2
* Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "gc/shared/barrierSet.hpp"
27
#include "gc/shared/tlab_globals.hpp"
28
#include "opto/arraycopynode.hpp"
29
#include "oops/objArrayKlass.hpp"
30
#include "opto/convertnode.hpp"
31
#include "opto/vectornode.hpp"
32
#include "opto/graphKit.hpp"
33
#include "opto/macro.hpp"
34
#include "opto/runtime.hpp"
35
#include "opto/castnode.hpp"
36
#include "runtime/stubRoutines.hpp"
37
#include "utilities/align.hpp"
38
#include "utilities/powerOfTwo.hpp"
40
void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
41
MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
42
mb->init_req(TypeFunc::Control, *ctrl);
43
mb->init_req(TypeFunc::Memory, *mem);
45
*ctrl = new ProjNode(mb,TypeFunc::Control);
46
transform_later(*ctrl);
47
Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
48
transform_later(mem_proj);
52
Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
53
uint shift = exact_log2(type2aelembytes(elembt));
54
uint header = arrayOopDesc::base_offset_in_bytes(elembt);
55
Node* base = basic_plus_adr(ary, header);
57
// see comment in GraphKit::array_element_address
58
int index_max = max_jint - 1; // array size is max_jint, index is one less
59
const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
60
idx = transform_later( new ConvI2LNode(idx, lidxtype) );
62
Node* scale = new LShiftXNode(idx, intcon(shift));
63
transform_later(scale);
64
return basic_plus_adr(ary, base, scale);
67
Node* PhaseMacroExpand::ConvI2L(Node* offset) {
68
return transform_later(new ConvI2LNode(offset));
71
Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
72
const TypeFunc* call_type, address call_addr,
73
const char* call_name,
74
const TypePtr* adr_type,
75
Node* parm0, Node* parm1,
76
Node* parm2, Node* parm3,
77
Node* parm4, Node* parm5,
78
Node* parm6, Node* parm7) {
79
Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
80
call->init_req(TypeFunc::Control, ctrl);
81
call->init_req(TypeFunc::I_O , top());
82
call->init_req(TypeFunc::Memory , mem);
83
call->init_req(TypeFunc::ReturnAdr, top());
84
call->init_req(TypeFunc::FramePtr, top());
86
// Hook each parm in order. Stop looking at the first null.
87
if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
88
if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
89
if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
90
if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
91
if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
92
if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
93
if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
94
if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
95
/* close each nested if ===> */ } } } } } } } }
96
assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
102
//------------------------------generate_guard---------------------------
103
// Helper function for generating guarded fast-slow graph structures.
104
// The given 'test', if true, guards a slow path. If the test fails
105
// then a fast path can be taken. (We generally hope it fails.)
106
// In all cases, GraphKit::control() is updated to the fast path.
107
// The returned value represents the control for the slow path.
108
// The return value is never 'top'; it is either a valid control
109
// or null if it is obvious that the slow path can never be taken.
110
// Also, if region and the slow control are not null, the slow edge
111
// is appended to the region.
112
Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
113
if ((*ctrl)->is_top()) {
114
// Already short circuited.
117
// Build an if node and its projections.
118
// If test is true we take the slow path, which we assume is uncommon.
119
if (_igvn.type(test) == TypeInt::ZERO) {
120
// The slow branch is never taken. No need to build this guard.
124
IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
125
transform_later(iff);
127
Node* if_slow = new IfTrueNode(iff);
128
transform_later(if_slow);
130
if (region != nullptr) {
131
region->add_req(if_slow);
134
Node* if_fast = new IfFalseNode(iff);
135
transform_later(if_fast);
142
inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
143
return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
146
void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
147
if ((*ctrl)->is_top())
148
return; // already stopped
149
if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
150
return; // index is already adequately typed
151
Node* cmp_lt = new CmpINode(index, intcon(0));
152
transform_later(cmp_lt);
153
Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
154
transform_later(bol_lt);
155
generate_guard(ctrl, bol_lt, region, PROB_MIN);
158
void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
159
if ((*ctrl)->is_top())
160
return; // already stopped
161
bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
162
if (zero_offset && subseq_length->eqv_uncast(array_length))
163
return; // common case of whole-array copy
164
Node* last = subseq_length;
165
if (!zero_offset) { // last += offset
166
last = new AddINode(last, offset);
167
transform_later(last);
169
Node* cmp_lt = new CmpUNode(array_length, last);
170
transform_later(cmp_lt);
171
Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
172
transform_later(bol_lt);
173
generate_guard(ctrl, bol_lt, region, PROB_MIN);
177
// Partial in-lining handling for smaller conjoint/disjoint array copies having
178
// length(in bytes) less than ArrayOperationPartialInlineSize.
179
// if (length <= ArrayOperationPartialInlineSize) {
180
// partial_inlining_block:
182
// vload = LoadVectorMasked src , mask
183
// StoreVectorMasked dst, mask, vload
186
// callstub array_copy
189
// Phi = label partial_inlining_block:mem , label stub_block:mem (filled by caller)
190
// mem = MergeMem (Phi)
191
// control = stub_block
193
// Exit_block and associated phi(memory) are partially initialized for partial_in-lining_block
194
// edges. Remaining edges for exit_block coming from stub_block are connected by the caller
195
// post stub nodes creation.
198
void PhaseMacroExpand::generate_partial_inlining_block(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type,
199
RegionNode** exit_block, Node** result_memory, Node* length,
200
Node* src_start, Node* dst_start, BasicType type) {
201
const TypePtr *src_adr_type = _igvn.type(src_start)->isa_ptr();
202
Node* inline_block = nullptr;
203
Node* stub_block = nullptr;
206
const TypeInt* lty = nullptr;
207
uint shift = exact_log2(type2aelembytes(type));
208
if (length->Opcode() == Op_ConvI2L) {
209
lty = _igvn.type(length->in(1))->isa_int();
211
lty = _igvn.type(length)->isa_int();
213
if (lty && lty->is_con()) {
214
const_len = lty->get_con() << shift;
217
// Return if copy length is greater than partial inline size limit or
218
// target does not supports masked load/stores.
