jdk

Форк
0
/
graphKit.cpp 
4278 строк · 170.8 Кб
1
/*
2
 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "ci/ciUtilities.hpp"
27
#include "classfile/javaClasses.hpp"
28
#include "ci/ciObjArray.hpp"
29
#include "asm/register.hpp"
30
#include "compiler/compileLog.hpp"
31
#include "gc/shared/barrierSet.hpp"
32
#include "gc/shared/c2/barrierSetC2.hpp"
33
#include "interpreter/interpreter.hpp"
34
#include "memory/resourceArea.hpp"
35
#include "opto/addnode.hpp"
36
#include "opto/castnode.hpp"
37
#include "opto/convertnode.hpp"
38
#include "opto/graphKit.hpp"
39
#include "opto/idealKit.hpp"
40
#include "opto/intrinsicnode.hpp"
41
#include "opto/locknode.hpp"
42
#include "opto/machnode.hpp"
43
#include "opto/opaquenode.hpp"
44
#include "opto/parse.hpp"
45
#include "opto/rootnode.hpp"
46
#include "opto/runtime.hpp"
47
#include "opto/subtypenode.hpp"
48
#include "runtime/deoptimization.hpp"
49
#include "runtime/sharedRuntime.hpp"
50
#include "utilities/bitMap.inline.hpp"
51
#include "utilities/powerOfTwo.hpp"
52
#include "utilities/growableArray.hpp"
53

54
//----------------------------GraphKit-----------------------------------------
55
// Main utility constructor.
56
GraphKit::GraphKit(JVMState* jvms)
57
  : Phase(Phase::Parser),
58
    _env(C->env()),
59
    _gvn(*C->initial_gvn()),
60
    _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
61
{
62
  _exceptions = jvms->map()->next_exception();
63
  if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
64
  set_jvms(jvms);
65
}
66

67
// Private constructor for parser.
68
GraphKit::GraphKit()
69
  : Phase(Phase::Parser),
70
    _env(C->env()),
71
    _gvn(*C->initial_gvn()),
72
    _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
73
{
74
  _exceptions = nullptr;
75
  set_map(nullptr);
76
  debug_only(_sp = -99);
77
  debug_only(set_bci(-99));
78
}
79

80

81

82
//---------------------------clean_stack---------------------------------------
83
// Clear away rubbish from the stack area of the JVM state.
84
// This destroys any arguments that may be waiting on the stack.
85
void GraphKit::clean_stack(int from_sp) {
86
  SafePointNode* map      = this->map();
87
  JVMState*      jvms     = this->jvms();
88
  int            stk_size = jvms->stk_size();
89
  int            stkoff   = jvms->stkoff();
90
  Node*          top      = this->top();
91
  for (int i = from_sp; i < stk_size; i++) {
92
    if (map->in(stkoff + i) != top) {
93
      map->set_req(stkoff + i, top);
94
    }
95
  }
96
}
97

98

99
//--------------------------------sync_jvms-----------------------------------
100
// Make sure our current jvms agrees with our parse state.
101
JVMState* GraphKit::sync_jvms() const {
102
  JVMState* jvms = this->jvms();
103
  jvms->set_bci(bci());       // Record the new bci in the JVMState
104
  jvms->set_sp(sp());         // Record the new sp in the JVMState
105
  assert(jvms_in_sync(), "jvms is now in sync");
106
  return jvms;
107
}
108

109
//--------------------------------sync_jvms_for_reexecute---------------------
110
// Make sure our current jvms agrees with our parse state.  This version
111
// uses the reexecute_sp for reexecuting bytecodes.
112
JVMState* GraphKit::sync_jvms_for_reexecute() {
113
  JVMState* jvms = this->jvms();
114
  jvms->set_bci(bci());          // Record the new bci in the JVMState
115
  jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
116
  return jvms;
117
}
118

119
#ifdef ASSERT
120
bool GraphKit::jvms_in_sync() const {
121
  Parse* parse = is_Parse();
122
  if (parse == nullptr) {
123
    if (bci() !=      jvms()->bci())          return false;
124
    if (sp()  != (int)jvms()->sp())           return false;
125
    return true;
126
  }
127
  if (jvms()->method() != parse->method())    return false;
128
  if (jvms()->bci()    != parse->bci())       return false;
129
  int jvms_sp = jvms()->sp();
130
  if (jvms_sp          != parse->sp())        return false;
131
  int jvms_depth = jvms()->depth();
132
  if (jvms_depth       != parse->depth())     return false;
133
  return true;
134
}
135

136
// Local helper checks for special internal merge points
137
// used to accumulate and merge exception states.
138
// They are marked by the region's in(0) edge being the map itself.
139
// Such merge points must never "escape" into the parser at large,
140
// until they have been handed to gvn.transform.
141
static bool is_hidden_merge(Node* reg) {
142
  if (reg == nullptr)  return false;
143
  if (reg->is_Phi()) {
144
    reg = reg->in(0);
145
    if (reg == nullptr)  return false;
146
  }
147
  return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root();
148
}
149

150
void GraphKit::verify_map() const {
151
  if (map() == nullptr)  return;  // null map is OK
152
  assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
153
  assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
154
  assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
155
}
156

157
void GraphKit::verify_exception_state(SafePointNode* ex_map) {
158
  assert(ex_map->next_exception() == nullptr, "not already part of a chain");
159
  assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
160
}
161
#endif
162

163
//---------------------------stop_and_kill_map---------------------------------
164
// Set _map to null, signalling a stop to further bytecode execution.
165
// First smash the current map's control to a constant, to mark it dead.
166
void GraphKit::stop_and_kill_map() {
167
  SafePointNode* dead_map = stop();
168
  if (dead_map != nullptr) {
169
    dead_map->disconnect_inputs(C); // Mark the map as killed.
170
    assert(dead_map->is_killed(), "must be so marked");
171
  }
172
}
173

174

175
//--------------------------------stopped--------------------------------------
176
// Tell if _map is null, or control is top.
177
bool GraphKit::stopped() {
178
  if (map() == nullptr)        return true;
179
  else if (control() == top()) return true;
180
  else                         return false;
181
}
182

183

184
//-----------------------------has_exception_handler----------------------------------
185
// Tell if this method or any caller method has exception handlers.
186
bool GraphKit::has_exception_handler() {
187
  for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) {
188
    if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
189
      return true;
190
    }
191
  }
192
  return false;
193
}
194

195
//------------------------------save_ex_oop------------------------------------
196
// Save an exception without blowing stack contents or other JVM state.
197
void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
198
  assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
199
  ex_map->add_req(ex_oop);
200
  debug_only(verify_exception_state(ex_map));
201
}
202

203
inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
204
  assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
205
  Node* ex_oop = ex_map->in(ex_map->req()-1);
206
  if (clear_it)  ex_map->del_req(ex_map->req()-1);
207
  return ex_oop;
208
}
209

210
//-----------------------------saved_ex_oop------------------------------------
211
// Recover a saved exception from its map.
212
Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
213
  return common_saved_ex_oop(ex_map, false);
214
}
215

216
//--------------------------clear_saved_ex_oop---------------------------------
217
// Erase a previously saved exception from its map.
218
Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
219
  return common_saved_ex_oop(ex_map, true);
220
}
221

222
#ifdef ASSERT
223
//---------------------------has_saved_ex_oop----------------------------------
224
// Erase a previously saved exception from its map.
225
bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
226
  return ex_map->req() == ex_map->jvms()->endoff()+1;
227
}
228
#endif
229

230
//-------------------------make_exception_state--------------------------------
231
// Turn the current JVM state into an exception state, appending the ex_oop.
232
SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
233
  sync_jvms();
234
  SafePointNode* ex_map = stop();  // do not manipulate this map any more
235
  set_saved_ex_oop(ex_map, ex_oop);
236
  return ex_map;
237
}
238

239

240
//--------------------------add_exception_state--------------------------------
241
// Add an exception to my list of exceptions.
242
void GraphKit::add_exception_state(SafePointNode* ex_map) {
243
  if (ex_map == nullptr || ex_map->control() == top()) {
244
    return;
245
  }
246
#ifdef ASSERT
247
  verify_exception_state(ex_map);
248
  if (has_exceptions()) {
249
    assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
250
  }
251
#endif
252

253
  // If there is already an exception of exactly this type, merge with it.
254
  // In particular, null-checks and other low-level exceptions common up here.
255
  Node*       ex_oop  = saved_ex_oop(ex_map);
256
  const Type* ex_type = _gvn.type(ex_oop);
257
  if (ex_oop == top()) {
258
    // No action needed.
259
    return;
260
  }
261
  assert(ex_type->isa_instptr(), "exception must be an instance");
262
  for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) {
263
    const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
264
    // We check sp also because call bytecodes can generate exceptions
265
    // both before and after arguments are popped!
266
    if (ex_type2 == ex_type
267
        && e2->_jvms->sp() == ex_map->_jvms->sp()) {
268
      combine_exception_states(ex_map, e2);
269
      return;
270
    }
271
  }
272

273
  // No pre-existing exception of the same type.  Chain it on the list.
274
  push_exception_state(ex_map);
275
}
276

277
//-----------------------add_exception_states_from-----------------------------
278
void GraphKit::add_exception_states_from(JVMState* jvms) {
279
  SafePointNode* ex_map = jvms->map()->next_exception();
280
  if (ex_map != nullptr) {
281
    jvms->map()->set_next_exception(nullptr);
282
    for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) {
283
      next_map = ex_map->next_exception();
284
      ex_map->set_next_exception(nullptr);
285
      add_exception_state(ex_map);
286
    }
287
  }
288
}
289

290
//-----------------------transfer_exceptions_into_jvms-------------------------
291
JVMState* GraphKit::transfer_exceptions_into_jvms() {
292
  if (map() == nullptr) {
293
    // We need a JVMS to carry the exceptions, but the map has gone away.
294
    // Create a scratch JVMS, cloned from any of the exception states...
295
    if (has_exceptions()) {
296
      _map = _exceptions;
297
      _map = clone_map();
298
      _map->set_next_exception(nullptr);
299
      clear_saved_ex_oop(_map);
300
      debug_only(verify_map());
301
    } else {
302
      // ...or created from scratch
303
      JVMState* jvms = new (C) JVMState(_method, nullptr);
304
      jvms->set_bci(_bci);
305
      jvms->set_sp(_sp);
306
      jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
307
      set_jvms(jvms);
308
      for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
309
      set_all_memory(top());
310
      while (map()->req() < jvms->endoff())  map()->add_req(top());
311
    }
312
    // (This is a kludge, in case you didn't notice.)
313
    set_control(top());
314
  }
315
  JVMState* jvms = sync_jvms();
316
  assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
317
  jvms->map()->set_next_exception(_exceptions);
318
  _exceptions = nullptr;   // done with this set of exceptions
319
  return jvms;
320
}
321

322
static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
323
  assert(is_hidden_merge(dstphi), "must be a special merge node");
324
  assert(is_hidden_merge(srcphi), "must be a special merge node");
325
  uint limit = srcphi->req();
326
  for (uint i = PhiNode::Input; i < limit; i++) {
327
    dstphi->add_req(srcphi->in(i));
328
  }
329
}
330
static inline void add_one_req(Node* dstphi, Node* src) {
331
  assert(is_hidden_merge(dstphi), "must be a special merge node");
332
  assert(!is_hidden_merge(src), "must not be a special merge node");
333
  dstphi->add_req(src);
334
}
335

336
//-----------------------combine_exception_states------------------------------
337
// This helper function combines exception states by building phis on a
338
// specially marked state-merging region.  These regions and phis are
339
// untransformed, and can build up gradually.  The region is marked by
340
// having a control input of its exception map, rather than null.  Such
341
// regions do not appear except in this function, and in use_exception_state.
342
void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
343
  if (failing())  return;  // dying anyway...
344
  JVMState* ex_jvms = ex_map->_jvms;
345
  assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
346
  assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
347
  assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
348
  assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
349
  assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
350
  assert(ex_map->req() == phi_map->req(), "matching maps");
351
  uint tos = ex_jvms->stkoff() + ex_jvms->sp();
352
  Node*         hidden_merge_mark = root();
353
  Node*         region  = phi_map->control();
354
  MergeMemNode* phi_mem = phi_map->merged_memory();
355
  MergeMemNode* ex_mem  = ex_map->merged_memory();
356
  if (region->in(0) != hidden_merge_mark) {
357
    // The control input is not (yet) a specially-marked region in phi_map.
358
    // Make it so, and build some phis.
359
    region = new RegionNode(2);
360
    _gvn.set_type(region, Type::CONTROL);
361
    region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
362
    region->init_req(1, phi_map->control());
363
    phi_map->set_control(region);
364
    Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
365
    record_for_igvn(io_phi);
366
    _gvn.set_type(io_phi, Type::ABIO);
367
    phi_map->set_i_o(io_phi);
368
    for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
369
      Node* m = mms.memory();
370
      Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
371
      record_for_igvn(m_phi);
372
      _gvn.set_type(m_phi, Type::MEMORY);
373
      mms.set_memory(m_phi);
374
    }
375
  }
376

377
  // Either or both of phi_map and ex_map might already be converted into phis.
378
  Node* ex_control = ex_map->control();
379
  // if there is special marking on ex_map also, we add multiple edges from src
380
  bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
381
  // how wide was the destination phi_map, originally?
382
  uint orig_width = region->req();
383

