_op == Op_AddI) {
1563
    Node *lshl = add->in(1);
1564
    if( lshl->Opcode() == Op_LShiftI &&
1565
        phase->type(lshl->in(2)) == t2 ) {
1566
      Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1567
      Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1568
      return new AndINode( sum, phase->intcon(mask) );
1569
    }
1570
  }
1571

1572
  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1573
  // This shortens the mask.  Also, if we are extracting a high byte and
1574
  // storing it to a buffer, the mask will be removed completely.
1575
  Node *andi = in(1);
1576
  if( in1_op == Op_AndI ) {
1577
    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1578
    if( t3 && t3->is_con() ) { // Right input is a constant
1579
      jint mask2 = t3->get_con();
1580
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1581
      Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1582
      return new AndINode(newshr, phase->intcon(mask2));
1583
      // The negative values are easier to materialize than positive ones.
1584
      // A typical case from address arithmetic is ((x & ~15) >> 4).
1585
      // It's better to change that to ((x >> 4) & ~0) versus
1586
      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1587
    }
1588
  }
1589

1590
  // Check for "(X << z ) >>> z" which simply zero-extends
1591
  Node *shl = in(1);
1592
  if( in1_op == Op_LShiftI &&
1593
      phase->type(shl->in(2)) == t2 )
1594
    return new AndINode( shl->in(1), phase->intcon(mask) );
1595

1596
  // Check for (x >> n) >>> 31. Replace with (x >>> 31)
1597
  Node *shr = in(1);
1598
  if ( in1_op == Op_RShiftI ) {
1599
    Node *in11 = shr->in(1);
1600
    Node *in12 = shr->in(2);
1601
    const TypeInt *t11 = phase->type(in11)->isa_int();
1602
    const TypeInt *t12 = phase->type(in12)->isa_int();
1603
    if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) {
1604
      return new URShiftINode(in11, phase->intcon(31));
1605
    }
1606
  }
1607

1608
  return nullptr;
1609
}
1610

1611
//------------------------------Value------------------------------------------
1612
// A URShiftINode shifts its input2 right by input1 amount.
1613
const Type* URShiftINode::Value(PhaseGVN* phase) const {
1614
  // (This is a near clone of RShiftINode::Value.)
1615
  const Type *t1 = phase->type( in(1) );
1616
  const Type *t2 = phase->type( in(2) );
1617
  // Either input is TOP ==> the result is TOP
1618
  if( t1 == Type::TOP ) return Type::TOP;
1619
  if( t2 == Type::TOP ) return Type::TOP;
1620

1621
  // Left input is ZERO ==> the result is ZERO.
1622
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1623
  // Shift by zero does nothing
1624
  if( t2 == TypeInt::ZERO ) return t1;
1625

1626
  // Either input is BOTTOM ==> the result is BOTTOM
1627
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1628
    return TypeInt::INT;
1629

1630
  if (t2 == TypeInt::INT)
1631
    return TypeInt::INT;
1632

1633
  const TypeInt *r1 = t1->is_int();     // Handy access
1634
  const TypeInt *r2 = t2->is_int();     // Handy access
1635

1636
  if (r2->is_con()) {
1637
    uint shift = r2->get_con();
1638
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1639
    // Shift by a multiple of 32 does nothing:
1640
    if (shift == 0)  return t1;
1641
    // Calculate reasonably aggressive bounds for the result.
1642
    jint lo = (juint)r1->_lo >> (juint)shift;
1643
    jint hi = (juint)r1->_hi >> (juint)shift;
1644
    if (r1->_hi >= 0 && r1->_lo < 0) {
1645
      // If the type has both negative and positive values,
1646
      // there are two separate sub-domains to worry about:
1647
      // The positive half and the negative half.
1648
      jint neg_lo = lo;
1649
      jint neg_hi = (juint)-1 >> (juint)shift;
1650
      jint pos_lo = (juint) 0 >> (juint)shift;
1651
      jint pos_hi = hi;
1652
      lo = MIN2(neg_lo, pos_lo);  // == 0
1653
      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1654
    }
1655
    assert(lo <= hi, "must have valid bounds");
1656
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1657
    #ifdef ASSERT
1658
    // Make sure we get the sign-capture idiom correct.
1659
    if (shift == BitsPerJavaInteger-1) {
1660
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1661
      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1662
    }
1663
    #endif
1664
    return ti;
1665
  }
1666