219
int lane_count = ArrayCopyNode::get_partial_inline_vector_lane_count(type, const_len);
220
if ( const_len > ArrayOperationPartialInlineSize ||
221
!Matcher::match_rule_supported_vector(Op_LoadVectorMasked, lane_count, type) ||
222
!Matcher::match_rule_supported_vector(Op_StoreVectorMasked, lane_count, type) ||
223
!Matcher::match_rule_supported_vector(Op_VectorMaskGen, lane_count, type)) {
227
int inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(type);
228
Node* casted_length = new CastLLNode(*ctrl, length, TypeLong::make(0, inline_limit, Type::WidenMin));
229
transform_later(casted_length);
230
Node* copy_bytes = new LShiftXNode(length, intcon(shift));
231
transform_later(copy_bytes);
233
Node* cmp_le = new CmpULNode(copy_bytes, longcon(ArrayOperationPartialInlineSize));
234
transform_later(cmp_le);
235
Node* bol_le = new BoolNode(cmp_le, BoolTest::le);
236
transform_later(bol_le);
237
inline_block = generate_guard(ctrl, bol_le, nullptr, PROB_FAIR);
240
Node* mask_gen = VectorMaskGenNode::make(casted_length, type);
241
transform_later(mask_gen);
243
unsigned vec_size = lane_count * type2aelembytes(type);
244
if (C->max_vector_size() < vec_size) {
245
C->set_max_vector_size(vec_size);
248
const TypeVect * vt = TypeVect::make(type, lane_count);
249
Node* mm = (*mem)->memory_at(C->get_alias_index(src_adr_type));
250
Node* masked_load = new LoadVectorMaskedNode(inline_block, mm, src_start,
251
src_adr_type, vt, mask_gen);
252
transform_later(masked_load);
254
mm = (*mem)->memory_at(C->get_alias_index(adr_type));
255
Node* masked_store = new StoreVectorMaskedNode(inline_block, mm, dst_start,
256
masked_load, adr_type, mask_gen);
257
transform_later(masked_store);
259
// Convergence region for inline_block and stub_block.
260
*exit_block = new RegionNode(3);
261
transform_later(*exit_block);
262
(*exit_block)->init_req(1, inline_block);
263
*result_memory = new PhiNode(*exit_block, Type::MEMORY, adr_type);
264
transform_later(*result_memory);
265
(*result_memory)->init_req(1, masked_store);
271
Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
272
if ((*ctrl)->is_top()) return nullptr;
274
if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
275
return nullptr; // index is already adequately typed
276
Node* cmp_le = new CmpINode(index, intcon(0));
277
transform_later(cmp_le);
278
BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
279
Node* bol_le = new BoolNode(cmp_le, le_or_eq);
280
transform_later(bol_le);
281
Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN);
286
void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
287
transform_later(call);
289
*ctrl = new ProjNode(call,TypeFunc::Control);
290
transform_later(*ctrl);
291
Node* newmem = new ProjNode(call, TypeFunc::Memory);
292
transform_later(newmem);
294
uint alias_idx = C->get_alias_index(adr_type);
295
if (alias_idx != Compile::AliasIdxBot) {
296
*mem = MergeMemNode::make(*mem);
297
(*mem)->set_memory_at(alias_idx, newmem);
299
*mem = MergeMemNode::make(newmem);
301
transform_later(*mem);
304
address PhaseMacroExpand::basictype2arraycopy(BasicType t,
309
bool dest_uninitialized) {
310
const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset);
311
const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);
313
bool aligned = false;
314
bool disjoint = disjoint_bases;
316
// if the offsets are the same, we can treat the memory regions as
317
// disjoint, because either the memory regions are in different arrays,
318
// or they are identical (which we can treat as disjoint.) We can also
319
// treat a copy with a destination index less that the source index
320
// as disjoint since a low->high copy will work correctly in this case.
321
if (src_offset_inttype != nullptr && src_offset_inttype->is_con() &&
322
dest_offset_inttype != nullptr && dest_offset_inttype->is_con()) {
323
// both indices are constants
324
int s_offs = src_offset_inttype->get_con();
325
int d_offs = dest_offset_inttype->get_con();
326
int element_size = type2aelembytes(t);
327
aligned = ((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
328
((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0);
329
if (s_offs >= d_offs) disjoint = true;
330
} else if (src_offset == dest_offset && src_offset != nullptr) {
331
// This can occur if the offsets are identical non-constants.
335
return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
338
#define XTOP LP64_ONLY(COMMA top())
340
// Generate an optimized call to arraycopy.
341
// Caller must guard against non-arrays.
342
// Caller must determine a common array basic-type for both arrays.
343
// Caller must validate offsets against array bounds.
344
// The slow_region has already collected guard failure paths
345
// (such as out of bounds length or non-conformable array types).
346
// The generated code has this shape, in general:
348
// if (length == 0) return // via zero_path
350
// if (types unknown) {
351
// slowval = call generic copy loop
352
// if (slowval == 0) return // via checked_path
353
// } else if (indexes in bounds) {
354
// if ((is object array) && !(array type check)) {
355
// slowval = call checked copy loop
356
// if (slowval == 0) return // via checked_path
358
// call bulk copy loop
359
// return // via fast_path
362
// // adjust params for remaining work:
363
// if (slowval != -1) {
364
// n = -1^slowval; src_offset += n; dest_offset += n; length -= n
367
// call slow arraycopy(src, src_offset, dest, dest_offset, length)
368
// return // via slow_call_path
370
// This routine is used from several intrinsics: System.arraycopy,
371
// Object.clone (the array subcase), and Arrays.copyOf[Range].