384
  if (add_multiple) {
385
    add_n_reqs(region, ex_control);
386
    add_n_reqs(phi_map->i_o(), ex_map->i_o());
387
  } else {
388
    // ex_map has no merges, so we just add single edges everywhere
389
    add_one_req(region, ex_control);
390
    add_one_req(phi_map->i_o(), ex_map->i_o());
391
  }
392
  for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
393
    if (mms.is_empty()) {
394
      // get a copy of the base memory, and patch some inputs into it
395
      const TypePtr* adr_type = mms.adr_type(C);
396
      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
397
      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
398
      mms.set_memory(phi);
399
      // Prepare to append interesting stuff onto the newly sliced phi:
400
      while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
401
    }
402
    // Append stuff from ex_map:
403
    if (add_multiple) {
404
      add_n_reqs(mms.memory(), mms.memory2());
405
    } else {
406
      add_one_req(mms.memory(), mms.memory2());
407
    }
408
  }
409
  uint limit = ex_map->req();
410
  for (uint i = TypeFunc::Parms; i < limit; i++) {
411
    // Skip everything in the JVMS after tos.  (The ex_oop follows.)
412
    if (i == tos)  i = ex_jvms->monoff();
413
    Node* src = ex_map->in(i);
414
    Node* dst = phi_map->in(i);
415
    if (src != dst) {
416
      PhiNode* phi;
417
      if (dst->in(0) != region) {
418
        dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
419
        record_for_igvn(phi);
420
        _gvn.set_type(phi, phi->type());
421
        phi_map->set_req(i, dst);
422
        // Prepare to append interesting stuff onto the new phi:
423
        while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
424
      } else {
425
        assert(dst->is_Phi(), "nobody else uses a hidden region");
426
        phi = dst->as_Phi();
427
      }
428
      if (add_multiple && src->in(0) == ex_control) {
429
        // Both are phis.
430
        add_n_reqs(dst, src);
431
      } else {
432
        while (dst->req() < region->req())  add_one_req(dst, src);
433
      }
434
      const Type* srctype = _gvn.type(src);
435
      if (phi->type() != srctype) {
436
        const Type* dsttype = phi->type()->meet_speculative(srctype);
437
        if (phi->type() != dsttype) {
438
          phi->set_type(dsttype);
439
          _gvn.set_type(phi, dsttype);
440
        }
441
      }
442
    }
443
  }
444
  phi_map->merge_replaced_nodes_with(ex_map);
445
}
446

447
//--------------------------use_exception_state--------------------------------
448
Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
449
  if (failing()) { stop(); return top(); }
450
  Node* region = phi_map->control();
451
  Node* hidden_merge_mark = root();
452
  assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
453
  Node* ex_oop = clear_saved_ex_oop(phi_map);
454
  if (region->in(0) == hidden_merge_mark) {
455
    // Special marking for internal ex-states.  Process the phis now.
456
    region->set_req(0, region);  // now it's an ordinary region
457
    set_jvms(phi_map->jvms());   // ...so now we can use it as a map
458
    // Note: Setting the jvms also sets the bci and sp.
459
    set_control(_gvn.transform(region));
460
    uint tos = jvms()->stkoff() + sp();
461
    for (uint i = 1; i < tos; i++) {
462
      Node* x = phi_map->in(i);
463
      if (x->in(0) == region) {
464
        assert(x->is_Phi(), "expected a special phi");
465
        phi_map->set_req(i, _gvn.transform(x));
466
      }
467
    }
468
    for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
469
      Node* x = mms.memory();
470
      if (x->in(0) == region) {
471
        assert(x->is_Phi(), "nobody else uses a hidden region");
472
        mms.set_memory(_gvn.transform(x));
473
      }
474
    }
475
    if (ex_oop->in(0) == region) {
476
      assert(ex_oop->is_Phi(), "expected a special phi");
477
      ex_oop = _gvn.transform(ex_oop);
478
    }
479
  } else {
480
    set_jvms(phi_map->jvms());
481
  }
482

483
  assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
484
  assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
485
  return ex_oop;
486
}
487

488
//---------------------------------java_bc-------------------------------------
489
Bytecodes::Code GraphKit::java_bc() const {
490
  ciMethod* method = this->method();
491
  int       bci    = this->bci();
492
  if (method != nullptr && bci != InvocationEntryBci)
493
    return method->java_code_at_bci(bci);
494
  else
495
    return Bytecodes::_illegal;
496
}
497

498
void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
499
                                                          bool must_throw) {
500
    // if the exception capability is set, then we will generate code
501
    // to check the JavaThread.should_post_on_exceptions flag to see
502
    // if we actually need to report exception events (for this
503
    // thread).  If we don't need to report exception events, we will
504
    // take the normal fast path provided by add_exception_events.  If
505
    // exception event reporting is enabled for this thread, we will
506
    // take the uncommon_trap in the BuildCutout below.
507

508
    // first must access the should_post_on_exceptions_flag in this thread's JavaThread
509
    Node* jthread = _gvn.transform(new ThreadLocalNode());
510
    Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
511
    Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
512

513
    // Test the should_post_on_exceptions_flag vs. 0
514
    Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
515
    Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
516

517
    // Branch to slow_path if should_post_on_exceptions_flag was true
518
    { BuildCutout unless(this, tst, PROB_MAX);
519
      // Do not try anything fancy if we're notifying the VM on every throw.
520
      // Cf. case Bytecodes::_athrow in parse2.cpp.
521
      uncommon_trap(reason, Deoptimization::Action_none,
522
                    (ciKlass*)nullptr, (char*)nullptr, must_throw);
523
    }
524

525
}
526

527
//------------------------------builtin_throw----------------------------------
528
void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) {
529
  bool must_throw = true;
530

531
  // If this particular condition has not yet happened at this
532
  // bytecode, then use the uncommon trap mechanism, and allow for
533
  // a future recompilation if several traps occur here.
534
  // If the throw is hot, try to use a more complicated inline mechanism
535
  // which keeps execution inside the compiled code.
536
  bool treat_throw_as_hot = false;
537
  ciMethodData* md = method()->method_data();
538

539
  if (ProfileTraps) {
540
    if (too_many_traps(reason)) {
541
      treat_throw_as_hot = true;
542
    }
543
    // (If there is no MDO at all, assume it is early in
544
    // execution, and that any deopts are part of the
545
    // startup transient, and don't need to be remembered.)
546

547
    // Also, if there is a local exception handler, treat all throws
548
    // as hot if there has been at least one in this method.
549
    if (C->trap_count(reason) != 0
550
        && method()->method_data()->trap_count(reason) != 0
551
        && has_exception_handler()) {
552
        treat_throw_as_hot = true;
553
    }
554
  }
555

556
  // If this throw happens frequently, an uncommon trap might cause
557
  // a performance pothole.  If there is a local exception handler,
558
  // and if this particular bytecode appears to be deoptimizing often,
559
  // let us handle the throw inline, with a preconstructed instance.
560
  // Note:   If the deopt count has blown up, the uncommon trap
561
  // runtime is going to flush this nmethod, not matter what.
562
  if (treat_throw_as_hot && method()->can_omit_stack_trace()) {
563
    // If the throw is local, we use a pre-existing instance and
564
    // punt on the backtrace.  This would lead to a missing backtrace
565
    // (a repeat of 4292742) if the backtrace object is ever asked
566
    // for its backtrace.
567
    // Fixing this remaining case of 4292742 requires some flavor of
568
    // escape analysis.  Leave that for the future.
569
    ciInstance* ex_obj = nullptr;
570
    switch (reason) {
571
    case Deoptimization::Reason_null_check:
572
      ex_obj = env()->NullPointerException_instance();
573
      break;
574
    case Deoptimization::Reason_div0_check:
575
      ex_obj = env()->ArithmeticException_instance();
576
      break;
577
    case Deoptimization::Reason_range_check:
578
      ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
579
      break;
580
    case Deoptimization::Reason_class_check:
581
      ex_obj = env()->ClassCastException_instance();
582
      break;
583
    case Deoptimization::Reason_array_check:
584
      ex_obj = env()->ArrayStoreException_instance();
585
      break;
586
    default:
587
      break;
588
    }
589
    if (failing()) { stop(); return; }  // exception allocation might fail
590
    if (ex_obj != nullptr) {
591
      if (env()->jvmti_can_post_on_exceptions()) {
592
        // check if we must post exception events, take uncommon trap if so
593
        uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
594
        // here if should_post_on_exceptions is false
595
        // continue on with the normal codegen
596
      }
597

598
      // Cheat with a preallocated exception object.
599
      if (C->log() != nullptr)
600
        C->log()->elem("hot_throw preallocated='1' reason='%s'",
601
                       Deoptimization::trap_reason_name(reason));
602
      const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
603
      Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
604

605
      // Clear the detail message of the preallocated exception object.
606
      // Weblogic sometimes mutates the detail message of exceptions
607
      // using reflection.
608
      int offset = java_lang_Throwable::get_detailMessage_offset();
609
      const TypePtr* adr_typ = ex_con->add_offset(offset);
610

611
      Node *adr = basic_plus_adr(ex_node, ex_node, offset);
612
      const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
613
      Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
614

615
      if (!method()->has_exception_handlers()) {
616
        // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway.
617
        // This prevents issues with exception handling and late inlining.
618
        set_sp(0);
619
        clean_stack(0);
620
      }
621

622
      add_exception_state(make_exception_state(ex_node));
623
      return;
624
    }
625
  }
626

627
  // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
628
  // It won't be much cheaper than bailing to the interp., since we'll
629
  // have to pass up all the debug-info, and the runtime will have to
630
  // create the stack trace.
631

632
  // Usual case:  Bail to interpreter.
633
  // Reserve the right to recompile if we haven't seen anything yet.
634

635
  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr;
636
  Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
637
  if (treat_throw_as_hot
638
      && (method()->method_data()->trap_recompiled_at(bci(), m)
639
          || C->too_many_traps(reason))) {
640
    // We cannot afford to take more traps here.  Suffer in the interpreter.
641
    if (C->log() != nullptr)
642
      C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
643
                     Deoptimization::trap_reason_name(reason),
644
                     C->trap_count(reason));
645
    action = Deoptimization::Action_none;
646
  }
647

648
  // "must_throw" prunes the JVM state to include only the stack, if there
649
  // are no local exception handlers.  This should cut down on register
650
  // allocation time and code size, by drastically reducing the number
651
  // of in-edges on the call to the uncommon trap.
652

653
  uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw);
654
}
655

656

657
//----------------------------PreserveJVMState---------------------------------
658
PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
659
  debug_only(kit->verify_map());
660
  _kit    = kit;
661
  _map    = kit->map();   // preserve the map
662
  _sp     = kit->sp();
663
  kit->set_map(clone_map ? kit->clone_map() : nullptr);
664
#ifdef ASSERT
665
  _bci    = kit->bci();
666
  Parse* parser = kit->is_Parse();
667
  int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
668
  _block  = block;
669
#endif
670
}
671
PreserveJVMState::~PreserveJVMState() {
672
  GraphKit* kit = _kit;
673
#ifdef ASSERT
674
  assert(kit->bci() == _bci, "bci must not shift");
675
  Parse* parser = kit->is_Parse();
676
  int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo();
677
  assert(block == _block,    "block must not shift");
678
#endif
679
  kit->set_map(_map);
680
  kit->set_sp(_sp);
681
}
682

683

684
//-----------------------------BuildCutout-------------------------------------
685
BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
686
  : PreserveJVMState(kit)
687
{
688
  assert(p->is_Con() || p->is_Bool(), "test must be a bool");
689
  SafePointNode* outer_map = _map;   // preserved map is caller's
690
  SafePointNode* inner_map = kit->map();
691
  IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
692
  outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
693
  inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
694
}
695
BuildCutout::~BuildCutout() {
696
  GraphKit* kit = _kit;
697
  assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
698
}
699

700
//---------------------------PreserveReexecuteState----------------------------
701
PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
702
  assert(!kit->stopped(), "must call stopped() before");
703
  _kit    =    kit;
704
  _sp     =    kit->sp();
705
  _reexecute = kit->jvms()->_reexecute;
706
}
707
PreserveReexecuteState::~PreserveReexecuteState() {
708
  if (_kit->stopped()) return;
709
  _kit->jvms()->_reexecute = _reexecute;
710
  _kit->set_sp(_sp);
711
}
712

713
//------------------------------clone_map--------------------------------------
714
// Implementation of PreserveJVMState
715
//
716
// Only clone_map(...) here. If this function is only used in the
717
// PreserveJVMState class we may want to get rid of this extra
718
// function eventually and do it all there.
719

720
SafePointNode* GraphKit::clone_map() {
721
  if (map() == nullptr)  return nullptr;
722

723
  // Clone the memory edge first
724
  Node* mem = MergeMemNode::make(map()->memory());
725
  gvn().set_type_bottom(mem);
726

727
  SafePointNode *clonemap = (SafePointNode*)map()->clone();
728
  JVMState* jvms = this->jvms();
729
  JVMState* clonejvms = jvms->clone_shallow(C);
730
  clonemap->set_memory(mem);
731
  clonemap->set_jvms(clonejvms);
732
  clonejvms->set_map(clonemap);
733
  record_for_igvn(clonemap);
734
  gvn().set_type_bottom(clonemap);
735
  return clonemap;
736
}
737

738
//-----------------------------destruct_map_clone------------------------------
739
//
740
// Order of destruct is important to increase the likelyhood that memory can be re-used. We need
741
// to destruct/free/delete in the exact opposite order as clone_map().
742
void GraphKit::destruct_map_clone(SafePointNode* sfp) {
743
  if (sfp == nullptr) return;
744

745
  Node* mem = sfp->memory();
746
  JVMState* jvms = sfp->jvms();
747

748
  if (jvms != nullptr) {
749
    delete jvms;
750
  }
751

752
  remove_for_igvn(sfp);
753
  gvn().clear_type(sfp);
754
  sfp->destruct(&_gvn);
755

756
  if (mem != nullptr) {
757
    gvn().clear_type(mem);
758
    mem->destruct(&_gvn);
759
  }
760
}
761

762
//-----------------------------set_map_clone-----------------------------------
763
void GraphKit::set_map_clone(SafePointNode* m) {
764
  _map = m;
765
  _map = clone_map();
766
  _map->set_next_exception(nullptr);
767
  debug_only(verify_map());
768
}
769

770

771
//----------------------------kill_dead_locals---------------------------------
772
// Detect any locals which are known to be dead, and force them to top.
773
void GraphKit::kill_dead_locals() {
774
  // Consult the liveness information for the locals.  If any
775
  // of them are unused, then they can be replaced by top().  This
776
  // should help register allocation time and cut down on the size
777
  // of the deoptimization information.
778

779
  // This call is made from many of the bytecode handling
780
  // subroutines called from the Big Switch in do_one_bytecode.
781
  // Every bytecode which might include a slow path is responsible
782
  // for killing its dead locals.  The more consistent we
783
  // are about killing deads, the fewer useless phis will be
784
  // constructed for them at various merge points.
785

786
  // bci can be -1 (InvocationEntryBci).  We return the entry
787
  // liveness for the method.
788

789
  if (method() == nullptr || method()->code_size() == 0) {
790
    // We are building a graph for a call to a native method.
791
    // All locals are live.
792
    return;
793
  }
794

795
  ResourceMark rm;
796

797
  // Consult the liveness information for the locals.  If any
798
  // of them are unused, then they can be replaced by top().  This
799
  // should help register allocation time and cut down on the size
800
  // of the deoptimization information.
801
  MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
802