1667
  //
1668
  // Do not support shifted oops in info for GC
1669
  //
1670
  // else if( t1->base() == Type::InstPtr ) {
1671
  //
1672
  //   const TypeInstPtr *o = t1->is_instptr();
1673
  //   if( t1->singleton() )
1674
  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1675
  // }
1676
  // else if( t1->base() == Type::KlassPtr ) {
1677
  //   const TypeKlassPtr *o = t1->is_klassptr();
1678
  //   if( t1->singleton() )
1679
  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1680
  // }
1681

1682
  return TypeInt::INT;
1683
}
1684

1685
//=============================================================================
1686
//------------------------------Identity---------------------------------------
1687
Node* URShiftLNode::Identity(PhaseGVN* phase) {
1688
  int count = 0;
1689
  if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1690
    // Shift by a multiple of 64 does nothing
1691
    return in(1);
1692
  }
1693
  return this;
1694
}
1695

1696
//------------------------------Ideal------------------------------------------
1697
Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1698
  int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1699
  if (con == 0) {
1700
    return nullptr;
1701
  }
1702

1703
  // We'll be wanting the right-shift amount as a mask of that many bits
1704
  const jlong mask = jlong(max_julong >> con);
1705

1706
  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1707
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1708
  // If Q is "X << z" the rounding is useless.  Look for patterns like
1709
  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1710
  Node *add = in(1);
1711
  const TypeInt *t2 = phase->type(in(2))->isa_int();
1712
  if (add->Opcode() == Op_AddL) {
1713
    Node *lshl = add->in(1);
1714
    if( lshl->Opcode() == Op_LShiftL &&
1715
        phase->type(lshl->in(2)) == t2 ) {
1716
      Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1717
      Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1718
      return new AndLNode( sum, phase->longcon(mask) );
1719
    }
1720
  }
1721

1722
  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1723
  // This shortens the mask.  Also, if we are extracting a high byte and
1724
  // storing it to a buffer, the mask will be removed completely.
1725
  Node *andi = in(1);
1726
  if( andi->Opcode() == Op_AndL ) {
1727
    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1728
    if( t3 && t3->is_con() ) { // Right input is a constant
1729
      jlong mask2 = t3->get_con();
1730
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1731
      Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1732
      return new AndLNode(newshr, phase->longcon(mask2));
1733
    }
1734
  }
1735

1736
  // Check for "(X << z ) >>> z" which simply zero-extends
1737
  Node *shl = in(1);
1738
  if( shl->Opcode() == Op_LShiftL &&
1739
      phase->type(shl->in(2)) == t2 )
1740
    return new AndLNode( shl->in(1), phase->longcon(mask) );
1741

1742
  // Check for (x >> n) >>> 63. Replace with (x >>> 63)
1743
  Node *shr = in(1);
1744
  if ( shr->Opcode() == Op_RShiftL ) {
1745
    Node *in11 = shr->in(1);
1746
    Node *in12 = shr->in(2);
1747
    const TypeLong *t11 = phase->type(in11)->isa_long();
1748
    const TypeInt *t12 = phase->type(in12)->isa_int();
1749
    if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) {
1750
      return new URShiftLNode(in11, phase->intcon(63));
1751
    }
1752
  }
1753
  return nullptr;
1754
}
1755

1756
//------------------------------Value------------------------------------------
1757
// A URShiftINode shifts its input2 right by input1 amount.
1758
const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1759
  // (This is a near clone of RShiftLNode::Value.)
1760
  const Type *t1 = phase->type( in(1) );
1761
  const Type *t2 = phase->type( in(2) );
1762
  // Either input is TOP ==> the result is TOP
1763
  if( t1 == Type::TOP ) return Type::TOP;
1764
  if( t2 == Type::TOP ) return Type::TOP;
1765