373
Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
374
Node** ctrl, MergeMemNode* mem, Node** io,
375
const TypePtr* adr_type,
376
BasicType basic_elem_type,
377
Node* src, Node* src_offset,
378
Node* dest, Node* dest_offset,
381
bool length_never_negative,
382
RegionNode* slow_region) {
383
if (slow_region == nullptr) {
384
slow_region = new RegionNode(1);
385
transform_later(slow_region);
388
Node* original_dest = dest;
389
bool dest_needs_zeroing = false;
390
bool acopy_to_uninitialized = false;
392
// See if this is the initialization of a newly-allocated array.
393
// If so, we will take responsibility here for initializing it to zero.
394
// (Note: Because tightly_coupled_allocation performs checks on the
395
// out-edges of the dest, we need to avoid making derived pointers
396
// from it until we have checked its uses.)
397
if (ReduceBulkZeroing
398
&& !(UseTLAB && ZeroTLAB) // pointless if already zeroed
399
&& basic_elem_type != T_CONFLICT // avoid corner case
400
&& !src->eqv_uncast(dest)
402
&& _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) {
403
assert(ac->is_alloc_tightly_coupled(), "sanity");
404
// acopy to uninitialized tightly coupled allocations
405
// needs zeroing outside the copy range
406
// and the acopy itself will be to uninitialized memory
407
acopy_to_uninitialized = true;
408
if (alloc->maybe_set_complete(&_igvn)) {
409
// "You break it, you buy it."
410
InitializeNode* init = alloc->initialization();
411
assert(init->is_complete(), "we just did this");
412
init->set_complete_with_arraycopy();
413
assert(dest->is_CheckCastPP(), "sanity");
414
assert(dest->in(0)->in(0) == init, "dest pinned");
415
adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
416
// From this point on, every exit path is responsible for
417
// initializing any non-copied parts of the object to zero.
418
// Also, if this flag is set we make sure that arraycopy interacts properly
419
// with G1, eliding pre-barriers. See CR 6627983.
420
dest_needs_zeroing = true;
422
// dest_need_zeroing = false;
425
// No zeroing elimination needed here.
427
acopy_to_uninitialized = false;
428
//original_dest = dest;
429
//dest_needs_zeroing = false;
432
uint alias_idx = C->get_alias_index(adr_type);
434
// Results are placed here:
435
enum { fast_path = 1, // normal void-returning assembly stub
436
checked_path = 2, // special assembly stub with cleanup
437
slow_call_path = 3, // something went wrong; call the VM
438
zero_path = 4, // bypass when length of copy is zero
439
bcopy_path = 5, // copy primitive array by 64-bit blocks
442
RegionNode* result_region = new RegionNode(PATH_LIMIT);
443
PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO);
444
PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
445
assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
446
transform_later(result_region);
447
transform_later(result_i_o);
448
transform_later(result_memory);
450
// The slow_control path:
452
Node* slow_i_o = *io;
453
Node* slow_mem = mem->memory_at(alias_idx);
454
DEBUG_ONLY(slow_control = (Node*) badAddress);
456
// Checked control path:
457
Node* checked_control = top();
458
Node* checked_mem = nullptr;
459
Node* checked_i_o = nullptr;
460
Node* checked_value = nullptr;
462
if (basic_elem_type == T_CONFLICT) {
463
assert(!dest_needs_zeroing, "");
464
Node* cv = generate_generic_arraycopy(ctrl, &mem,
466
src, src_offset, dest, dest_offset,
467
copy_length, acopy_to_uninitialized);
468
if (cv == nullptr) cv = intcon(-1); // failure (no stub available)
469
checked_control = *ctrl;
471
checked_mem = mem->memory_at(alias_idx);
476
Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
477
if (not_pos != nullptr) {
478
Node* local_ctrl = not_pos, *local_io = *io;
479
MergeMemNode* local_mem = MergeMemNode::make(mem);
480
transform_later(local_mem);
482
// (6) length must not be negative.
483
if (!length_never_negative) {
484
generate_negative_guard(&local_ctrl, copy_length, slow_region);
488
if (dest_needs_zeroing) {
489
assert(!local_ctrl->is_top(), "no ctrl?");
490
Node* dest_length = alloc->in(AllocateNode::ALength);
491
if (copy_length->eqv_uncast(dest_length)
492
|| _igvn.find_int_con(dest_length, 1) <= 0) {
493
// There is no zeroing to do. No need for a secondary raw memory barrier.
495
// Clear the whole thing since there are no source elements to copy.
496
generate_clear_array(local_ctrl, local_mem,
497
adr_type, dest, basic_elem_type,
499
alloc->in(AllocateNode::AllocSize));
500
// Use a secondary InitializeNode as raw memory barrier.
501
// Currently it is needed only on this path since other
502
// paths have stub or runtime calls as raw memory barriers.
503
MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
504
Compile::AliasIdxRaw,
507
mb->set_req(TypeFunc::Control,local_ctrl);
508
mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
509
local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
510
local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
512
InitializeNode* init = mb->as_Initialize();
513
init->set_complete(&_igvn); // (there is no corresponding AllocateNode)
517
// Present the results of the fast call.
518
result_region->init_req(zero_path, local_ctrl);
519
result_i_o ->init_req(zero_path, local_io);
520
result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
523
if (!(*ctrl)->is_top() && dest_needs_zeroing) {
524
// We have to initialize the *uncopied* part of the array to zero.
525
// The copy destination is the slice dest[off..off+len]. The other slices
526
// are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
527
Node* dest_size = alloc->in(AllocateNode::AllocSize);
528
Node* dest_length = alloc->in(AllocateNode::ALength);
529
Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length));
531
// If there is a head section that needs zeroing, do it now.
532
if (_igvn.find_int_con(dest_offset, -1) != 0) {
533
generate_clear_array(*ctrl, mem,
534
adr_type, dest, basic_elem_type,
535
intcon(0), dest_offset,
539
// Next, perform a dynamic check on the tail length.
540
// It is often zero, and we can win big if we prove this.
541
// There are two wins: Avoid generating the ClearArray
542
// with its attendant messy index arithmetic, and upgrade
543
// the copy to a more hardware-friendly word size of 64 bits.
544
Node* tail_ctl = nullptr;
545
if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
546
Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) );
547
Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
548
tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr);
549
assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome");
552
// At this point, let's assume there is no tail.