803
  int len = (int)live_locals.size();
804
  assert(len <= jvms()->loc_size(), "too many live locals");
805
  for (int local = 0; local < len; local++) {
806
    if (!live_locals.at(local)) {
807
      set_local(local, top());
808
    }
809
  }
810
}
811

812
#ifdef ASSERT
813
//-------------------------dead_locals_are_killed------------------------------
814
// Return true if all dead locals are set to top in the map.
815
// Used to assert "clean" debug info at various points.
816
bool GraphKit::dead_locals_are_killed() {
817
  if (method() == nullptr || method()->code_size() == 0) {
818
    // No locals need to be dead, so all is as it should be.
819
    return true;
820
  }
821

822
  // Make sure somebody called kill_dead_locals upstream.
823
  ResourceMark rm;
824
  for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
825
    if (jvms->loc_size() == 0)  continue;  // no locals to consult
826
    SafePointNode* map = jvms->map();
827
    ciMethod* method = jvms->method();
828
    int       bci    = jvms->bci();
829
    if (jvms == this->jvms()) {
830
      bci = this->bci();  // it might not yet be synched
831
    }
832
    MethodLivenessResult live_locals = method->liveness_at_bci(bci);
833
    int len = (int)live_locals.size();
834
    if (!live_locals.is_valid() || len == 0)
835
      // This method is trivial, or is poisoned by a breakpoint.
836
      return true;
837
    assert(len == jvms->loc_size(), "live map consistent with locals map");
838
    for (int local = 0; local < len; local++) {
839
      if (!live_locals.at(local) && map->local(jvms, local) != top()) {
840
        if (PrintMiscellaneous && (Verbose || WizardMode)) {
841
          tty->print_cr("Zombie local %d: ", local);
842
          jvms->dump();
843
        }
844
        return false;
845
      }
846
    }
847
  }
848
  return true;
849
}
850

851
#endif //ASSERT
852

853
// Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
854
static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
855
  ciMethod* cur_method = jvms->method();
856
  int       cur_bci   = jvms->bci();
857
  if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
858
    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
859
    return Interpreter::bytecode_should_reexecute(code) ||
860
           (is_anewarray && code == Bytecodes::_multianewarray);
861
    // Reexecute _multianewarray bytecode which was replaced with
862
    // sequence of [a]newarray. See Parse::do_multianewarray().
863
    //
864
    // Note: interpreter should not have it set since this optimization
865
    // is limited by dimensions and guarded by flag so in some cases
866
    // multianewarray() runtime calls will be generated and
867
    // the bytecode should not be reexecutes (stack will not be reset).
868
  } else {
869
    return false;
870
  }
871
}
872

873
// Helper function for adding JVMState and debug information to node
874
void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
875
  // Add the safepoint edges to the call (or other safepoint).
876

877
  // Make sure dead locals are set to top.  This
878
  // should help register allocation time and cut down on the size
879
  // of the deoptimization information.
880
  assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
881

882
  // Walk the inline list to fill in the correct set of JVMState's
883
  // Also fill in the associated edges for each JVMState.
884

885
  // If the bytecode needs to be reexecuted we need to put
886
  // the arguments back on the stack.
887
  const bool should_reexecute = jvms()->should_reexecute();
888
  JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
889

890
  // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
891
  // undefined if the bci is different.  This is normal for Parse but it
892
  // should not happen for LibraryCallKit because only one bci is processed.
893
  assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
894
         "in LibraryCallKit the reexecute bit should not change");
895

896
  // If we are guaranteed to throw, we can prune everything but the
897
  // input to the current bytecode.
898
  bool can_prune_locals = false;
899
  uint stack_slots_not_pruned = 0;
900
  int inputs = 0, depth = 0;
901
  if (must_throw) {
902
    assert(method() == youngest_jvms->method(), "sanity");
903
    if (compute_stack_effects(inputs, depth)) {
904
      can_prune_locals = true;
905
      stack_slots_not_pruned = inputs;
906
    }
907
  }
908

909
  if (env()->should_retain_local_variables()) {
910
    // At any safepoint, this method can get breakpointed, which would
911
    // then require an immediate deoptimization.
912
    can_prune_locals = false;  // do not prune locals
913
    stack_slots_not_pruned = 0;
914
  }
915

916
  // do not scribble on the input jvms
917
  JVMState* out_jvms = youngest_jvms->clone_deep(C);
918
  call->set_jvms(out_jvms); // Start jvms list for call node
919

920
  // For a known set of bytecodes, the interpreter should reexecute them if
921
  // deoptimization happens. We set the reexecute state for them here
922
  if (out_jvms->is_reexecute_undefined() && //don't change if already specified
923
      should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
924
#ifdef ASSERT
925
    int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
926
    assert(method() == youngest_jvms->method(), "sanity");
927
    assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
928
    assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
929
#endif // ASSERT
930
    out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
931
  }
932

933
  // Presize the call:
934
  DEBUG_ONLY(uint non_debug_edges = call->req());
935
  call->add_req_batch(top(), youngest_jvms->debug_depth());
936
  assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
937

938
  // Set up edges so that the call looks like this:
939
  //  Call [state:] ctl io mem fptr retadr
940
  //       [parms:] parm0 ... parmN
941
  //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
942
  //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
943
  //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
944
  // Note that caller debug info precedes callee debug info.
945

946
  // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
947
  uint debug_ptr = call->req();
948

949
  // Loop over the map input edges associated with jvms, add them
950
  // to the call node, & reset all offsets to match call node array.
951
  for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
952
    uint debug_end   = debug_ptr;
953
    uint debug_start = debug_ptr - in_jvms->debug_size();
954
    debug_ptr = debug_start;  // back up the ptr
955

956
    uint p = debug_start;  // walks forward in [debug_start, debug_end)
957
    uint j, k, l;
958
    SafePointNode* in_map = in_jvms->map();
959
    out_jvms->set_map(call);
960

961
    if (can_prune_locals) {
962
      assert(in_jvms->method() == out_jvms->method(), "sanity");
963
      // If the current throw can reach an exception handler in this JVMS,
964
      // then we must keep everything live that can reach that handler.
965
      // As a quick and dirty approximation, we look for any handlers at all.
966
      if (in_jvms->method()->has_exception_handlers()) {
967
        can_prune_locals = false;
968
      }
969
    }
970

971
    // Add the Locals
972
    k = in_jvms->locoff();
973
    l = in_jvms->loc_size();
974
    out_jvms->set_locoff(p);
975
    if (!can_prune_locals) {
976
      for (j = 0; j < l; j++)
977
        call->set_req(p++, in_map->in(k+j));
978
    } else {
979
      p += l;  // already set to top above by add_req_batch
980
    }
981

982
    // Add the Expression Stack
983
    k = in_jvms->stkoff();
984
    l = in_jvms->sp();
985
    out_jvms->set_stkoff(p);
986
    if (!can_prune_locals) {
987
      for (j = 0; j < l; j++)
988
        call->set_req(p++, in_map->in(k+j));
989
    } else if (can_prune_locals && stack_slots_not_pruned != 0) {
990
      // Divide stack into {S0,...,S1}, where S0 is set to top.
991
      uint s1 = stack_slots_not_pruned;
992
      stack_slots_not_pruned = 0;  // for next iteration
993
      if (s1 > l)  s1 = l;
994
      uint s0 = l - s1;
995
      p += s0;  // skip the tops preinstalled by add_req_batch
996
      for (j = s0; j < l; j++)
997
        call->set_req(p++, in_map->in(k+j));
998
    } else {
999
      p += l;  // already set to top above by add_req_batch
1000
    }
1001

1002
    // Add the Monitors
1003
    k = in_jvms->monoff();
1004
    l = in_jvms->mon_size();
1005
    out_jvms->set_monoff(p);
1006
    for (j = 0; j < l; j++)
1007
      call->set_req(p++, in_map->in(k+j));
1008

1009
    // Copy any scalar object fields.
1010
    k = in_jvms->scloff();
1011
    l = in_jvms->scl_size();
1012
    out_jvms->set_scloff(p);
1013
    for (j = 0; j < l; j++)
1014
      call->set_req(p++, in_map->in(k+j));
1015

1016
    // Finish the new jvms.
1017
    out_jvms->set_endoff(p);
1018

1019
    assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1020
    assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1021
    assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1022
    assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1023
    assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1024
    assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1025

1026
    // Update the two tail pointers in parallel.
1027
    out_jvms = out_jvms->caller();
1028
    in_jvms  = in_jvms->caller();
1029
  }
1030

1031
  assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1032

1033
  // Test the correctness of JVMState::debug_xxx accessors:
1034
  assert(call->jvms()->debug_start() == non_debug_edges, "");
1035
  assert(call->jvms()->debug_end()   == call->req(), "");
1036
  assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1037
}
1038

1039
bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1040
  Bytecodes::Code code = java_bc();
1041
  if (code == Bytecodes::_wide) {
1042
    code = method()->java_code_at_bci(bci() + 1);
1043
  }
1044

1045
  if (code != Bytecodes::_illegal) {
1046
    depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1047
  }
1048

1049
  auto rsize = [&]() {
1050
    assert(code != Bytecodes::_illegal, "code is illegal!");
1051
    BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1052
    return (rtype < T_CONFLICT) ? type2size[rtype] : 0;
1053
  };
1054

1055
  switch (code) {
1056
  case Bytecodes::_illegal:
1057
    return false;
1058

1059
  case Bytecodes::_ldc:
1060
  case Bytecodes::_ldc_w:
1061
  case Bytecodes::_ldc2_w:
1062
    inputs = 0;
1063
    break;
1064

1065
  case Bytecodes::_dup:         inputs = 1;  break;
1066
  case Bytecodes::_dup_x1:      inputs = 2;  break;
1067
  case Bytecodes::_dup_x2:      inputs = 3;  break;
1068
  case Bytecodes::_dup2:        inputs = 2;  break;
1069
  case Bytecodes::_dup2_x1:     inputs = 3;  break;
1070
  case Bytecodes::_dup2_x2:     inputs = 4;  break;
1071
  case Bytecodes::_swap:        inputs = 2;  break;
1072
  case Bytecodes::_arraylength: inputs = 1;  break;
1073

1074
  case Bytecodes::_getstatic:
1075
  case Bytecodes::_putstatic:
1076
  case Bytecodes::_getfield:
1077
  case Bytecodes::_putfield:
1078
    {
1079
      bool ignored_will_link;
1080
      ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1081
      int      size  = field->type()->size();
1082
      bool is_get = (depth >= 0), is_static = (depth & 1);
1083
      inputs = (is_static ? 0 : 1);
1084
      if (is_get) {
1085
        depth = size - inputs;
1086
      } else {
1087
        inputs += size;        // putxxx pops the value from the stack
1088
        depth = - inputs;
1089
      }
1090
    }
1091
    break;
1092

1093
  case Bytecodes::_invokevirtual:
1094
  case Bytecodes::_invokespecial:
1095
  case Bytecodes::_invokestatic:
1096
  case Bytecodes::_invokedynamic:
1097
  case Bytecodes::_invokeinterface:
1098
    {
1099
      bool ignored_will_link;
1100
      ciSignature* declared_signature = nullptr;
1101
      ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1102
      assert(declared_signature != nullptr, "cannot be null");
1103
      inputs   = declared_signature->arg_size_for_bc(code);
1104
      int size = declared_signature->return_type()->size();
1105
      depth = size - inputs;
1106
    }
1107
    break;
1108

1109
  case Bytecodes::_multianewarray:
1110
    {
1111
      ciBytecodeStream iter(method());
1112
      iter.reset_to_bci(bci());
1113
      iter.next();
1114
      inputs = iter.get_dimensions();
1115
      assert(rsize() == 1, "");
1116
      depth = 1 - inputs;
1117
    }
1118
    break;
1119

1120
  case Bytecodes::_ireturn:
1121
  case Bytecodes::_lreturn:
1122
  case Bytecodes::_freturn:
1123
  case Bytecodes::_dreturn:
1124
  case Bytecodes::_areturn:
1125
    assert(rsize() == -depth, "");
1126
    inputs = -depth;
1127
    break;
1128

1129
  case Bytecodes::_jsr:
1130
  case Bytecodes::_jsr_w:
1131
    inputs = 0;
1132
    depth  = 1;                  // S.B. depth=1, not zero
1133
    break;
1134

1135
  default:
1136
    // bytecode produces a typed result
1137
    inputs = rsize() - depth;
1138
    assert(inputs >= 0, "");
1139
    break;
1140
  }
1141

1142
#ifdef ASSERT
1143
  // spot check
1144
  int outputs = depth + inputs;
1145
  assert(outputs >= 0, "sanity");
1146
  switch (code) {
1147
  case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1148
  case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1149
  case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1150
  case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1151
  case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1152
  default:                    break;
1153
  }
1154
#endif //ASSERT
1155

1156
  return true;
1157
}
1158

1159

1160

1161
//------------------------------basic_plus_adr---------------------------------
1162
Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1163
  // short-circuit a common case
1164
  if (offset == intcon(0))  return ptr;
1165
  return _gvn.transform( new AddPNode(base, ptr, offset) );
1166
}
1167

1168
Node* GraphKit::ConvI2L(Node* offset) {
1169
  // short-circuit a common case
1170
  jint offset_con = find_int_con(offset, Type::OffsetBot);
1171
  if (offset_con != Type::OffsetBot) {
1172
    return longcon((jlong) offset_con);
1173
  }
1174
  return _gvn.transform( new ConvI2LNode(offset));
1175
}
1176

1177
Node* GraphKit::ConvI2UL(Node* offset) {
1178
  juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1179
  if (offset_con != (juint) Type::OffsetBot) {
1180
    return longcon((julong) offset_con);
1181
  }
1182
  Node* conv = _gvn.transform( new ConvI2LNode(offset));
1183
  Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1184
  return _gvn.transform( new AndLNode(conv, mask) );
1185
}
1186

1187
Node* GraphKit::ConvL2I(Node* offset) {
1188
  // short-circuit a common case
1189
  jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1190
  if (offset_con != (jlong)Type::OffsetBot) {
1191
    return intcon((int) offset_con);
1192
  }
1193
  return _gvn.transform( new ConvL2INode(offset));
1194
}
1195

1196
//-------------------------load_object_klass-----------------------------------
1197
Node* GraphKit::load_object_klass(Node* obj) {
1198
  // Special-case a fresh allocation to avoid building nodes:
1199
  Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1200
  if (akls != nullptr)  return akls;
1201
  Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1202
  return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1203
}
1204