1766
  // Left input is ZERO ==> the result is ZERO.
1767
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1768
  // Shift by zero does nothing
1769
  if( t2 == TypeInt::ZERO ) return t1;
1770

1771
  // Either input is BOTTOM ==> the result is BOTTOM
1772
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1773
    return TypeLong::LONG;
1774

1775
  if (t2 == TypeInt::INT)
1776
    return TypeLong::LONG;
1777

1778
  const TypeLong *r1 = t1->is_long(); // Handy access
1779
  const TypeInt  *r2 = t2->is_int (); // Handy access
1780

1781
  if (r2->is_con()) {
1782
    uint shift = r2->get_con();
1783
    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1784
    // Shift by a multiple of 64 does nothing:
1785
    if (shift == 0)  return t1;
1786
    // Calculate reasonably aggressive bounds for the result.
1787
    jlong lo = (julong)r1->_lo >> (juint)shift;
1788
    jlong hi = (julong)r1->_hi >> (juint)shift;
1789
    if (r1->_hi >= 0 && r1->_lo < 0) {
1790
      // If the type has both negative and positive values,
1791
      // there are two separate sub-domains to worry about:
1792
      // The positive half and the negative half.
1793
      jlong neg_lo = lo;
1794
      jlong neg_hi = (julong)-1 >> (juint)shift;
1795
      jlong pos_lo = (julong) 0 >> (juint)shift;
1796
      jlong pos_hi = hi;
1797
      //lo = MIN2(neg_lo, pos_lo);  // == 0
1798
      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1799
      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1800
      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1801
    }
1802
    assert(lo <= hi, "must have valid bounds");
1803
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1804
    #ifdef ASSERT
1805
    // Make sure we get the sign-capture idiom correct.
1806
    if (shift == BitsPerJavaLong - 1) {
1807
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1808
      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1809
    }
1810
    #endif
1811
    return tl;
1812
  }
1813

1814
  return TypeLong::LONG;                // Give up
1815
}
1816

1817
//=============================================================================
1818
//------------------------------Ideal------------------------------------------
1819
Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1820
  // We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c"
1821
  // This reduces the number of rules in the matcher, as we only need to check
1822
  // for negations on the second argument, and not the symmetric case where
1823
  // the first argument is negated.
1824
  if (in(1)->is_Neg() && !in(2)->is_Neg()) {
1825
    swap_edges(1, 2);
1826
    return this;
1827
  }
1828
  return nullptr;
1829
}
1830

1831
//=============================================================================
1832
//------------------------------Value------------------------------------------
1833
const Type* FmaDNode::Value(PhaseGVN* phase) const {
1834
  const Type *t1 = phase->type(in(1));
1835
  if (t1 == Type::TOP) return Type::TOP;
1836
  if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1837
  const Type *t2 = phase->type(in(2));
1838
  if (t2 == Type::TOP) return Type::TOP;
1839
  if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1840
  const Type *t3 = phase->type(in(3));
1841
  if (t3 == Type::TOP) return Type::TOP;
1842
  if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1843
#ifndef __STDC_IEC_559__
1844
  return Type::DOUBLE;
1845
#else
1846
  double d1 = t1->getd();
1847
  double d2 = t2->getd();
1848
  double d3 = t3->getd();
1849
  return TypeD::make(fma(d1, d2, d3));
1850
#endif
1851
}
1852