553
if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) {
554
// There is no tail. Try an upgrade to a 64-bit copy.
557
Node* local_ctrl = *ctrl, *local_io = *io;
558
MergeMemNode* local_mem = MergeMemNode::make(mem);
559
transform_later(local_mem);
561
didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
562
adr_type, basic_elem_type, alloc,
563
src, src_offset, dest, dest_offset,
564
dest_size, acopy_to_uninitialized);
566
// Present the results of the block-copying fast call.
567
result_region->init_req(bcopy_path, local_ctrl);
568
result_i_o ->init_req(bcopy_path, local_io);
569
result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
573
*ctrl = top(); // no regular fast path
577
// Clear the tail, if any.
578
if (tail_ctl != nullptr) {
579
Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl;
581
if (notail_ctl == nullptr) {
582
generate_clear_array(*ctrl, mem,
583
adr_type, dest, basic_elem_type,
587
// Make a local merge.
588
Node* done_ctl = transform_later(new RegionNode(3));
589
Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
590
done_ctl->init_req(1, notail_ctl);
591
done_mem->init_req(1, mem->memory_at(alias_idx));
592
generate_clear_array(*ctrl, mem,
593
adr_type, dest, basic_elem_type,
596
done_ctl->init_req(2, *ctrl);
597
done_mem->init_req(2, mem->memory_at(alias_idx));
599
mem->set_memory_at(alias_idx, done_mem);
604
BasicType copy_type = basic_elem_type;
605
assert(basic_elem_type != T_ARRAY, "caller must fix this");
606
if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
607
// If src and dest have compatible element types, we can copy bits.
608
// Types S[] and D[] are compatible if D is a supertype of S.
610
// If they are not, we will use checked_oop_disjoint_arraycopy,
611
// which performs a fast optimistic per-oop check, and backs off
612
// further to JVM_ArrayCopy on the first per-oop check that fails.
613
// (Actually, we don't move raw bits only; the GC requires card marks.)
615
// We don't need a subtype check for validated copies and Object[].clone()
616
bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() ||
617
ac->is_copyofrange_validated() || ac->is_clone_oop_array();
618
if (!skip_subtype_check) {
619
// Get the klass* for both src and dest
620
Node* src_klass = ac->in(ArrayCopyNode::SrcKlass);
621
Node* dest_klass = ac->in(ArrayCopyNode::DestKlass);
623
assert(src_klass != nullptr && dest_klass != nullptr, "should have klasses");
625
// Generate the subtype check.
626
// This might fold up statically, or then again it might not.
628
// Non-static example: Copying List<String>.elements to a new String[].
629
// The backing store for a List<String> is always an Object[],
630
// but its elements are always type String, if the generic types
631
// are correct at the source level.
633
// Test S[] against D[], not S against D, because (probably)
634
// the secondary supertype cache is less busy for S[] than S.
635
// This usually only matters when D is an interface.
636
Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, _igvn, nullptr, -1);
637
// Plug failing path into checked_oop_disjoint_arraycopy
638
if (not_subtype_ctrl != top()) {
639
Node* local_ctrl = not_subtype_ctrl;
640
MergeMemNode* local_mem = MergeMemNode::make(mem);
641
transform_later(local_mem);
643
// (At this point we can assume disjoint_bases, since types differ.)
644
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
645
Node* p1 = basic_plus_adr(dest_klass, ek_offset);
646
Node* n1 = LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
647
Node* dest_elem_klass = transform_later(n1);
648
Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
651
src, src_offset, dest, dest_offset,
652
ConvI2X(copy_length), acopy_to_uninitialized);
653
if (cv == nullptr) cv = intcon(-1); // failure (no stub available)
654
checked_control = local_ctrl;
656
checked_mem = local_mem->memory_at(alias_idx);
660
// At this point we know we do not need type checks on oop stores.
662
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
663
if (!bs->array_copy_requires_gc_barriers(alloc != nullptr, copy_type, false, false, BarrierSetC2::Expansion)) {
664
// If we do not need gc barriers, copy using the jint or jlong stub.
665
copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
666
assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
671
bool is_partial_array_copy = false;
672
if (!(*ctrl)->is_top()) {
673
// Generate the fast path, if possible.
674
Node* local_ctrl = *ctrl;
675
MergeMemNode* local_mem = MergeMemNode::make(mem);
676
transform_later(local_mem);
677
is_partial_array_copy = generate_unchecked_arraycopy(&local_ctrl, &local_mem,
678
adr_type, copy_type, disjoint_bases,
679
src, src_offset, dest, dest_offset,
680
ConvI2X(copy_length), acopy_to_uninitialized);
682
// Present the results of the fast call.
683
result_region->init_req(fast_path, local_ctrl);
684
result_i_o ->init_req(fast_path, *io);
685
result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
688
// Here are all the slow paths up to this point, in one bundle:
689
assert(slow_region != nullptr, "allocated on entry");
690
slow_control = slow_region;
691
DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
693
*ctrl = checked_control;
694
if (!(*ctrl)->is_top()) {
695
// Clean up after the checked call.
696
// The returned value is either 0 or -1^K,
697
// where K = number of partially transferred array elements.
698
Node* cmp = new CmpINode(checked_value, intcon(0));
699
transform_later(cmp);
700
Node* bol = new BoolNode(cmp, BoolTest::eq);
701
transform_later(bol);
702
IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
703
transform_later(iff);
705
// If it is 0, we are done, so transfer to the end.
706
Node* checks_done = new IfTrueNode(iff);
707
transform_later(checks_done);
708
result_region->init_req(checked_path, checks_done);
709
result_i_o ->init_req(checked_path, checked_i_o);
710
result_memory->init_req(checked_path, checked_mem);
712
// If it is not zero, merge into the slow call.