1205
//-------------------------load_array_length-----------------------------------
1206
Node* GraphKit::load_array_length(Node* array) {
1207
  // Special-case a fresh allocation to avoid building nodes:
1208
  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1209
  Node *alen;
1210
  if (alloc == nullptr) {
1211
    Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1212
    alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1213
  } else {
1214
    alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1215
  }
1216
  return alen;
1217
}
1218

1219
Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1220
                                   const TypeOopPtr* oop_type,
1221
                                   bool replace_length_in_map) {
1222
  Node* length = alloc->Ideal_length();
1223
  if (replace_length_in_map == false || map()->find_edge(length) >= 0) {
1224
    Node* ccast = alloc->make_ideal_length(oop_type, &_gvn);
1225
    if (ccast != length) {
1226
      // do not transform ccast here, it might convert to top node for
1227
      // negative array length and break assumptions in parsing stage.
1228
      _gvn.set_type_bottom(ccast);
1229
      record_for_igvn(ccast);
1230
      if (replace_length_in_map) {
1231
        replace_in_map(length, ccast);
1232
      }
1233
      return ccast;
1234
    }
1235
  }
1236
  return length;
1237
}
1238

1239
//------------------------------do_null_check----------------------------------
1240
// Helper function to do a null pointer check.  Returned value is
1241
// the incoming address with null casted away.  You are allowed to use the
1242
// not-null value only if you are control dependent on the test.
1243
#ifndef PRODUCT
1244
extern uint explicit_null_checks_inserted,
1245
            explicit_null_checks_elided;
1246
#endif
1247
Node* GraphKit::null_check_common(Node* value, BasicType type,
1248
                                  // optional arguments for variations:
1249
                                  bool assert_null,
1250
                                  Node* *null_control,
1251
                                  bool speculative) {
1252
  assert(!assert_null || null_control == nullptr, "not both at once");
1253
  if (stopped())  return top();
1254
  NOT_PRODUCT(explicit_null_checks_inserted++);
1255

1256
  // Construct null check
1257
  Node *chk = nullptr;
1258
  switch(type) {
1259
    case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1260
    case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1261
    case T_ARRAY  : // fall through
1262
      type = T_OBJECT;  // simplify further tests
1263
    case T_OBJECT : {
1264
      const Type *t = _gvn.type( value );
1265

1266
      const TypeOopPtr* tp = t->isa_oopptr();
1267
      if (tp != nullptr && !tp->is_loaded()
1268
          // Only for do_null_check, not any of its siblings:
1269
          && !assert_null && null_control == nullptr) {
1270
        // Usually, any field access or invocation on an unloaded oop type
1271
        // will simply fail to link, since the statically linked class is
1272
        // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1273
        // the static class is loaded but the sharper oop type is not.
1274
        // Rather than checking for this obscure case in lots of places,
1275
        // we simply observe that a null check on an unloaded class
1276
        // will always be followed by a nonsense operation, so we
1277
        // can just issue the uncommon trap here.
1278
        // Our access to the unloaded class will only be correct
1279
        // after it has been loaded and initialized, which requires
1280
        // a trip through the interpreter.
1281
        ciKlass* klass = tp->unloaded_klass();
1282
#ifndef PRODUCT
1283
        if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); }
1284
#endif
1285
        uncommon_trap(Deoptimization::Reason_unloaded,
1286
                      Deoptimization::Action_reinterpret,
1287
                      klass, "!loaded");
1288
        return top();
1289
      }
1290

1291
      if (assert_null) {
1292
        // See if the type is contained in NULL_PTR.
1293
        // If so, then the value is already null.
1294
        if (t->higher_equal(TypePtr::NULL_PTR)) {
1295
          NOT_PRODUCT(explicit_null_checks_elided++);
1296
          return value;           // Elided null assert quickly!
1297
        }
1298
      } else {
1299
        // See if mixing in the null pointer changes type.
1300
        // If so, then the null pointer was not allowed in the original
1301
        // type.  In other words, "value" was not-null.
1302
        if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1303
          // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1304
          NOT_PRODUCT(explicit_null_checks_elided++);
1305
          return value;           // Elided null check quickly!
1306
        }
1307
      }
1308
      chk = new CmpPNode( value, null() );
1309
      break;
1310
    }
1311

1312
    default:
1313
      fatal("unexpected type: %s", type2name(type));
1314
  }
1315
  assert(chk != nullptr, "sanity check");
1316
  chk = _gvn.transform(chk);
1317

1318
  BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1319
  BoolNode *btst = new BoolNode( chk, btest);
1320
  Node   *tst = _gvn.transform( btst );
1321

1322
  //-----------
1323
  // if peephole optimizations occurred, a prior test existed.
1324
  // If a prior test existed, maybe it dominates as we can avoid this test.
1325
  if (tst != btst && type == T_OBJECT) {
1326
    // At this point we want to scan up the CFG to see if we can
1327
    // find an identical test (and so avoid this test altogether).
1328
    Node *cfg = control();
1329
    int depth = 0;
1330
    while( depth < 16 ) {       // Limit search depth for speed
1331
      if( cfg->Opcode() == Op_IfTrue &&
1332
          cfg->in(0)->in(1) == tst ) {
1333
        // Found prior test.  Use "cast_not_null" to construct an identical
1334
        // CastPP (and hence hash to) as already exists for the prior test.
1335
        // Return that casted value.
1336
        if (assert_null) {
1337
          replace_in_map(value, null());
1338
          return null();  // do not issue the redundant test
1339
        }
1340
        Node *oldcontrol = control();
1341
        set_control(cfg);
1342
        Node *res = cast_not_null(value);
1343
        set_control(oldcontrol);
1344
        NOT_PRODUCT(explicit_null_checks_elided++);
1345
        return res;
1346
      }
1347
      cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1348
      if (cfg == nullptr)  break;  // Quit at region nodes
1349
      depth++;
1350
    }
1351
  }
1352

1353
  //-----------
1354
  // Branch to failure if null
1355
  float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1356
  Deoptimization::DeoptReason reason;
1357
  if (assert_null) {
1358
    reason = Deoptimization::reason_null_assert(speculative);
1359
  } else if (type == T_OBJECT) {
1360
    reason = Deoptimization::reason_null_check(speculative);
1361
  } else {
1362
    reason = Deoptimization::Reason_div0_check;
1363
  }
1364
  // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1365
  // ciMethodData::has_trap_at will return a conservative -1 if any
1366
  // must-be-null assertion has failed.  This could cause performance
1367
  // problems for a method after its first do_null_assert failure.
1368
  // Consider using 'Reason_class_check' instead?
1369

1370
  // To cause an implicit null check, we set the not-null probability
1371
  // to the maximum (PROB_MAX).  For an explicit check the probability
1372
  // is set to a smaller value.
1373
  if (null_control != nullptr || too_many_traps(reason)) {
1374
    // probability is less likely
1375
    ok_prob =  PROB_LIKELY_MAG(3);
1376
  } else if (!assert_null &&
1377
             (ImplicitNullCheckThreshold > 0) &&
1378
             method() != nullptr &&
1379
             (method()->method_data()->trap_count(reason)
1380
              >= (uint)ImplicitNullCheckThreshold)) {
1381
    ok_prob =  PROB_LIKELY_MAG(3);
1382
  }
1383

1384
  if (null_control != nullptr) {
1385
    IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1386
    Node* null_true = _gvn.transform( new IfFalseNode(iff));
1387
    set_control(      _gvn.transform( new IfTrueNode(iff)));
1388
#ifndef PRODUCT
1389
    if (null_true == top()) {
1390
      explicit_null_checks_elided++;
1391
    }
1392
#endif
1393
    (*null_control) = null_true;
1394
  } else {
1395
    BuildCutout unless(this, tst, ok_prob);
1396
    // Check for optimizer eliding test at parse time
1397
    if (stopped()) {
1398
      // Failure not possible; do not bother making uncommon trap.
1399
      NOT_PRODUCT(explicit_null_checks_elided++);
1400
    } else if (assert_null) {
1401
      uncommon_trap(reason,
1402
                    Deoptimization::Action_make_not_entrant,
1403
                    nullptr, "assert_null");
1404
    } else {
1405
      replace_in_map(value, zerocon(type));
1406
      builtin_throw(reason);
1407
    }
1408
  }
1409

1410
  // Must throw exception, fall-thru not possible?
1411
  if (stopped()) {
1412
    return top();               // No result
1413
  }
1414

1415
  if (assert_null) {
1416
    // Cast obj to null on this path.
1417
    replace_in_map(value, zerocon(type));
1418
    return zerocon(type);
1419
  }
1420

1421
  // Cast obj to not-null on this path, if there is no null_control.
1422
  // (If there is a null_control, a non-null value may come back to haunt us.)
1423
  if (type == T_OBJECT) {
1424
    Node* cast = cast_not_null(value, false);
1425
    if (null_control == nullptr || (*null_control) == top())
1426
      replace_in_map(value, cast);
1427
    value = cast;
1428
  }
1429

1430
  return value;
1431
}
1432

1433

1434
//------------------------------cast_not_null----------------------------------
1435
// Cast obj to not-null on this path
1436
Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1437
  const Type *t = _gvn.type(obj);
1438
  const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1439
  // Object is already not-null?
1440
  if( t == t_not_null ) return obj;
1441

1442
  Node* cast = new CastPPNode(control(), obj,t_not_null);
1443
  cast = _gvn.transform( cast );
1444

1445
  // Scan for instances of 'obj' in the current JVM mapping.
1446
  // These instances are known to be not-null after the test.
1447
  if (do_replace_in_map)
1448
    replace_in_map(obj, cast);
1449

1450
  return cast;                  // Return casted value
1451
}
1452

1453
// Sometimes in intrinsics, we implicitly know an object is not null
1454
// (there's no actual null check) so we can cast it to not null. In
1455
// the course of optimizations, the input to the cast can become null.
1456
// In that case that data path will die and we need the control path
1457
// to become dead as well to keep the graph consistent. So we have to
1458
// add a check for null for which one branch can't be taken. It uses
1459
// an Opaque4 node that will cause the check to be removed after loop
1460
// opts so the test goes away and the compiled code doesn't execute a
1461
// useless check.
1462
Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1463
  if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1464
    return value;
1465
  }
1466
  Node* chk = _gvn.transform(new CmpPNode(value, null()));
1467
  Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1468
  Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1469
  IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1470
  _gvn.set_type(iff, iff->Value(&_gvn));
1471
  if (!tst->is_Con()) {
1472
    record_for_igvn(iff);
1473
  }
1474
  Node *if_f = _gvn.transform(new IfFalseNode(iff));
1475
  Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1476
  Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1477
  C->root()->add_req(halt);
1478
  Node *if_t = _gvn.transform(new IfTrueNode(iff));
1479
  set_control(if_t);
1480
  return cast_not_null(value, do_replace_in_map);
1481
}
1482

1483

1484
//--------------------------replace_in_map-------------------------------------
1485
void GraphKit::replace_in_map(Node* old, Node* neww) {
1486
  if (old == neww) {
1487
    return;
1488
  }
1489

1490
  map()->replace_edge(old, neww);
1491

1492
  // Note: This operation potentially replaces any edge
1493
  // on the map.  This includes locals, stack, and monitors
1494
  // of the current (innermost) JVM state.
1495

1496
  // don't let inconsistent types from profiling escape this
1497
  // method
1498

1499
  const Type* told = _gvn.type(old);
1500
  const Type* tnew = _gvn.type(neww);
1501

1502
  if (!tnew->higher_equal(told)) {
1503
    return;
1504
  }
1505

1506
  map()->record_replaced_node(old, neww);
1507
}
1508

1509

1510
//=============================================================================
1511
//--------------------------------memory---------------------------------------
1512
Node* GraphKit::memory(uint alias_idx) {
1513
  MergeMemNode* mem = merged_memory();
1514
  Node* p = mem->memory_at(alias_idx);
1515
  assert(p != mem->empty_memory(), "empty");
1516
  _gvn.set_type(p, Type::MEMORY);  // must be mapped
1517
  return p;
1518
}
1519

1520
//-----------------------------reset_memory------------------------------------
1521
Node* GraphKit::reset_memory() {
1522
  Node* mem = map()->memory();
1523
  // do not use this node for any more parsing!
1524
  debug_only( map()->set_memory((Node*)nullptr) );
1525
  return _gvn.transform( mem );
1526
}
1527

1528
//------------------------------set_all_memory---------------------------------
1529
void GraphKit::set_all_memory(Node* newmem) {
1530
  Node* mergemem = MergeMemNode::make(newmem);
1531
  gvn().set_type_bottom(mergemem);
1532
  map()->set_memory(mergemem);
1533
}
1534

1535
//------------------------------set_all_memory_call----------------------------
1536
void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1537
  Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1538
  set_all_memory(newmem);
1539
}
1540

1541
//=============================================================================
1542
//
1543
// parser factory methods for MemNodes
1544
//
1545
// These are layered on top of the factory methods in LoadNode and StoreNode,
1546
// and integrate with the parser's memory state and _gvn engine.
1547
//
1548

1549
// factory methods in "int adr_idx"
1550
Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1551
                          int adr_idx,
1552
                          MemNode::MemOrd mo,
1553
                          LoadNode::ControlDependency control_dependency,
1554
                          bool require_atomic_access,
1555
                          bool unaligned,
1556
                          bool mismatched,
1557
                          bool unsafe,
1558
                          uint8_t barrier_data) {
1559
  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1560
  const TypePtr* adr_type = nullptr; // debug-mode-only argument
1561
  debug_only(adr_type = C->get_adr_type(adr_idx));
1562
  Node* mem = memory(adr_idx);
1563
  Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1564
  ld = _gvn.transform(ld);
1565
  if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1566
    // Improve graph before escape analysis and boxing elimination.
1567
    record_for_igvn(ld);
1568
    if (ld->is_DecodeN()) {
1569
      // Also record the actual load (LoadN) in case ld is DecodeN. In some
1570
      // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1571
      // a Phi). Recording such cases is still perfectly sound, but may be
1572
      // unnecessary and result in some minor IGVN overhead.
1573
      record_for_igvn(ld->in(1));
1574
    }
1575
  }
1576
  return ld;
1577
}
1578