1853
//=============================================================================
1854
//------------------------------Value------------------------------------------
1855
const Type* FmaFNode::Value(PhaseGVN* phase) const {
1856
  const Type *t1 = phase->type(in(1));
1857
  if (t1 == Type::TOP) return Type::TOP;
1858
  if (t1->base() != Type::FloatCon) return Type::FLOAT;
1859
  const Type *t2 = phase->type(in(2));
1860
  if (t2 == Type::TOP) return Type::TOP;
1861
  if (t2->base() != Type::FloatCon) return Type::FLOAT;
1862
  const Type *t3 = phase->type(in(3));
1863
  if (t3 == Type::TOP) return Type::TOP;
1864
  if (t3->base() != Type::FloatCon) return Type::FLOAT;
1865
#ifndef __STDC_IEC_559__
1866
  return Type::FLOAT;
1867
#else
1868
  float f1 = t1->getf();
1869
  float f2 = t2->getf();
1870
  float f3 = t3->getf();
1871
  return TypeF::make(fma(f1, f2, f3));
1872
#endif
1873
}
1874

1875
//=============================================================================
1876
//------------------------------hash-------------------------------------------
1877
// Hash function for MulAddS2INode.  Operation is commutative with commutative pairs.
1878
// The hash function must return the same value when edge swapping is performed.
1879
uint MulAddS2INode::hash() const {
1880
  return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode();
1881
}
1882

1883
//------------------------------Rotate Operations ------------------------------
1884

1885
Node* RotateLeftNode::Identity(PhaseGVN* phase) {
1886
  const Type* t1 = phase->type(in(1));
1887
  if (t1 == Type::TOP) {
1888
    return this;
1889
  }
1890
  int count = 0;
1891
  assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1892
  int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1893
  if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1894
    // Rotate by a multiple of 32/64 does nothing
1895
    return in(1);
1896
  }
1897
  return this;
1898
}
1899

1900
const Type* RotateLeftNode::Value(PhaseGVN* phase) const {
1901
  const Type* t1 = phase->type(in(1));
1902
  const Type* t2 = phase->type(in(2));
1903
  // Either input is TOP ==> the result is TOP
1904
  if (t1 == Type::TOP || t2 == Type::TOP) {
1905
    return Type::TOP;
1906
  }
1907

1908
  if (t1->isa_int()) {
1909
    const TypeInt* r1 = t1->is_int();
1910
    const TypeInt* r2 = t2->is_int();
1911

1912
    // Left input is ZERO ==> the result is ZERO.
1913
    if (r1 == TypeInt::ZERO) {
1914
      return TypeInt::ZERO;
1915
    }
1916
    // Rotate by zero does nothing
1917
    if (r2 == TypeInt::ZERO) {
1918
      return r1;
1919
    }
1920
    if (r1->is_con() && r2->is_con()) {
1921
      juint r1_con = (juint)r1->get_con();
1922
      juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
1923
      return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift)));
1924
    }
1925
    return TypeInt::INT;
1926
  } else {
1927
    assert(t1->isa_long(), "Type must be a long");
1928
    const TypeLong* r1 = t1->is_long();
1929
    const TypeInt*  r2 = t2->is_int();
1930

1931
    // Left input is ZERO ==> the result is ZERO.
1932
    if (r1 == TypeLong::ZERO) {
1933
      return TypeLong::ZERO;
1934
    }
1935
    // Rotate by zero does nothing
1936
    if (r2 == TypeInt::ZERO) {
1937
      return r1;
1938
    }
1939
    if (r1->is_con() && r2->is_con()) {
1940
      julong r1_con = (julong)r1->get_con();
1941
      julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
1942
      return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift)));
1943
    }
1944
    return TypeLong::LONG;
1945
  }
1946
}
1947

1948
Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1949
  const Type* t1 = phase->type(in(1));
1950
  const Type* t2 = phase->type(in(2));
1951
  if (t2->isa_int() && t2->is_int()->is_con()) {
1952
    if (t1->isa_int()) {
1953
      int lshift = t2->is_int()->get_con() & 31;
1954
      return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT);
1955
    } else if (t1 != Type::TOP) {
1956
      assert(t1->isa_long(), "Type must be a long");
1957
      int lshift = t2->is_int()->get_con() & 63;
1958
      return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG);
1959
    }
1960
  }
1961
  return nullptr;
1962
}
1963