713
*ctrl = new IfFalseNode(iff);
714
transform_later(*ctrl);
715
RegionNode* slow_reg2 = new RegionNode(3);
716
PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
717
PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
718
transform_later(slow_reg2);
719
transform_later(slow_i_o2);
720
transform_later(slow_mem2);
721
slow_reg2 ->init_req(1, slow_control);
722
slow_i_o2 ->init_req(1, slow_i_o);
723
slow_mem2 ->init_req(1, slow_mem);
724
slow_reg2 ->init_req(2, *ctrl);
725
slow_i_o2 ->init_req(2, checked_i_o);
726
slow_mem2 ->init_req(2, checked_mem);
728
slow_control = slow_reg2;
729
slow_i_o = slow_i_o2;
730
slow_mem = slow_mem2;
732
if (alloc != nullptr) {
733
// We'll restart from the very beginning, after zeroing the whole thing.
734
// This can cause double writes, but that's OK since dest is brand new.
735
// So we ignore the low 31 bits of the value returned from the stub.
737
// We must continue the copy exactly where it failed, or else
738
// another thread might see the wrong number of writes to dest.
739
Node* checked_offset = new XorINode(checked_value, intcon(-1));
740
Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT);
741
transform_later(checked_offset);
742
transform_later(slow_offset);
743
slow_offset->init_req(1, intcon(0));
744
slow_offset->init_req(2, checked_offset);
746
// Adjust the arguments by the conditionally incoming offset.
747
Node* src_off_plus = new AddINode(src_offset, slow_offset);
748
transform_later(src_off_plus);
749
Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
750
transform_later(dest_off_plus);
751
Node* length_minus = new SubINode(copy_length, slow_offset);
752
transform_later(length_minus);
754
// Tweak the node variables to adjust the code produced below:
755
src_offset = src_off_plus;
756
dest_offset = dest_off_plus;
757
copy_length = length_minus;
760
*ctrl = slow_control;
761
if (!(*ctrl)->is_top()) {
762
Node* local_ctrl = *ctrl, *local_io = slow_i_o;
763
MergeMemNode* local_mem = MergeMemNode::make(mem);
764
transform_later(local_mem);
766
// Generate the slow path, if needed.
767
local_mem->set_memory_at(alias_idx, slow_mem);
769
if (dest_needs_zeroing) {
770
generate_clear_array(local_ctrl, local_mem,
771
adr_type, dest, basic_elem_type,
773
alloc->in(AllocateNode::AllocSize));
776
local_mem = generate_slow_arraycopy(ac,
777
&local_ctrl, local_mem, &local_io,
779
src, src_offset, dest, dest_offset,
780
copy_length, /*dest_uninitialized*/false);
782
result_region->init_req(slow_call_path, local_ctrl);
783
result_i_o ->init_req(slow_call_path, local_io);
784
result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
786
ShouldNotReachHere(); // no call to generate_slow_arraycopy:
787
// projections were not extracted
790
// Remove unused edges.
791
for (uint i = 1; i < result_region->req(); i++) {
792
if (result_region->in(i) == nullptr) {
793
result_region->init_req(i, top());
797
// Finished; return the combined state.
798
*ctrl = result_region;
800
mem->set_memory_at(alias_idx, result_memory);
802
// mem no longer guaranteed to stay a MergeMemNode
804
DEBUG_ONLY(mem = nullptr);
806
// The memory edges above are precise in order to model effects around
807
// array copies accurately to allow value numbering of field loads around
808
// arraycopy. Such field loads, both before and after, are common in Java
809
// collections and similar classes involving header/array data structures.
811
// But with low number of register or when some registers are used or killed
812
// by arraycopy calls it causes registers spilling on stack. See 6544710.
813
// The next memory barrier is added to avoid it. If the arraycopy can be
814
// optimized away (which it can, sometimes) then we can manually remove
817
// Do not let reads from the cloned object float above the arraycopy.
818
if (alloc != nullptr && !alloc->initialization()->does_not_escape()) {
819
// Do not let stores that initialize this object be reordered with
820
// a subsequent store that would make this object accessible by
822
insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
824
insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
827
if (is_partial_array_copy) {
828
assert((*ctrl)->is_Proj(), "MemBar control projection");
829
assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node");
830
(*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy();
833
_igvn.replace_node(_callprojs.fallthrough_memproj, out_mem);
834
if (_callprojs.fallthrough_ioproj != nullptr) {
835
_igvn.replace_node(_callprojs.fallthrough_ioproj, *io);
837
_igvn.replace_node(_callprojs.fallthrough_catchproj, *ctrl);
840
const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
841
if (dest_t->is_known_instance() && !is_partial_array_copy) {
842
ArrayCopyNode* ac = nullptr;
843
assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
844
assert(ac == nullptr, "no arraycopy anymore");
851
// Helper for initialization of arrays, creating a ClearArray.
852
// It writes zero bits in [start..end), within the body of an array object.
853
// The memory effects are all chained onto the 'adr_type' alias category.
855
// Since the object is otherwise uninitialized, we are free
856
// to put a little "slop" around the edges of the cleared area,
857
// as long as it does not go back into the array's header,
858
// or beyond the array end within the heap.
860
// The lower edge can be rounded down to the nearest jint and the
861
// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
864
// adr_type memory slice where writes are generated
865
// dest oop of the destination array
866
// basic_elem_type element type of the destination
867
// slice_idx array index of first element to store
868
// slice_len number of elements to store (or null)
869
// dest_size total size in bytes of the array object
871
// Exactly one of slice_len or dest_size must be non-null.
872
// If dest_size is non-null, zeroing extends to the end of the object.
873
// If slice_len is non-null, the slice_idx value must be a constant.