1579
Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1580
                                int adr_idx,
1581
                                MemNode::MemOrd mo,
1582
                                bool require_atomic_access,
1583
                                bool unaligned,
1584
                                bool mismatched,
1585
                                bool unsafe,
1586
                                int barrier_data) {
1587
  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1588
  const TypePtr* adr_type = nullptr;
1589
  debug_only(adr_type = C->get_adr_type(adr_idx));
1590
  Node *mem = memory(adr_idx);
1591
  Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1592
  if (unaligned) {
1593
    st->as_Store()->set_unaligned_access();
1594
  }
1595
  if (mismatched) {
1596
    st->as_Store()->set_mismatched_access();
1597
  }
1598
  if (unsafe) {
1599
    st->as_Store()->set_unsafe_access();
1600
  }
1601
  st->as_Store()->set_barrier_data(barrier_data);
1602
  st = _gvn.transform(st);
1603
  set_memory(st, adr_idx);
1604
  // Back-to-back stores can only remove intermediate store with DU info
1605
  // so push on worklist for optimizer.
1606
  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1607
    record_for_igvn(st);
1608

1609
  return st;
1610
}
1611

1612
Node* GraphKit::access_store_at(Node* obj,
1613
                                Node* adr,
1614
                                const TypePtr* adr_type,
1615
                                Node* val,
1616
                                const Type* val_type,
1617
                                BasicType bt,
1618
                                DecoratorSet decorators) {
1619
  // Transformation of a value which could be null pointer (CastPP #null)
1620
  // could be delayed during Parse (for example, in adjust_map_after_if()).
1621
  // Execute transformation here to avoid barrier generation in such case.
1622
  if (_gvn.type(val) == TypePtr::NULL_PTR) {
1623
    val = _gvn.makecon(TypePtr::NULL_PTR);
1624
  }
1625

1626
  if (stopped()) {
1627
    return top(); // Dead path ?
1628
  }
1629

1630
  assert(val != nullptr, "not dead path");
1631

1632
  C2AccessValuePtr addr(adr, adr_type);
1633
  C2AccessValue value(val, val_type);
1634
  C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1635
  if (access.is_raw()) {
1636
    return _barrier_set->BarrierSetC2::store_at(access, value);
1637
  } else {
1638
    return _barrier_set->store_at(access, value);
1639
  }
1640
}
1641

1642
Node* GraphKit::access_load_at(Node* obj,   // containing obj
1643
                               Node* adr,   // actual address to store val at
1644
                               const TypePtr* adr_type,
1645
                               const Type* val_type,
1646
                               BasicType bt,
1647
                               DecoratorSet decorators) {
1648
  if (stopped()) {
1649
    return top(); // Dead path ?
1650
  }
1651

1652
  C2AccessValuePtr addr(adr, adr_type);
1653
  C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1654
  if (access.is_raw()) {
1655
    return _barrier_set->BarrierSetC2::load_at(access, val_type);
1656
  } else {
1657
    return _barrier_set->load_at(access, val_type);
1658
  }
1659
}
1660

1661
Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1662
                            const Type* val_type,
1663
                            BasicType bt,
1664
                            DecoratorSet decorators) {
1665
  if (stopped()) {
1666
    return top(); // Dead path ?
1667
  }
1668

1669
  C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1670
  C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1671
  if (access.is_raw()) {
1672
    return _barrier_set->BarrierSetC2::load_at(access, val_type);
1673
  } else {
1674
    return _barrier_set->load_at(access, val_type);
1675
  }
1676
}
1677

1678
Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1679
                                             Node* adr,
1680
                                             const TypePtr* adr_type,
1681
                                             int alias_idx,
1682
                                             Node* expected_val,
1683
                                             Node* new_val,
1684
                                             const Type* value_type,
1685
                                             BasicType bt,
1686
                                             DecoratorSet decorators) {
1687
  C2AccessValuePtr addr(adr, adr_type);
1688
  C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1689
                        bt, obj, addr, alias_idx);
1690
  if (access.is_raw()) {
1691
    return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1692
  } else {
1693
    return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1694
  }
1695
}
1696

1697
Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1698
                                              Node* adr,
1699
                                              const TypePtr* adr_type,
1700
                                              int alias_idx,
1701
                                              Node* expected_val,
1702
                                              Node* new_val,
1703
                                              const Type* value_type,
1704
                                              BasicType bt,
1705
                                              DecoratorSet decorators) {
1706
  C2AccessValuePtr addr(adr, adr_type);
1707
  C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1708
                        bt, obj, addr, alias_idx);
1709
  if (access.is_raw()) {
1710
    return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1711
  } else {
1712
    return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1713
  }
1714
}
1715

1716
Node* GraphKit::access_atomic_xchg_at(Node* obj,
1717
                                      Node* adr,
1718
                                      const TypePtr* adr_type,
1719
                                      int alias_idx,
1720
                                      Node* new_val,
1721
                                      const Type* value_type,
1722
                                      BasicType bt,
1723
                                      DecoratorSet decorators) {
1724
  C2AccessValuePtr addr(adr, adr_type);
1725
  C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1726
                        bt, obj, addr, alias_idx);
1727
  if (access.is_raw()) {
1728
    return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1729
  } else {
1730
    return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1731
  }
1732
}
1733

1734
Node* GraphKit::access_atomic_add_at(Node* obj,
1735
                                     Node* adr,
1736
                                     const TypePtr* adr_type,
1737
                                     int alias_idx,
1738
                                     Node* new_val,
1739
                                     const Type* value_type,
1740
                                     BasicType bt,
1741
                                     DecoratorSet decorators) {
1742
  C2AccessValuePtr addr(adr, adr_type);
1743
  C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1744
  if (access.is_raw()) {
1745
    return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1746
  } else {
1747
    return _barrier_set->atomic_add_at(access, new_val, value_type);
1748
  }
1749
}
1750

1751
void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1752
  return _barrier_set->clone(this, src, dst, size, is_array);
1753
}
1754

1755
//-------------------------array_element_address-------------------------
1756
Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1757
                                      const TypeInt* sizetype, Node* ctrl) {
1758
  uint shift  = exact_log2(type2aelembytes(elembt));
1759
  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1760

1761
  // short-circuit a common case (saves lots of confusing waste motion)
1762
  jint idx_con = find_int_con(idx, -1);
1763
  if (idx_con >= 0) {
1764
    intptr_t offset = header + ((intptr_t)idx_con << shift);
1765
    return basic_plus_adr(ary, offset);
1766
  }
1767

1768
  // must be correct type for alignment purposes
1769
  Node* base  = basic_plus_adr(ary, header);
1770
  idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1771
  Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1772
  return basic_plus_adr(ary, base, scale);
1773
}
1774

1775
//-------------------------load_array_element-------------------------
1776
Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1777
  const Type* elemtype = arytype->elem();
1778
  BasicType elembt = elemtype->array_element_basic_type();
1779
  Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1780
  if (elembt == T_NARROWOOP) {
1781
    elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1782
  }
1783
  Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1784
                            IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1785
  return ld;
1786
}
1787

1788
//-------------------------set_arguments_for_java_call-------------------------
1789
// Arguments (pre-popped from the stack) are taken from the JVMS.
1790
void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1791
  // Add the call arguments:
1792
  uint nargs = call->method()->arg_size();
1793
  for (uint i = 0; i < nargs; i++) {
1794
    Node* arg = argument(i);
1795
    call->init_req(i + TypeFunc::Parms, arg);
1796
  }
1797
}
1798

1799
//---------------------------set_edges_for_java_call---------------------------
1800
// Connect a newly created call into the current JVMS.
1801
// A return value node (if any) is returned from set_edges_for_java_call.
1802
void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1803

1804
  // Add the predefined inputs:
1805
  call->init_req( TypeFunc::Control, control() );
1806
  call->init_req( TypeFunc::I_O    , i_o() );
1807
  call->init_req( TypeFunc::Memory , reset_memory() );
1808
  call->init_req( TypeFunc::FramePtr, frameptr() );
1809
  call->init_req( TypeFunc::ReturnAdr, top() );
1810

1811
  add_safepoint_edges(call, must_throw);
1812

1813
  Node* xcall = _gvn.transform(call);
1814

1815
  if (xcall == top()) {
1816
    set_control(top());
1817
    return;
1818
  }
1819
  assert(xcall == call, "call identity is stable");
1820

1821
  // Re-use the current map to produce the result.
1822

1823
  set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1824
  set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1825
  set_all_memory_call(xcall, separate_io_proj);
1826

1827
  //return xcall;   // no need, caller already has it
1828
}
1829

1830
Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1831
  if (stopped())  return top();  // maybe the call folded up?
1832

1833
  // Capture the return value, if any.
1834
  Node* ret;
1835
  if (call->method() == nullptr ||
1836
      call->method()->return_type()->basic_type() == T_VOID)
1837
        ret = top();
1838
  else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1839

1840
  // Note:  Since any out-of-line call can produce an exception,
1841
  // we always insert an I_O projection from the call into the result.
1842

1843
  make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1844

1845
  if (separate_io_proj) {
1846
    // The caller requested separate projections be used by the fall
1847
    // through and exceptional paths, so replace the projections for
1848
    // the fall through path.
1849
    set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1850
    set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1851
  }
1852
  return ret;
1853
}
1854

1855
//--------------------set_predefined_input_for_runtime_call--------------------
1856
// Reading and setting the memory state is way conservative here.
1857
// The real problem is that I am not doing real Type analysis on memory,
1858
// so I cannot distinguish card mark stores from other stores.  Across a GC
1859
// point the Store Barrier and the card mark memory has to agree.  I cannot
1860
// have a card mark store and its barrier split across the GC point from
1861
// either above or below.  Here I get that to happen by reading ALL of memory.
1862
// A better answer would be to separate out card marks from other memory.
1863
// For now, return the input memory state, so that it can be reused
1864
// after the call, if this call has restricted memory effects.
1865
Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1866
  // Set fixed predefined input arguments
1867
  Node* memory = reset_memory();
1868
  Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1869
  call->init_req( TypeFunc::Control,   control()  );
1870
  call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1871
  call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1872
  call->init_req( TypeFunc::FramePtr,  frameptr() );
1873
  call->init_req( TypeFunc::ReturnAdr, top()      );
1874
  return memory;
1875
}
1876

1877
//-------------------set_predefined_output_for_runtime_call--------------------
1878
// Set control and memory (not i_o) from the call.
1879
// If keep_mem is not null, use it for the output state,
1880
// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1881
// If hook_mem is null, this call produces no memory effects at all.
1882
// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1883
// then only that memory slice is taken from the call.
1884
// In the last case, we must put an appropriate memory barrier before
1885
// the call, so as to create the correct anti-dependencies on loads
1886
// preceding the call.
1887
void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1888
                                                      Node* keep_mem,
1889
                                                      const TypePtr* hook_mem) {
1890
  // no i/o
1891
  set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1892
  if (keep_mem) {
1893
    // First clone the existing memory state
1894
    set_all_memory(keep_mem);
1895
    if (hook_mem != nullptr) {
1896
      // Make memory for the call
1897
      Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1898
      // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1899
      // We also use hook_mem to extract specific effects from arraycopy stubs.
1900
      set_memory(mem, hook_mem);
1901
    }
1902
    // ...else the call has NO memory effects.
1903

1904
    // Make sure the call advertises its memory effects precisely.
1905
    // This lets us build accurate anti-dependences in gcm.cpp.
1906
    assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1907
           "call node must be constructed correctly");
1908
  } else {
1909
    assert(hook_mem == nullptr, "");
1910
    // This is not a "slow path" call; all memory comes from the call.
1911
    set_all_memory_call(call);
1912
  }
1913
}
1914

1915
// Keep track of MergeMems feeding into other MergeMems
1916
static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
1917
  if (!mem->is_MergeMem()) {
1918
    return;
1919
  }
1920
  for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
1921
    Node* use = i.get();
1922
    if (use->is_MergeMem()) {
1923
      wl.push(use);
1924
    }
1925
  }
1926
}
1927

1928
// Replace the call with the current state of the kit.
1929
void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1930
  JVMState* ejvms = nullptr;
1931
  if (has_exceptions()) {
1932
    ejvms = transfer_exceptions_into_jvms();
1933
  }
1934

1935
  ReplacedNodes replaced_nodes = map()->replaced_nodes();
1936
  ReplacedNodes replaced_nodes_exception;
1937
  Node* ex_ctl = top();
1938

1939
  SafePointNode* final_state = stop();
1940

1941
  // Find all the needed outputs of this call
1942
  CallProjections callprojs;
1943
  call->extract_projections(&callprojs, true);
1944

1945
  Unique_Node_List wl;
1946
  Node* init_mem = call->in(TypeFunc::Memory);
1947
  Node* final_mem = final_state->in(TypeFunc::Memory);
1948
  Node* final_ctl = final_state->in(TypeFunc::Control);
1949
  Node* final_io = final_state->in(TypeFunc::I_O);
1950

1951
  // Replace all the old call edges with the edges from the inlining result
1952
  if (callprojs.fallthrough_catchproj != nullptr) {
1953
    C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1954
  }
1955
  if (callprojs.fallthrough_memproj != nullptr) {
1956
    if (final_mem->is_MergeMem()) {
1957
      // Parser's exits MergeMem was not transformed but may be optimized
1958
      final_mem = _gvn.transform(final_mem);
1959
    }
1960
    C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1961
    add_mergemem_users_to_worklist(wl, final_mem);
1962
  }
1963
  if (callprojs.fallthrough_ioproj != nullptr) {
1964
    C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1965
  }
1966

1967
  // Replace the result with the new result if it exists and is used
1968
  if (callprojs.resproj != nullptr && result != nullptr) {
1969
    C->gvn_replace_by(callprojs.resproj, result);
1970
  }
1971

1972
  if (ejvms == nullptr) {
1973
    // No exception edges to simply kill off those paths
1974
    if (callprojs.catchall_catchproj != nullptr) {
1975
      C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1976
    }
1977
    if (callprojs.catchall_memproj != nullptr) {
1978
      C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1979
    }
1980
    if (callprojs.catchall_ioproj != nullptr) {
1981
      C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1982
    }
1983
    // Replace the old exception object with top
1984
    if (callprojs.exobj != nullptr) {
1985
      C->gvn_replace_by(callprojs.exobj, C->top());
1986
    }
1987
  } else {
1988
    GraphKit ekit(ejvms);
1989

1990
    // Load my combined exception state into the kit, with all phis transformed:
1991
    SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1992
    replaced_nodes_exception = ex_map->replaced_nodes();
1993

1994
    Node* ex_oop = ekit.use_exception_state(ex_map);
1995

1996
    if (callprojs.catchall_catchproj != nullptr) {
1997
      C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1998
      ex_ctl = ekit.control();
1999
    }
2000
    if (callprojs.catchall_memproj != nullptr) {
2001
      Node* ex_mem = ekit.reset_memory();
2002
      C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2003
      add_mergemem_users_to_worklist(wl, ex_mem);
2004
    }
2005
    if (callprojs.catchall_ioproj != nullptr) {
2006
      C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2007
    }
2008