1964
Node* RotateRightNode::Identity(PhaseGVN* phase) {
1965
  const Type* t1 = phase->type(in(1));
1966
  if (t1 == Type::TOP) {
1967
    return this;
1968
  }
1969
  int count = 0;
1970
  assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1971
  int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1972
  if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1973
    // Rotate by a multiple of 32/64 does nothing
1974
    return in(1);
1975
  }
1976
  return this;
1977
}
1978

1979
const Type* RotateRightNode::Value(PhaseGVN* phase) const {
1980
  const Type* t1 = phase->type(in(1));
1981
  const Type* t2 = phase->type(in(2));
1982
  // Either input is TOP ==> the result is TOP
1983
  if (t1 == Type::TOP || t2 == Type::TOP) {
1984
    return Type::TOP;
1985
  }
1986

1987
  if (t1->isa_int()) {
1988
    const TypeInt* r1 = t1->is_int();
1989
    const TypeInt* r2 = t2->is_int();
1990

1991
    // Left input is ZERO ==> the result is ZERO.
1992
    if (r1 == TypeInt::ZERO) {
1993
      return TypeInt::ZERO;
1994
    }
1995
    // Rotate by zero does nothing
1996
    if (r2 == TypeInt::ZERO) {
1997
      return r1;
1998
    }
1999
    if (r1->is_con() && r2->is_con()) {
2000
      juint r1_con = (juint)r1->get_con();
2001
      juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2002
      return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift)));
2003
    }
2004
    return TypeInt::INT;
2005
  } else {
2006
    assert(t1->isa_long(), "Type must be a long");
2007
    const TypeLong* r1 = t1->is_long();
2008
    const TypeInt*  r2 = t2->is_int();
2009
    // Left input is ZERO ==> the result is ZERO.
2010
    if (r1 == TypeLong::ZERO) {
2011
      return TypeLong::ZERO;
2012
    }
2013
    // Rotate by zero does nothing
2014
    if (r2 == TypeInt::ZERO) {
2015
      return r1;
2016
    }
2017
    if (r1->is_con() && r2->is_con()) {
2018
      julong r1_con = (julong)r1->get_con();
2019
      julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2020
      return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift)));
2021
    }
2022
    return TypeLong::LONG;
2023
  }
2024
}
2025

2026
// Given an expression (AndX shift mask) or (AndX mask shift),
2027
// determine if the AndX must always produce zero, because the
2028
// the shift (x<<N) is bitwise disjoint from the mask #M.
2029
// The X in AndX must be I or L, depending on bt.
2030
// Specifically, the following cases fold to zero,
2031
// when the shift value N is large enough to zero out
2032
// all the set positions of the and-mask M.
2033
//   (AndI (LShiftI _ #N) #M) => #0
2034
//   (AndL (LShiftL _ #N) #M) => #0
2035
//   (AndL (ConvI2L (LShiftI _ #N)) #M) => #0
2036
// The M and N values must satisfy ((-1 << N) & M) == 0.
2037
// Because the optimization might work for a non-constant
2038
// mask M, we check the AndX for both operand orders.
2039
bool MulNode::AndIL_shift_and_mask_is_always_zero(PhaseGVN* phase, Node* shift, Node* mask, BasicType bt, bool check_reverse) {
2040
  if (mask == nullptr || shift == nullptr) {
2041
    return false;
2042
  }
2043
  const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt);
2044
  if (mask_t == nullptr || phase->type(shift)->isa_integer(bt) == nullptr) {
2045
    return false;
2046
  }
2047
  shift = shift->uncast();
2048
  if (shift == nullptr) {
2049
    return false;
2050
  }
2051
  if (phase->type(shift)->isa_integer(bt) == nullptr) {
2052
    return false;
2053
  }
2054
  BasicType shift_bt = bt;
2055
  if (bt == T_LONG && shift->Opcode() == Op_ConvI2L) {
2056
    bt = T_INT;
2057
    Node* val = shift->in(1);
2058
    if (val == nullptr) {
2059
      return false;
2060
    }
2061
    val = val->uncast();
2062
    if (val == nullptr) {
2063
      return false;
2064
    }
2065
    if (val->Opcode() == Op_LShiftI) {
2066
      shift_bt = T_INT;
2067
      shift = val;
2068
      if (phase->type(shift)->isa_integer(bt) == nullptr) {
2069
        return false;
2070
      }
2071
    }
2072
  }
2073
  if (shift->Opcode() != Op_LShift(shift_bt)) {
2074
    if (check_reverse &&
2075
        (mask->Opcode() == Op_LShift(bt) ||
2076
         (bt == T_LONG && mask->Opcode() == Op_ConvI2L))) {
2077
      // try it the other way around
2078
      return AndIL_shift_and_mask_is_always_zero(phase, mask, shift, bt, false);
2079
    }
2080
    return false;
2081
  }
2082
  Node* shift2 = shift->in(2);
2083
  if (shift2 == nullptr) {
2084
    return false;
2085
  }
2086
  const Type* shift2_t = phase->type(shift2);
2087
  if (!shift2_t->isa_int() || !shift2_t->is_int()->is_con()) {
2088
    return false;
2089
  }
2090