874
void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
875
const TypePtr* adr_type,
877
BasicType basic_elem_type,
881
// one or the other but not both of slice_len and dest_size:
882
assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, "");
883
if (slice_len == nullptr) slice_len = top();
884
if (dest_size == nullptr) dest_size = top();
886
uint alias_idx = C->get_alias_index(adr_type);
888
// operate on this memory slice:
889
Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
891
// scaling and rounding of indexes:
892
int scale = exact_log2(type2aelembytes(basic_elem_type));
893
int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
894
int clear_low = (-1 << scale) & (BytesPerInt - 1);
895
int bump_bit = (-1 << scale) & BytesPerInt;
897
// determine constant starts and ends
898
const intptr_t BIG_NEG = -128;
899
assert(BIG_NEG + 2*abase < 0, "neg enough");
900
intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
901
intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
902
if (slice_len_con == 0) {
903
return; // nothing to do here
905
intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
906
intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1);
907
if (slice_idx_con >= 0 && slice_len_con >= 0) {
908
assert(end_con < 0, "not two cons");
909
end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
913
if (start_con >= 0 && end_con >= 0) {
914
// Constant start and end. Simple.
915
mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
916
start_con, end_con, &_igvn);
917
} else if (start_con >= 0 && dest_size != top()) {
918
// Constant start, pre-rounded end after the tail of the array.
919
Node* end = dest_size;
920
mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
921
start_con, end, &_igvn);
922
} else if (start_con >= 0 && slice_len != top()) {
923
// Constant start, non-constant end. End needs rounding up.
924
// End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
925
intptr_t end_base = abase + (slice_idx_con << scale);
926
int end_round = (-1 << scale) & (BytesPerLong - 1);
927
Node* end = ConvI2X(slice_len);
929
end = transform_later(new LShiftXNode(end, intcon(scale) ));
930
end_base += end_round;
931
end = transform_later(new AddXNode(end, MakeConX(end_base)) );
932
end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
933
mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
934
start_con, end, &_igvn);
935
} else if (start_con < 0 && dest_size != top()) {
936
// Non-constant start, pre-rounded end after the tail of the array.
937
// This is almost certainly a "round-to-end" operation.
938
Node* start = slice_idx;
939
start = ConvI2X(start);
941
start = transform_later(new LShiftXNode( start, intcon(scale) ));
942
start = transform_later(new AddXNode(start, MakeConX(abase)) );
943
if ((bump_bit | clear_low) != 0) {
944
int to_clear = (bump_bit | clear_low);
945
// Align up mod 8, then store a jint zero unconditionally
946
// just before the mod-8 boundary.
947
if (((abase + bump_bit) & ~to_clear) - bump_bit
948
< arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
950
assert((abase & to_clear) == 0, "array base must be long-aligned");
952
// Bump 'start' up to (or past) the next jint boundary:
953
start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
954
assert((abase & clear_low) == 0, "array base must be int-aligned");
956
// Round bumped 'start' down to jlong boundary in body of array.
957
start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
959
// Store a zero to the immediately preceding jint:
960
Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
961
Node* p1 = basic_plus_adr(dest, x1);
962
mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
963
mem = transform_later(mem);
966
Node* end = dest_size; // pre-rounded
967
mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
970
// Non-constant start, unrounded non-constant end.
971
// (Nobody zeroes a random midsection of an array using this routine.)
972
ShouldNotReachHere(); // fix caller
976
merge_mem->set_memory_at(alias_idx, mem);
979
bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
980
const TypePtr* adr_type,
981
BasicType basic_elem_type,
983
Node* src, Node* src_offset,
984
Node* dest, Node* dest_offset,
985
Node* dest_size, bool dest_uninitialized) {
986
// See if there is an advantage from block transfer.
987
int scale = exact_log2(type2aelembytes(basic_elem_type));
988
if (scale >= LogBytesPerLong)
989
return false; // it is already a block transfer
991
// Look at the alignment of the starting offsets.
992
int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
994
intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1);
995
intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
996
if (src_off_con < 0 || dest_off_con < 0) {
997
// At present, we can only understand constants.
1001
intptr_t src_off = abase + (src_off_con << scale);
1002
intptr_t dest_off = abase + (dest_off_con << scale);
1004
if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
1005
// Non-aligned; too bad.
1006
// One more chance: Pick off an initial 32-bit word.
1007
// This is a common case, since abase can be odd mod 8.
1008
if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
1009
((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
1010
Node* sptr = basic_plus_adr(src, src_off);
1011
Node* dptr = basic_plus_adr(dest, dest_off);
1012
const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr();
1013
assert(s_adr_type->isa_aryptr(), "impossible slice");
1014
uint s_alias_idx = C->get_alias_index(s_adr_type);
1015
uint d_alias_idx = C->get_alias_index(adr_type);
1016
bool is_mismatched = (basic_elem_type != T_INT);
1017
Node* sval = transform_later(
1018
LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type,
1019
TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
1020
false /*require_atomic_access*/, false /*unaligned*/, is_mismatched));
1021
Node* st = transform_later(
1022
StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type,
1023
sval, T_INT, MemNode::unordered));
1024
if (is_mismatched) {
1025
st->as_Store()->set_mismatched_access();
1027
(*mem)->set_memory_at(d_alias_idx, st);
1028
src_off += BytesPerInt;
1029
dest_off += BytesPerInt;
1034
assert(src_off % BytesPerLong == 0, "");
1035
assert(dest_off % BytesPerLong == 0, "");
1037
// Do this copy by giant steps.
1038
Node* sptr = basic_plus_adr(src, src_off);
1039
Node* dptr = basic_plus_adr(dest, dest_off);
1040
Node* countx = dest_size;
1041
countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
1042
countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
1044
bool disjoint_bases = true; // since alloc isn't null
1045
generate_unchecked_arraycopy(ctrl, mem,
1046
adr_type, T_LONG, disjoint_bases,
1047
sptr, nullptr, dptr, nullptr, countx, dest_uninitialized);
1052
// Helper function; generates code for the slow case.
1053
// We make a call to a runtime method which emulates the native method,
1054
// but without the native wrapper overhead.