2009
    // Replace the old exception object with the newly created one
2010
    if (callprojs.exobj != nullptr) {
2011
      C->gvn_replace_by(callprojs.exobj, ex_oop);
2012
    }
2013
  }
2014

2015
  // Disconnect the call from the graph
2016
  call->disconnect_inputs(C);
2017
  C->gvn_replace_by(call, C->top());
2018

2019
  // Clean up any MergeMems that feed other MergeMems since the
2020
  // optimizer doesn't like that.
2021
  while (wl.size() > 0) {
2022
    _gvn.transform(wl.pop());
2023
  }
2024

2025
  if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2026
    replaced_nodes.apply(C, final_ctl);
2027
  }
2028
  if (!ex_ctl->is_top() && do_replaced_nodes) {
2029
    replaced_nodes_exception.apply(C, ex_ctl);
2030
  }
2031
}
2032

2033

2034
//------------------------------increment_counter------------------------------
2035
// for statistics: increment a VM counter by 1
2036

2037
void GraphKit::increment_counter(address counter_addr) {
2038
  Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2039
  increment_counter(adr1);
2040
}
2041

2042
void GraphKit::increment_counter(Node* counter_addr) {
2043
  int adr_type = Compile::AliasIdxRaw;
2044
  Node* ctrl = control();
2045
  Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2046
  Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));
2047
  store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered);
2048
}
2049

2050

2051
//------------------------------uncommon_trap----------------------------------
2052
// Bail out to the interpreter in mid-method.  Implemented by calling the
2053
// uncommon_trap blob.  This helper function inserts a runtime call with the
2054
// right debug info.
2055
Node* GraphKit::uncommon_trap(int trap_request,
2056
                             ciKlass* klass, const char* comment,
2057
                             bool must_throw,
2058
                             bool keep_exact_action) {
2059
  if (failing())  stop();
2060
  if (stopped())  return nullptr; // trap reachable?
2061

2062
  // Note:  If ProfileTraps is true, and if a deopt. actually
2063
  // occurs here, the runtime will make sure an MDO exists.  There is
2064
  // no need to call method()->ensure_method_data() at this point.
2065

2066
  // Set the stack pointer to the right value for reexecution:
2067
  set_sp(reexecute_sp());
2068

2069
#ifdef ASSERT
2070
  if (!must_throw) {
2071
    // Make sure the stack has at least enough depth to execute
2072
    // the current bytecode.
2073
    int inputs, ignored_depth;
2074
    if (compute_stack_effects(inputs, ignored_depth)) {
2075
      assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2076
             Bytecodes::name(java_bc()), sp(), inputs);
2077
    }
2078
  }
2079
#endif
2080

2081
  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2082
  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2083

2084
  switch (action) {
2085
  case Deoptimization::Action_maybe_recompile:
2086
  case Deoptimization::Action_reinterpret:
2087
    // Temporary fix for 6529811 to allow virtual calls to be sure they
2088
    // get the chance to go from mono->bi->mega
2089
    if (!keep_exact_action &&
2090
        Deoptimization::trap_request_index(trap_request) < 0 &&
2091
        too_many_recompiles(reason)) {
2092
      // This BCI is causing too many recompilations.
2093
      if (C->log() != nullptr) {
2094
        C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2095
                Deoptimization::trap_reason_name(reason),
2096
                Deoptimization::trap_action_name(action));
2097
      }
2098
      action = Deoptimization::Action_none;
2099
      trap_request = Deoptimization::make_trap_request(reason, action);
2100
    } else {
2101
      C->set_trap_can_recompile(true);
2102
    }
2103
    break;
2104
  case Deoptimization::Action_make_not_entrant:
2105
    C->set_trap_can_recompile(true);
2106
    break;
2107
  case Deoptimization::Action_none:
2108
  case Deoptimization::Action_make_not_compilable:
2109
    break;
2110
  default:
2111
#ifdef ASSERT
2112
    fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2113
#endif
2114
    break;
2115
  }
2116

2117
  if (TraceOptoParse) {
2118
    char buf[100];
2119
    tty->print_cr("Uncommon trap %s at bci:%d",
2120
                  Deoptimization::format_trap_request(buf, sizeof(buf),
2121
                                                      trap_request), bci());
2122
  }
2123

2124
  CompileLog* log = C->log();
2125
  if (log != nullptr) {
2126
    int kid = (klass == nullptr)? -1: log->identify(klass);
2127
    log->begin_elem("uncommon_trap bci='%d'", bci());
2128
    char buf[100];
2129
    log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2130
                                                          trap_request));
2131
    if (kid >= 0)         log->print(" klass='%d'", kid);
2132
    if (comment != nullptr)  log->print(" comment='%s'", comment);
2133
    log->end_elem();
2134
  }
2135

2136
  // Make sure any guarding test views this path as very unlikely
2137
  Node *i0 = control()->in(0);
2138
  if (i0 != nullptr && i0->is_If()) {        // Found a guarding if test?
2139
    IfNode *iff = i0->as_If();
2140
    float f = iff->_prob;   // Get prob
2141
    if (control()->Opcode() == Op_IfTrue) {
2142
      if (f > PROB_UNLIKELY_MAG(4))
2143
        iff->_prob = PROB_MIN;
2144
    } else {
2145
      if (f < PROB_LIKELY_MAG(4))
2146
        iff->_prob = PROB_MAX;
2147
    }
2148
  }
2149

2150
  // Clear out dead values from the debug info.
2151
  kill_dead_locals();
2152

2153
  // Now insert the uncommon trap subroutine call
2154
  address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2155
  const TypePtr* no_memory_effects = nullptr;
2156
  // Pass the index of the class to be loaded
2157
  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2158
                                 (must_throw ? RC_MUST_THROW : 0),
2159
                                 OptoRuntime::uncommon_trap_Type(),
2160
                                 call_addr, "uncommon_trap", no_memory_effects,
2161
                                 intcon(trap_request));
2162
  assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2163
         "must extract request correctly from the graph");
2164
  assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2165

2166
  call->set_req(TypeFunc::ReturnAdr, returnadr());
2167
  // The debug info is the only real input to this call.
2168

2169
  // Halt-and-catch fire here.  The above call should never return!
2170
  HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen"
2171
                                                       PRODUCT_ONLY(COMMA /*reachable*/false));
2172
  _gvn.set_type_bottom(halt);
2173
  root()->add_req(halt);
2174

2175
  stop_and_kill_map();
2176
  return call;
2177
}
2178

2179

2180
//--------------------------just_allocated_object------------------------------
2181
// Report the object that was just allocated.
2182
// It must be the case that there are no intervening safepoints.
2183
// We use this to determine if an object is so "fresh" that
2184
// it does not require card marks.
2185
Node* GraphKit::just_allocated_object(Node* current_control) {
2186
  Node* ctrl = current_control;
2187
  // Object::<init> is invoked after allocation, most of invoke nodes
2188
  // will be reduced, but a region node is kept in parse time, we check
2189
  // the pattern and skip the region node if it degraded to a copy.
2190
  if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 &&
2191
      ctrl->as_Region()->is_copy()) {
2192
    ctrl = ctrl->as_Region()->is_copy();
2193
  }
2194
  if (C->recent_alloc_ctl() == ctrl) {
2195
   return C->recent_alloc_obj();
2196
  }
2197
  return nullptr;
2198
}
2199

2200

2201
/**
2202
 * Record profiling data exact_kls for Node n with the type system so
2203
 * that it can propagate it (speculation)
2204
 *
2205
 * @param n          node that the type applies to
2206
 * @param exact_kls  type from profiling
2207
 * @param maybe_null did profiling see null?
2208
 *
2209
 * @return           node with improved type
2210
 */
2211
Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2212
  const Type* current_type = _gvn.type(n);
2213
  assert(UseTypeSpeculation, "type speculation must be on");
2214

2215
  const TypePtr* speculative = current_type->speculative();
2216

2217
  // Should the klass from the profile be recorded in the speculative type?
2218
  if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2219
    const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2220
    const TypeOopPtr* xtype = tklass->as_instance_type();
2221
    assert(xtype->klass_is_exact(), "Should be exact");
2222
    // Any reason to believe n is not null (from this profiling or a previous one)?
2223
    assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2224
    const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2225
    // record the new speculative type's depth
2226
    speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2227
    speculative = speculative->with_inline_depth(jvms()->depth());
2228
  } else if (current_type->would_improve_ptr(ptr_kind)) {
2229
    // Profiling report that null was never seen so we can change the
2230
    // speculative type to non null ptr.
2231
    if (ptr_kind == ProfileAlwaysNull) {
2232
      speculative = TypePtr::NULL_PTR;
2233
    } else {
2234
      assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2235
      const TypePtr* ptr = TypePtr::NOTNULL;
2236
      if (speculative != nullptr) {
2237
        speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2238
      } else {
2239
        speculative = ptr;
2240
      }
2241
    }
2242
  }
2243

2244
  if (speculative != current_type->speculative()) {
2245
    // Build a type with a speculative type (what we think we know
2246
    // about the type but will need a guard when we use it)
2247
    const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2248
    // We're changing the type, we need a new CheckCast node to carry
2249
    // the new type. The new type depends on the control: what
2250
    // profiling tells us is only valid from here as far as we can
2251
    // tell.
2252
    Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2253
    cast = _gvn.transform(cast);
2254
    replace_in_map(n, cast);
2255
    n = cast;
2256
  }
2257

2258
  return n;
2259
}
2260

2261
/**
2262
 * Record profiling data from receiver profiling at an invoke with the
2263
 * type system so that it can propagate it (speculation)
2264
 *
2265
 * @param n  receiver node
2266
 *
2267
 * @return   node with improved type
2268
 */
2269
Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2270
  if (!UseTypeSpeculation) {
2271
    return n;
2272
  }
2273
  ciKlass* exact_kls = profile_has_unique_klass();
2274
  ProfilePtrKind ptr_kind = ProfileMaybeNull;
2275
  if ((java_bc() == Bytecodes::_checkcast ||
2276
       java_bc() == Bytecodes::_instanceof ||
2277
       java_bc() == Bytecodes::_aastore) &&
2278
      method()->method_data()->is_mature()) {
2279
    ciProfileData* data = method()->method_data()->bci_to_data(bci());
2280
    if (data != nullptr) {
2281
      if (!data->as_BitData()->null_seen()) {
2282
        ptr_kind = ProfileNeverNull;
2283
      } else {
2284
        assert(data->is_ReceiverTypeData(), "bad profile data type");
2285
        ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2286
        uint i = 0;
2287
        for (; i < call->row_limit(); i++) {
2288
          ciKlass* receiver = call->receiver(i);
2289
          if (receiver != nullptr) {
2290
            break;
2291
          }
2292
        }
2293
        ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2294
      }
2295
    }
2296
  }
2297
  return record_profile_for_speculation(n, exact_kls, ptr_kind);
2298
}
2299

2300
/**
2301
 * Record profiling data from argument profiling at an invoke with the
2302
 * type system so that it can propagate it (speculation)
2303
 *
2304
 * @param dest_method  target method for the call
2305
 * @param bc           what invoke bytecode is this?
2306
 */
2307
void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2308
  if (!UseTypeSpeculation) {
2309
    return;
2310
  }
2311
  const TypeFunc* tf    = TypeFunc::make(dest_method);
2312
  int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2313
  int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2314
  for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2315
    const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2316
    if (is_reference_type(targ->basic_type())) {
2317
      ProfilePtrKind ptr_kind = ProfileMaybeNull;
2318
      ciKlass* better_type = nullptr;
2319
      if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2320
        record_profile_for_speculation(argument(j), better_type, ptr_kind);
2321
      }
2322
      i++;
2323
    }
2324
  }
2325
}
2326

2327
/**
2328
 * Record profiling data from parameter profiling at an invoke with
2329
 * the type system so that it can propagate it (speculation)
2330
 */
2331
void GraphKit::record_profiled_parameters_for_speculation() {
2332
  if (!UseTypeSpeculation) {
2333
    return;
2334
  }
2335
  for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2336
    if (_gvn.type(local(i))->isa_oopptr()) {
2337
      ProfilePtrKind ptr_kind = ProfileMaybeNull;
2338
      ciKlass* better_type = nullptr;
2339
      if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2340
        record_profile_for_speculation(local(i), better_type, ptr_kind);
2341
      }
2342
      j++;
2343
    }
2344
  }
2345
}
2346

2347
/**
2348
 * Record profiling data from return value profiling at an invoke with
2349
 * the type system so that it can propagate it (speculation)
2350
 */
2351
void GraphKit::record_profiled_return_for_speculation() {
2352
  if (!UseTypeSpeculation) {
2353
    return;
2354
  }
2355
  ProfilePtrKind ptr_kind = ProfileMaybeNull;
2356
  ciKlass* better_type = nullptr;
2357
  if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2358
    // If profiling reports a single type for the return value,
2359
    // feed it to the type system so it can propagate it as a
2360
    // speculative type
2361
    record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2362
  }
2363
}
2364

2365
void GraphKit::round_double_arguments(ciMethod* dest_method) {
2366
  if (Matcher::strict_fp_requires_explicit_rounding) {
2367
    // (Note:  TypeFunc::make has a cache that makes this fast.)
2368
    const TypeFunc* tf    = TypeFunc::make(dest_method);
2369
    int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2370
    for (int j = 0; j < nargs; j++) {
2371
      const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2372
      if (targ->basic_type() == T_DOUBLE) {
2373
        // If any parameters are doubles, they must be rounded before
2374
        // the call, dprecision_rounding does gvn.transform
2375
        Node *arg = argument(j);
2376
        arg = dprecision_rounding(arg);
2377
        set_argument(j, arg);
2378
      }
2379
    }
2380
  }
2381
}
2382

2383
// rounding for strict float precision conformance
2384
Node* GraphKit::precision_rounding(Node* n) {
2385
  if (Matcher::strict_fp_requires_explicit_rounding) {
2386
#ifdef IA32
2387
    if (UseSSE == 0) {
2388
      return _gvn.transform(new RoundFloatNode(nullptr, n));
2389
    }
2390
#else
2391
    Unimplemented();
2392
#endif // IA32
2393
  }
2394
  return n;
2395
}
2396

2397
// rounding for strict double precision conformance
2398
Node* GraphKit::dprecision_rounding(Node *n) {
2399
  if (Matcher::strict_fp_requires_explicit_rounding) {
2400
#ifdef IA32
2401
    if (UseSSE < 2) {
2402
      return _gvn.transform(new RoundDoubleNode(nullptr, n));
2403
    }
2404
#else
2405
    Unimplemented();
2406
#endif // IA32
2407
  }
2408
  return n;
2409
}
2410