2091
  jint shift_con = shift2_t->is_int()->get_con() & ((shift_bt == T_INT ? BitsPerJavaInteger : BitsPerJavaLong) - 1);
2092
  if ((((jlong)1) << shift_con) > mask_t->hi_as_long() && mask_t->lo_as_long() >= 0) {
2093
    return true;
2094
  }
2095

2096
  return false;
2097
}
2098

2099
// Given an expression (AndX (AddX v1 (LShiftX v2 #N)) #M)
2100
// determine if the AndX must always produce (AndX v1 #M),
2101
// because the shift (v2<<N) is bitwise disjoint from the mask #M.
2102
// The X in AndX will be I or L, depending on bt.
2103
// Specifically, the following cases fold,
2104
// when the shift value N is large enough to zero out
2105
// all the set positions of the and-mask M.
2106
//   (AndI (AddI v1 (LShiftI _ #N)) #M) => (AndI v1 #M)
2107
//   (AndL (AddI v1 (LShiftL _ #N)) #M) => (AndL v1 #M)
2108
//   (AndL (AddL v1 (ConvI2L (LShiftI _ #N))) #M) => (AndL v1 #M)
2109
// The M and N values must satisfy ((-1 << N) & M) == 0.
2110
// Because the optimization might work for a non-constant
2111
// mask M, and because the AddX operands can come in either
2112
// order, we check for every operand order.
2113
Node* MulNode::AndIL_add_shift_and_mask(PhaseGVN* phase, BasicType bt) {
2114
  Node* add = in(1);
2115
  Node* mask = in(2);
2116
  if (add == nullptr || mask == nullptr) {
2117
    return nullptr;
2118
  }
2119
  int addidx = 0;
2120
  if (add->Opcode() == Op_Add(bt)) {
2121
    addidx = 1;
2122
  } else if (mask->Opcode() == Op_Add(bt)) {
2123
    mask = add;
2124
    addidx = 2;
2125
    add = in(addidx);
2126
  }
2127
  if (addidx > 0) {
2128
    Node* add1 = add->in(1);
2129
    Node* add2 = add->in(2);
2130
    if (add1 != nullptr && add2 != nullptr) {
2131
      if (AndIL_shift_and_mask_is_always_zero(phase, add1, mask, bt, false)) {
2132
        set_req_X(addidx, add2, phase);
2133
        return this;
2134
      } else if (AndIL_shift_and_mask_is_always_zero(phase, add2, mask, bt, false)) {
2135
        set_req_X(addidx, add1, phase);
2136
        return this;
2137
      }
2138
    }
2139
  }
2140
  return nullptr;
2141
}
2142

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.