1055
MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
1056
Node** ctrl, Node* mem, Node** io,
1057
const TypePtr* adr_type,
1058
Node* src, Node* src_offset,
1059
Node* dest, Node* dest_offset,
1060
Node* copy_length, bool dest_uninitialized) {
1061
assert(!dest_uninitialized, "Invariant");
1063
const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
1064
CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
1065
"slow_arraycopy", TypePtr::BOTTOM);
1067
call->init_req(TypeFunc::Control, *ctrl);
1068
call->init_req(TypeFunc::I_O , *io);
1069
call->init_req(TypeFunc::Memory , mem);
1070
call->init_req(TypeFunc::ReturnAdr, top());
1071
call->init_req(TypeFunc::FramePtr, top());
1072
call->init_req(TypeFunc::Parms+0, src);
1073
call->init_req(TypeFunc::Parms+1, src_offset);
1074
call->init_req(TypeFunc::Parms+2, dest);
1075
call->init_req(TypeFunc::Parms+3, dest_offset);
1076
call->init_req(TypeFunc::Parms+4, copy_length);
1077
call->copy_call_debug_info(&_igvn, ac);
1079
call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
1080
_igvn.replace_node(ac, call);
1081
transform_later(call);
1083
call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1084
*ctrl = _callprojs.fallthrough_catchproj->clone();
1085
transform_later(*ctrl);
1087
Node* m = _callprojs.fallthrough_memproj->clone();
1090
uint alias_idx = C->get_alias_index(adr_type);
1091
MergeMemNode* out_mem;
1092
if (alias_idx != Compile::AliasIdxBot) {
1093
out_mem = MergeMemNode::make(mem);
1094
out_mem->set_memory_at(alias_idx, m);
1096
out_mem = MergeMemNode::make(m);
1098
transform_later(out_mem);
1100
// When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj
1101
// could be null. Skip clone and update null fallthrough_ioproj.
1102
if (_callprojs.fallthrough_ioproj != nullptr) {
1103
*io = _callprojs.fallthrough_ioproj->clone();
1104
transform_later(*io);
1112
// Helper function; generates code for cases requiring runtime checks.
1113
Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
1114
const TypePtr* adr_type,
1115
Node* dest_elem_klass,
1116
Node* src, Node* src_offset,
1117
Node* dest, Node* dest_offset,
1118
Node* copy_length, bool dest_uninitialized) {
1119
if ((*ctrl)->is_top()) return nullptr;
1121
address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1122
if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path.
1126
// Pick out the parameters required to perform a store-check
1127
// for the target array. This is an optimistic check. It will
1128
// look in each non-null element's class, at the desired klass's
1129
// super_check_offset, for the desired klass.
1130
int sco_offset = in_bytes(Klass::super_check_offset_offset());
1131
Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
1132
Node* n3 = new LoadINode(nullptr, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
1133
Node* check_offset = ConvI2X(transform_later(n3));
1134
Node* check_value = dest_elem_klass;
1136
Node* src_start = array_element_address(src, src_offset, T_OBJECT);
1137
Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
1139
const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
1140
Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
1141
src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
1143
finish_arraycopy_call(call, ctrl, mem, adr_type);
1145
Node* proj = new ProjNode(call, TypeFunc::Parms);
1146
transform_later(proj);
1151
// Helper function; generates code for cases requiring runtime checks.
1152
Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
1153
const TypePtr* adr_type,
1154
Node* src, Node* src_offset,
1155
Node* dest, Node* dest_offset,
1156
Node* copy_length, bool dest_uninitialized) {
1157
if ((*ctrl)->is_top()) return nullptr;
1158
assert(!dest_uninitialized, "Invariant");
1160
address copyfunc_addr = StubRoutines::generic_arraycopy();
1161
if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path.
1165
const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
1166
Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
1167
src, src_offset, dest, dest_offset, copy_length);
1169
finish_arraycopy_call(call, ctrl, mem, adr_type);
1171
Node* proj = new ProjNode(call, TypeFunc::Parms);
1172
transform_later(proj);
1177
// Helper function; generates the fast out-of-line call to an arraycopy stub.
1178
bool PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
1179
const TypePtr* adr_type,
1180
BasicType basic_elem_type,
1181
bool disjoint_bases,
1182
Node* src, Node* src_offset,
1183
Node* dest, Node* dest_offset,
1184
Node* copy_length, bool dest_uninitialized) {
1185
if ((*ctrl)->is_top()) return false;
1187
Node* src_start = src;
1188
Node* dest_start = dest;
1189
if (src_offset != nullptr || dest_offset != nullptr) {
1190
src_start = array_element_address(src, src_offset, basic_elem_type);
1191
dest_start = array_element_address(dest, dest_offset, basic_elem_type);
1194
// Figure out which arraycopy runtime method to call.
1195
const char* copyfunc_name = "arraycopy";
1196
address copyfunc_addr =
1197
basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
1198
disjoint_bases, copyfunc_name, dest_uninitialized);
1200
Node* result_memory = nullptr;
1201
RegionNode* exit_block = nullptr;
1202
if (ArrayOperationPartialInlineSize > 0 && is_subword_type(basic_elem_type) &&
1203
Matcher::vector_width_in_bytes(basic_elem_type) >= 16) {
1204
generate_partial_inlining_block(ctrl, mem, adr_type, &exit_block, &result_memory,
1205
copy_length, src_start, dest_start, basic_elem_type);
1208
const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1209
Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
1210
src_start, dest_start, copy_length XTOP);
1212
finish_arraycopy_call(call, ctrl, mem, adr_type);
1214
// Connecting remaining edges for exit_block coming from stub_block.
1216
exit_block->init_req(2, *ctrl);
1218
// Memory edge corresponding to stub_region.