2411
//=============================================================================
2412
// Generate a fast path/slow path idiom.  Graph looks like:
2413
// [foo] indicates that 'foo' is a parameter
2414
//
2415
//              [in]     null
2416
//                 \    /
2417
//                  CmpP
2418
//                  Bool ne
2419
//                   If
2420
//                  /  \
2421
//              True    False-<2>
2422
//              / |
2423
//             /  cast_not_null
2424
//           Load  |    |   ^
2425
//        [fast_test]   |   |
2426
// gvn to   opt_test    |   |
2427
//          /    \      |  <1>
2428
//      True     False  |
2429
//        |         \\  |
2430
//   [slow_call]     \[fast_result]
2431
//    Ctl   Val       \      \
2432
//     |               \      \
2433
//    Catch       <1>   \      \
2434
//   /    \        ^     \      \
2435
//  Ex    No_Ex    |      \      \
2436
//  |       \   \  |       \ <2>  \
2437
//  ...      \  [slow_res] |  |    \   [null_result]
2438
//            \         \--+--+---  |  |
2439
//             \           | /    \ | /
2440
//              --------Region     Phi
2441
//
2442
//=============================================================================
2443
// Code is structured as a series of driver functions all called 'do_XXX' that
2444
// call a set of helper functions.  Helper functions first, then drivers.
2445

2446
//------------------------------null_check_oop---------------------------------
2447
// Null check oop.  Set null-path control into Region in slot 3.
2448
// Make a cast-not-nullness use the other not-null control.  Return cast.
2449
Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2450
                               bool never_see_null,
2451
                               bool safe_for_replace,
2452
                               bool speculative) {
2453
  // Initial null check taken path
2454
  (*null_control) = top();
2455
  Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2456

2457
  // Generate uncommon_trap:
2458
  if (never_see_null && (*null_control) != top()) {
2459
    // If we see an unexpected null at a check-cast we record it and force a
2460
    // recompile; the offending check-cast will be compiled to handle nulls.
2461
    // If we see more than one offending BCI, then all checkcasts in the
2462
    // method will be compiled to handle nulls.
2463
    PreserveJVMState pjvms(this);
2464
    set_control(*null_control);
2465
    replace_in_map(value, null());
2466
    Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2467
    uncommon_trap(reason,
2468
                  Deoptimization::Action_make_not_entrant);
2469
    (*null_control) = top();    // null path is dead
2470
  }
2471
  if ((*null_control) == top() && safe_for_replace) {
2472
    replace_in_map(value, cast);
2473
  }
2474

2475
  // Cast away null-ness on the result
2476
  return cast;
2477
}
2478

2479
//------------------------------opt_iff----------------------------------------
2480
// Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2481
// Return slow-path control.
2482
Node* GraphKit::opt_iff(Node* region, Node* iff) {
2483
  IfNode *opt_iff = _gvn.transform(iff)->as_If();
2484

2485
  // Fast path taken; set region slot 2
2486
  Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2487
  region->init_req(2,fast_taken); // Capture fast-control
2488

2489
  // Fast path not-taken, i.e. slow path
2490
  Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2491
  return slow_taken;
2492
}
2493

2494
//-----------------------------make_runtime_call-------------------------------
2495
Node* GraphKit::make_runtime_call(int flags,
2496
                                  const TypeFunc* call_type, address call_addr,
2497
                                  const char* call_name,
2498
                                  const TypePtr* adr_type,
2499
                                  // The following parms are all optional.
2500
                                  // The first null ends the list.
2501
                                  Node* parm0, Node* parm1,
2502
                                  Node* parm2, Node* parm3,
2503
                                  Node* parm4, Node* parm5,
2504
                                  Node* parm6, Node* parm7) {
2505
  assert(call_addr != nullptr, "must not call null targets");
2506

2507
  // Slow-path call
2508
  bool is_leaf = !(flags & RC_NO_LEAF);
2509
  bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2510
  if (call_name == nullptr) {
2511
    assert(!is_leaf, "must supply name for leaf");
2512
    call_name = OptoRuntime::stub_name(call_addr);
2513
  }
2514
  CallNode* call;
2515
  if (!is_leaf) {
2516
    call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2517
  } else if (flags & RC_NO_FP) {
2518
    call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2519
  } else  if (flags & RC_VECTOR){
2520
    uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2521
    call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2522
  } else {
2523
    call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2524
  }
2525

2526
  // The following is similar to set_edges_for_java_call,
2527
  // except that the memory effects of the call are restricted to AliasIdxRaw.
2528

2529
  // Slow path call has no side-effects, uses few values
2530
  bool wide_in  = !(flags & RC_NARROW_MEM);
2531
  bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2532

2533
  Node* prev_mem = nullptr;
2534
  if (wide_in) {
2535
    prev_mem = set_predefined_input_for_runtime_call(call);
2536
  } else {
2537
    assert(!wide_out, "narrow in => narrow out");
2538
    Node* narrow_mem = memory(adr_type);
2539
    prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2540
  }
2541

2542
  // Hook each parm in order.  Stop looking at the first null.
2543
  if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2544
  if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2545
  if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2546
  if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2547
  if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2548
  if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2549
  if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2550
  if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2551
  /* close each nested if ===> */  } } } } } } } }
2552
  assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2553

2554
  if (!is_leaf) {
2555
    // Non-leaves can block and take safepoints:
2556
    add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2557
  }
2558
  // Non-leaves can throw exceptions:
2559
  if (has_io) {
2560
    call->set_req(TypeFunc::I_O, i_o());
2561
  }
2562

2563
  if (flags & RC_UNCOMMON) {
2564
    // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2565
    // (An "if" probability corresponds roughly to an unconditional count.
2566
    // Sort of.)
2567
    call->set_cnt(PROB_UNLIKELY_MAG(4));
2568
  }
2569

2570
  Node* c = _gvn.transform(call);
2571
  assert(c == call, "cannot disappear");
2572

2573
  if (wide_out) {
2574
    // Slow path call has full side-effects.
2575
    set_predefined_output_for_runtime_call(call);
2576
  } else {
2577
    // Slow path call has few side-effects, and/or sets few values.
2578
    set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2579
  }
2580

2581
  if (has_io) {
2582
    set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2583
  }
2584
  return call;
2585

2586
}
2587

2588
// i2b
2589
Node* GraphKit::sign_extend_byte(Node* in) {
2590
  Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2591
  return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2592
}
2593

2594
// i2s
2595
Node* GraphKit::sign_extend_short(Node* in) {
2596
  Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2597
  return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2598
}
2599

2600
//------------------------------merge_memory-----------------------------------
2601
// Merge memory from one path into the current memory state.
2602
void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2603
  for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2604
    Node* old_slice = mms.force_memory();
2605
    Node* new_slice = mms.memory2();
2606
    if (old_slice != new_slice) {
2607
      PhiNode* phi;
2608
      if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2609
        if (mms.is_empty()) {
2610
          // clone base memory Phi's inputs for this memory slice
2611
          assert(old_slice == mms.base_memory(), "sanity");
2612
          phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2613
          _gvn.set_type(phi, Type::MEMORY);
2614
          for (uint i = 1; i < phi->req(); i++) {
2615
            phi->init_req(i, old_slice->in(i));
2616
          }
2617
        } else {
2618
          phi = old_slice->as_Phi(); // Phi was generated already
2619
        }
2620
      } else {
2621
        phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2622
        _gvn.set_type(phi, Type::MEMORY);
2623
      }
2624
      phi->set_req(new_path, new_slice);
2625
      mms.set_memory(phi);
2626
    }
2627
  }
2628
}
2629

2630
//------------------------------make_slow_call_ex------------------------------
2631
// Make the exception handler hookups for the slow call
2632
void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2633
  if (stopped())  return;
2634

2635
  // Make a catch node with just two handlers:  fall-through and catch-all
2636
  Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2637
  Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2638
  Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci);
2639
  _gvn.set_type_bottom(norm);
2640
  C->record_for_igvn(norm);
2641
  Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2642

2643
  { PreserveJVMState pjvms(this);
2644
    set_control(excp);
2645
    set_i_o(i_o);
2646

2647
    if (excp != top()) {
2648
      if (deoptimize) {
2649
        // Deoptimize if an exception is caught. Don't construct exception state in this case.
2650
        uncommon_trap(Deoptimization::Reason_unhandled,
2651
                      Deoptimization::Action_none);
2652
      } else {
2653
        // Create an exception state also.
2654
        // Use an exact type if the caller has a specific exception.
2655
        const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2656
        Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2657
        add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2658
      }
2659
    }
2660
  }
2661

2662
  // Get the no-exception control from the CatchNode.
2663
  set_control(norm);
2664
}
2665

2666
static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) {
2667
  Node* cmp = nullptr;
2668
  switch(bt) {
2669
  case T_INT: cmp = new CmpINode(in1, in2); break;
2670
  case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2671
  default: fatal("unexpected comparison type %s", type2name(bt));
2672
  }
2673
  cmp = gvn.transform(cmp);
2674
  Node* bol = gvn.transform(new BoolNode(cmp, test));
2675
  IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2676
  gvn.transform(iff);
2677
  if (!bol->is_Con()) gvn.record_for_igvn(iff);
2678
  return iff;
2679
}
2680

2681
//-------------------------------gen_subtype_check-----------------------------
2682
// Generate a subtyping check.  Takes as input the subtype and supertype.
2683
// Returns 2 values: sets the default control() to the true path and returns
2684
// the false path.  Only reads invariant memory; sets no (visible) memory.
2685
// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2686
// but that's not exposed to the optimizer.  This call also doesn't take in an
2687
// Object; if you wish to check an Object you need to load the Object's class
2688
// prior to coming here.
2689
Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2690
                               ciMethod* method, int bci) {
2691
  Compile* C = gvn.C;
2692
  if ((*ctrl)->is_top()) {
2693
    return C->top();
2694
  }
2695

2696
  // Fast check for identical types, perhaps identical constants.
2697
  // The types can even be identical non-constants, in cases
2698
  // involving Array.newInstance, Object.clone, etc.
2699
  if (subklass == superklass)
2700
    return C->top();             // false path is dead; no test needed.
2701

2702
  if (gvn.type(superklass)->singleton()) {
2703
    const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2704
    const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2705

2706
    // In the common case of an exact superklass, try to fold up the
2707
    // test before generating code.  You may ask, why not just generate
2708
    // the code and then let it fold up?  The answer is that the generated
2709
    // code will necessarily include null checks, which do not always
2710
    // completely fold away.  If they are also needless, then they turn
2711
    // into a performance loss.  Example:
2712
    //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2713
    // Here, the type of 'fa' is often exact, so the store check
2714
    // of fa[1]=x will fold up, without testing the nullness of x.
2715
    //
2716
    // At macro expansion, we would have already folded the SubTypeCheckNode
2717
    // being expanded here because we always perform the static sub type
2718
    // check in SubTypeCheckNode::sub() regardless of whether
2719
    // StressReflectiveCode is set or not. We can therefore skip this
2720
    // static check when StressReflectiveCode is on.
2721
    switch (C->static_subtype_check(superk, subk)) {
2722
    case Compile::SSC_always_false:
2723
      {
2724
        Node* always_fail = *ctrl;
2725
        *ctrl = gvn.C->top();
2726
        return always_fail;
2727
      }
2728
    case Compile::SSC_always_true:
2729
      return C->top();
2730
    case Compile::SSC_easy_test:
2731
      {
2732
        // Just do a direct pointer compare and be done.
2733
        IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2734
        *ctrl = gvn.transform(new IfTrueNode(iff));
2735
        return gvn.transform(new IfFalseNode(iff));
2736
      }
2737
    case Compile::SSC_full_test:
2738
      break;
2739
    default:
2740
      ShouldNotReachHere();
2741
    }
2742
  }
2743

2744
  // %%% Possible further optimization:  Even if the superklass is not exact,
2745
  // if the subklass is the unique subtype of the superklass, the check
2746
  // will always succeed.  We could leave a dependency behind to ensure this.
2747

2748
  // First load the super-klass's check-offset
2749
  Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2750
  Node* m = C->immutable_memory();
2751
  Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2752
  int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2753
  const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2754
  int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2755
  bool might_be_cache = (chk_off_con == cacheoff_con);
2756

2757
  // Load from the sub-klass's super-class display list, or a 1-word cache of
2758
  // the secondary superclass list, or a failing value with a sentinel offset
2759
  // if the super-klass is an interface or exceptionally deep in the Java
2760
  // hierarchy and we have to scan the secondary superclass list the hard way.
2761
  // Worst-case type is a little odd: null is allowed as a result (usually
2762
  // klass loads can never produce a null).
2763
  Node *chk_off_X = chk_off;
2764
#ifdef _LP64
2765
  chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2766
#endif
2767
  Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2768
  // For some types like interfaces the following loadKlass is from a 1-word
2769
  // cache which is mutable so can't use immutable memory.  Other
2770
  // types load from the super-class display table which is immutable.
2771
  Node *kmem = C->immutable_memory();
2772
  // secondary_super_cache is not immutable but can be treated as such because:
2773
  // - no ideal node writes to it in a way that could cause an
2774
  //   incorrect/missed optimization of the following Load.
2775
  // - it's a cache so, worse case, not reading the latest value
2776
  //   wouldn't cause incorrect execution
2777
  if (might_be_cache && mem != nullptr) {
2778
    kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem;
2779
  }
2780
  Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL));
2781

2782
  // Compile speed common case: ARE a subtype and we canNOT fail
2783
  if (superklass == nkls) {
2784
    return C->top();             // false path is dead; no test needed.
2785
  }
2786

2787
  // Gather the various success & failures here
2788
  RegionNode* r_not_subtype = new RegionNode(3);
2789
  gvn.record_for_igvn(r_not_subtype);
2790
  RegionNode* r_ok_subtype = new RegionNode(4);
2791
  gvn.record_for_igvn(r_ok_subtype);
2792

2793
  // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2794
  // SubTypeCheck node
2795
  if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2796
    ciCallProfile profile = method->call_profile_at_bci(bci);
2797
    float total_prob = 0;
2798
    for (int i = 0; profile.has_receiver(i); ++i) {
2799
      float prob = profile.receiver_prob(i);
2800
      total_prob += prob;
2801
    }
2802
    if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2803
      const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2804
      for (int i = 0; profile.has_receiver(i); ++i) {
2805
        ciKlass* klass = profile.receiver(i);
2806
        const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2807
        Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2808
        if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2809
          continue;
2810
        }
2811
        float prob = profile.receiver_prob(i);
2812
        ConNode* klass_node = gvn.makecon(klass_t);
2813
        IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2814
        Node* iftrue = gvn.transform(new IfTrueNode(iff));
2815