1219
result_memory->init_req(2, *mem);
1221
uint alias_idx = C->get_alias_index(adr_type);
1222
if (alias_idx != Compile::AliasIdxBot) {
1223
*mem = MergeMemNode::make(*mem);
1224
(*mem)->set_memory_at(alias_idx, result_memory);
1226
*mem = MergeMemNode::make(result_memory);
1228
transform_later(*mem);
1237
void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1238
Node* ctrl = ac->in(TypeFunc::Control);
1239
Node* io = ac->in(TypeFunc::I_O);
1240
Node* src = ac->in(ArrayCopyNode::Src);
1241
Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1242
Node* dest = ac->in(ArrayCopyNode::Dest);
1243
Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1244
Node* length = ac->in(ArrayCopyNode::Length);
1245
MergeMemNode* merge_mem = nullptr;
1247
if (ac->is_clonebasic()) {
1248
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1249
bs->clone_at_expansion(this, ac);
1251
} else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) {
1252
Node* mem = ac->in(TypeFunc::Memory);
1253
merge_mem = MergeMemNode::make(mem);
1254
transform_later(merge_mem);
1256
AllocateArrayNode* alloc = nullptr;
1257
if (ac->is_alloc_tightly_coupled()) {
1258
alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1259
assert(alloc != nullptr, "expect alloc");
1262
const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1263
if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1264
adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1266
generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1268
src, src_offset, dest, dest_offset, length,
1269
true, ac->has_negative_length_guard());
1274
AllocateArrayNode* alloc = nullptr;
1275
if (ac->is_alloc_tightly_coupled()) {
1276
alloc = AllocateArrayNode::Ideal_array_allocation(dest);
1277
assert(alloc != nullptr, "expect alloc");
1280
assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1282
// Compile time checks. If any of these checks cannot be verified at compile time,
1283
// we do not make a fast path for this call. Instead, we let the call remain as it
1284
// is. The checks we choose to mandate at compile time are:
1286
// (1) src and dest are arrays.
1287
const Type* src_type = src->Value(&_igvn);
1288
const Type* dest_type = dest->Value(&_igvn);
1289
const TypeAryPtr* top_src = src_type->isa_aryptr();
1290
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1292
BasicType src_elem = T_CONFLICT;
1293
BasicType dest_elem = T_CONFLICT;
1295
if (top_src != nullptr && top_src->elem() != Type::BOTTOM) {
1296
src_elem = top_src->elem()->array_element_basic_type();
1298
if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) {
1299
dest_elem = top_dest->elem()->array_element_basic_type();
1301
if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
1302
if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
1304
if (ac->is_arraycopy_validated() &&
1305
dest_elem != T_CONFLICT &&
1306
src_elem == T_CONFLICT) {
1307
src_elem = dest_elem;
1310
if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1311
// Conservatively insert a memory barrier on all memory slices.
1312
// Do not let writes into the source float below the arraycopy.
1314
Node* mem = ac->in(TypeFunc::Memory);
1315
insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1317
merge_mem = MergeMemNode::make(mem);
1318
transform_later(merge_mem);
1321
// Call StubRoutines::generic_arraycopy stub.
1322
Node* mem = generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io,
1323
TypeRawPtr::BOTTOM, T_CONFLICT,
1324
src, src_offset, dest, dest_offset, length,
1325
// If a negative length guard was generated for the ArrayCopyNode,
1326
// the length of the array can never be negative.
1327
false, ac->has_negative_length_guard());
1331
assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1333
// (2) src and dest arrays must have elements of the same BasicType
1334
// Figure out the size and type of the elements we will be copying.
1335
if (src_elem != dest_elem || dest_elem == T_VOID) {
1336
// The component types are not the same or are not recognized. Punt.
1337
// (But, avoid the native method wrapper to JVM_ArrayCopy.)
1339
Node* mem = ac->in(TypeFunc::Memory);
1340
merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1343
_igvn.replace_node(_callprojs.fallthrough_memproj, merge_mem);
1344
if (_callprojs.fallthrough_ioproj != nullptr) {
1345
_igvn.replace_node(_callprojs.fallthrough_ioproj, io);
1347
_igvn.replace_node(_callprojs.fallthrough_catchproj, ctrl);
1351
//---------------------------------------------------------------------------
1352
// We will make a fast path for this call to arraycopy.
1354
// We have the following tests left to perform:
1356
// (3) src and dest must not be null.
1357
// (4) src_offset must not be negative.
1358
// (5) dest_offset must not be negative.
1359
// (6) length must not be negative.
1360
// (7) src_offset + length must not exceed length of src.
1361
// (8) dest_offset + length must not exceed length of dest.
1362
// (9) each element of an oop array must be assignable
1365
Node* mem = ac->in(TypeFunc::Memory);
1366
merge_mem = MergeMemNode::make(mem);
1367
transform_later(merge_mem);
1370
RegionNode* slow_region = new RegionNode(1);
1371
transform_later(slow_region);
1373
if (!ac->is_arraycopy_validated()) {
1374
// (3) operands must not be null
1375
// We currently perform our null checks with the null_check routine.
1376
// This means that the null exceptions will be reported in the caller
1377
// rather than (correctly) reported inside of the native arraycopy call.
1378
// This should be corrected, given time. We do our null check with the
1379
// stack pointer restored.
1380
// null checks done library_call.cpp
1382
// (4) src_offset must not be negative.
1383
generate_negative_guard(&ctrl, src_offset, slow_region);
1385
// (5) dest_offset must not be negative.
1386
generate_negative_guard(&ctrl, dest_offset, slow_region);
1388
// (6) length must not be negative (moved to generate_arraycopy()).
1389
// generate_negative_guard(length, slow_region);
1391
// (7) src_offset + length must not exceed length of src.
1392
Node* alen = ac->in(ArrayCopyNode::SrcLen);
1393
assert(alen != nullptr, "need src len");
1394
generate_limit_guard(&ctrl,
1399
// (8) dest_offset + length must not exceed length of dest.
1400
alen = ac->in(ArrayCopyNode::DestLen);
1401
assert(alen != nullptr, "need dest len");
1402
generate_limit_guard(&ctrl,
1403
dest_offset, length,
1407
// (9) each element of an oop array must be assignable
1408
// The generate_arraycopy subroutine checks this.
1410
// This is where the memory effects are placed:
1411
const TypePtr* adr_type = nullptr;
1412
if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1413
adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1415
adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1418
generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1419
adr_type, dest_elem,
1420
src, src_offset, dest, dest_offset, length,
1421
// If a negative length guard was generated for the ArrayCopyNode,
1422
// the length of the array can never be negative.
1423
false, ac->has_negative_length_guard(), slow_region);