2816
        if (result == Compile::SSC_always_true) {
2817
          r_ok_subtype->add_req(iftrue);
2818
        } else {
2819
          assert(result == Compile::SSC_always_false, "");
2820
          r_not_subtype->add_req(iftrue);
2821
        }
2822
        *ctrl = gvn.transform(new IfFalseNode(iff));
2823
      }
2824
    }
2825
  }
2826

2827
  // See if we get an immediate positive hit.  Happens roughly 83% of the
2828
  // time.  Test to see if the value loaded just previously from the subklass
2829
  // is exactly the superklass.
2830
  IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2831
  Node *iftrue1 = gvn.transform( new IfTrueNode (iff1));
2832
  *ctrl = gvn.transform(new IfFalseNode(iff1));
2833

2834
  // Compile speed common case: Check for being deterministic right now.  If
2835
  // chk_off is a constant and not equal to cacheoff then we are NOT a
2836
  // subklass.  In this case we need exactly the 1 test above and we can
2837
  // return those results immediately.
2838
  if (!might_be_cache) {
2839
    Node* not_subtype_ctrl = *ctrl;
2840
    *ctrl = iftrue1; // We need exactly the 1 test above
2841
    PhaseIterGVN* igvn = gvn.is_IterGVN();
2842
    if (igvn != nullptr) {
2843
      igvn->remove_globally_dead_node(r_ok_subtype);
2844
      igvn->remove_globally_dead_node(r_not_subtype);
2845
    }
2846
    return not_subtype_ctrl;
2847
  }
2848

2849
  r_ok_subtype->init_req(1, iftrue1);
2850

2851
  // Check for immediate negative hit.  Happens roughly 11% of the time (which
2852
  // is roughly 63% of the remaining cases).  Test to see if the loaded
2853
  // check-offset points into the subklass display list or the 1-element
2854
  // cache.  If it points to the display (and NOT the cache) and the display
2855
  // missed then it's not a subtype.
2856
  Node *cacheoff = gvn.intcon(cacheoff_con);
2857
  IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2858
  r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2859
  *ctrl = gvn.transform(new IfFalseNode(iff2));
2860

2861
  // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2862
  // No performance impact (too rare) but allows sharing of secondary arrays
2863
  // which has some footprint reduction.
2864
  IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2865
  r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2866
  *ctrl = gvn.transform(new IfFalseNode(iff3));
2867

2868
  // -- Roads not taken here: --
2869
  // We could also have chosen to perform the self-check at the beginning
2870
  // of this code sequence, as the assembler does.  This would not pay off
2871
  // the same way, since the optimizer, unlike the assembler, can perform
2872
  // static type analysis to fold away many successful self-checks.
2873
  // Non-foldable self checks work better here in second position, because
2874
  // the initial primary superclass check subsumes a self-check for most
2875
  // types.  An exception would be a secondary type like array-of-interface,
2876
  // which does not appear in its own primary supertype display.
2877
  // Finally, we could have chosen to move the self-check into the
2878
  // PartialSubtypeCheckNode, and from there out-of-line in a platform
2879
  // dependent manner.  But it is worthwhile to have the check here,
2880
  // where it can be perhaps be optimized.  The cost in code space is
2881
  // small (register compare, branch).
2882

2883
  // Now do a linear scan of the secondary super-klass array.  Again, no real
2884
  // performance impact (too rare) but it's gotta be done.
2885
  // Since the code is rarely used, there is no penalty for moving it
2886
  // out of line, and it can only improve I-cache density.
2887
  // The decision to inline or out-of-line this final check is platform
2888
  // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2889
  Node* psc = gvn.transform(
2890
    new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2891

2892
  IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2893
  r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2894
  r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2895

2896
  // Return false path; set default control to true path.
2897
  *ctrl = gvn.transform(r_ok_subtype);
2898
  return gvn.transform(r_not_subtype);
2899
}
2900

2901
Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2902
  bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2903
  if (expand_subtype_check) {
2904
    MergeMemNode* mem = merged_memory();
2905
    Node* ctrl = control();
2906
    Node* subklass = obj_or_subklass;
2907
    if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2908
      subklass = load_object_klass(obj_or_subklass);
2909
    }
2910

2911
    Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2912
    set_control(ctrl);
2913
    return n;
2914
  }
2915

2916
  Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2917
  Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2918
  IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2919
  set_control(_gvn.transform(new IfTrueNode(iff)));
2920
  return _gvn.transform(new IfFalseNode(iff));
2921
}
2922

2923
// Profile-driven exact type check:
2924
Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2925
                                    float prob,
2926
                                    Node* *casted_receiver) {
2927
  assert(!klass->is_interface(), "no exact type check on interfaces");
2928

2929
  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2930
  Node* recv_klass = load_object_klass(receiver);
2931
  Node* want_klass = makecon(tklass);
2932
  Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2933
  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2934
  IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2935
  set_control( _gvn.transform(new IfTrueNode (iff)));
2936
  Node* fail = _gvn.transform(new IfFalseNode(iff));
2937

2938
  if (!stopped()) {
2939
    const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2940
    const TypeOopPtr* recvx_type = tklass->as_instance_type();
2941
    assert(recvx_type->klass_is_exact(), "");
2942

2943
    if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2944
      // Subsume downstream occurrences of receiver with a cast to
2945
      // recv_xtype, since now we know what the type will be.
2946
      Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2947
      (*casted_receiver) = _gvn.transform(cast);
2948
      assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2949
      // (User must make the replace_in_map call.)
2950
    }
2951
  }
2952

2953
  return fail;
2954
}
2955

2956
//------------------------------subtype_check_receiver-------------------------
2957
Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2958
                                       Node** casted_receiver) {
2959
  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2960
  Node* want_klass = makecon(tklass);
2961

2962
  Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2963

2964
  // Ignore interface type information until interface types are properly tracked.
2965
  if (!stopped() && !klass->is_interface()) {
2966
    const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2967
    const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2968
    if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2969
      Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2970
      (*casted_receiver) = _gvn.transform(cast);
2971
    }
2972
  }
2973

2974
  return slow_ctl;
2975
}
2976

2977
//------------------------------seems_never_null-------------------------------
2978
// Use null_seen information if it is available from the profile.
2979
// If we see an unexpected null at a type check we record it and force a
2980
// recompile; the offending check will be recompiled to handle nulls.
2981
// If we see several offending BCIs, then all checks in the
2982
// method will be recompiled.
2983
bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2984
  speculating = !_gvn.type(obj)->speculative_maybe_null();
2985
  Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2986
  if (UncommonNullCast               // Cutout for this technique
2987
      && obj != null()               // And not the -Xcomp stupid case?
2988
      && !too_many_traps(reason)
2989
      ) {
2990
    if (speculating) {
2991
      return true;
2992
    }
2993
    if (data == nullptr)
2994
      // Edge case:  no mature data.  Be optimistic here.
2995
      return true;
2996
    // If the profile has not seen a null, assume it won't happen.
2997
    assert(java_bc() == Bytecodes::_checkcast ||
2998
           java_bc() == Bytecodes::_instanceof ||
2999
           java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3000
    return !data->as_BitData()->null_seen();
3001
  }
3002
  speculating = false;
3003
  return false;
3004
}
3005

3006
void GraphKit::guard_klass_being_initialized(Node* klass) {
3007
  int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3008
  Node* adr = basic_plus_adr(top(), klass, init_state_off);
3009
  Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3010
                                    adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3011
                                    T_BYTE, MemNode::unordered);
3012
  init_state = _gvn.transform(init_state);
3013

3014
  Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3015

3016
  Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3017
  Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3018

3019
  { BuildCutout unless(this, tst, PROB_MAX);
3020
    uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
3021
  }
3022
}
3023

3024
void GraphKit::guard_init_thread(Node* klass) {
3025
  int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
3026
  Node* adr = basic_plus_adr(top(), klass, init_thread_off);
3027

3028
  Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3029
                                     adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
3030
                                     T_ADDRESS, MemNode::unordered);
3031
  init_thread = _gvn.transform(init_thread);
3032

3033
  Node* cur_thread = _gvn.transform(new ThreadLocalNode());
3034

3035
  Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
3036
  Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3037

3038
  { BuildCutout unless(this, tst, PROB_MAX);
3039
    uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
3040
  }
3041
}
3042

3043
void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
3044
  if (ik->is_being_initialized()) {
3045
    if (C->needs_clinit_barrier(ik, context)) {
3046
      Node* klass = makecon(TypeKlassPtr::make(ik));
3047
      guard_klass_being_initialized(klass);
3048
      guard_init_thread(klass);
3049
      insert_mem_bar(Op_MemBarCPUOrder);
3050
    }
3051
  } else if (ik->is_initialized()) {
3052
    return; // no barrier needed
3053
  } else {
3054
    uncommon_trap(Deoptimization::Reason_uninitialized,
3055
                  Deoptimization::Action_reinterpret,
3056
                  nullptr);
3057
  }
3058
}
3059

3060
//------------------------maybe_cast_profiled_receiver-------------------------
3061
// If the profile has seen exactly one type, narrow to exactly that type.
3062
// Subsequent type checks will always fold up.
3063
Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3064
                                             const TypeKlassPtr* require_klass,
3065
                                             ciKlass* spec_klass,
3066
                                             bool safe_for_replace) {
3067
  if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3068

3069
  Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3070

3071
  // Make sure we haven't already deoptimized from this tactic.
3072
  if (too_many_traps_or_recompiles(reason))
3073
    return nullptr;
3074

3075
  // (No, this isn't a call, but it's enough like a virtual call
3076
  // to use the same ciMethod accessor to get the profile info...)
3077
  // If we have a speculative type use it instead of profiling (which
3078
  // may not help us)
3079
  ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;
3080
  if (exact_kls != nullptr) {// no cast failures here
3081
    if (require_klass == nullptr ||
3082
        C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3083
      // If we narrow the type to match what the type profile sees or
3084
      // the speculative type, we can then remove the rest of the
3085
      // cast.
3086
      // This is a win, even if the exact_kls is very specific,
3087
      // because downstream operations, such as method calls,
3088
      // will often benefit from the sharper type.
3089
      Node* exact_obj = not_null_obj; // will get updated in place...
3090
      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3091
                                            &exact_obj);
3092
      { PreserveJVMState pjvms(this);
3093
        set_control(slow_ctl);
3094
        uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3095
      }
3096
      if (safe_for_replace) {
3097
        replace_in_map(not_null_obj, exact_obj);
3098
      }
3099
      return exact_obj;
3100
    }
3101
    // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
3102
  }
3103

3104
  return nullptr;
3105
}
3106

3107
/**
3108
 * Cast obj to type and emit guard unless we had too many traps here
3109
 * already
3110
 *
3111
 * @param obj       node being casted
3112
 * @param type      type to cast the node to
3113
 * @param not_null  true if we know node cannot be null
3114
 */
3115
Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
3116
                                        ciKlass* type,
3117
                                        bool not_null) {
3118
  if (stopped()) {
3119
    return obj;
3120
  }
3121

3122
  // type is null if profiling tells us this object is always null
3123
  if (type != nullptr) {
3124
    Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
3125
    Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
3126

3127
    if (!too_many_traps_or_recompiles(null_reason) &&
3128
        !too_many_traps_or_recompiles(class_reason)) {
3129
      Node* not_null_obj = nullptr;
3130
      // not_null is true if we know the object is not null and
3131
      // there's no need for a null check
3132
      if (!not_null) {
3133
        Node* null_ctl = top();
3134
        not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3135
        assert(null_ctl->is_top(), "no null control here");
3136
      } else {
3137
        not_null_obj = obj;
3138
      }
3139

3140
      Node* exact_obj = not_null_obj;
3141
      ciKlass* exact_kls = type;
3142
      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3143
                                            &exact_obj);
3144
      {
3145
        PreserveJVMState pjvms(this);
3146
        set_control(slow_ctl);
3147
        uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3148
      }
3149
      replace_in_map(not_null_obj, exact_obj);
3150
      obj = exact_obj;
3151
    }
3152
  } else {
3153
    if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3154
      Node* exact_obj = null_assert(obj);
3155
      replace_in_map(obj, exact_obj);
3156
      obj = exact_obj;
3157
    }
3158
  }
3159
  return obj;
3160
}
3161

3162
//-------------------------------gen_instanceof--------------------------------
3163
// Generate an instance-of idiom.  Used by both the instance-of bytecode
3164
// and the reflective instance-of call.
3165
Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3166
  kill_dead_locals();           // Benefit all the uncommon traps
3167
  assert( !stopped(), "dead parse path should be checked in callers" );
3168
  assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3169
         "must check for not-null not-dead klass in callers");
3170

3171
  // Make the merge point
3172
  enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3173
  RegionNode* region = new RegionNode(PATH_LIMIT);
3174
  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3175
  C->set_has_split_ifs(true); // Has chance for split-if optimization
3176

3177
  ciProfileData* data = nullptr;
3178
  if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3179
    data = method()->method_data()->bci_to_data(bci());
3180
  }
3181
  bool speculative_not_null = false;
3182
  bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3183
                         && seems_never_null(obj, data, speculative_not_null));
3184

3185
  // Null check; get casted pointer; set region slot 3
3186
  Node* null_ctl = top();
3187
  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3188

3189
  // If not_null_obj is dead, only null-path is taken
3190
  if (stopped()) {              // Doing instance-of on a null?
3191
    set_control(null_ctl);
3192
    return intcon(0);
3193
  }
3194
  region->init_req(_null_path, null_ctl);
3195
  phi   ->init_req(_null_path, intcon(0)); // Set null path value
3196
  if (null_ctl == top()) {
3197
    // Do this eagerly, so that pattern matches like is_diamond_phi
3198
    // will work even during parsing.
3199
    assert(_null_path == PATH_LIMIT-1, "delete last");
3200
    region->del_req(_null_path);
3201
    phi   ->del_req(_null_path);
3202
  }
3203

3204
  // Do we know the type check always succeed?
3205
  bool known_statically = false;
3206
  if (_gvn.type(superklass)->singleton()) {
3207
    const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3208
    const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3209
    if (subk->is_loaded()) {
3210
      int static_res = C->static_subtype_check(superk, subk);
3211
      known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3212
    }
3213
  }
3214

3215
  if (!known_statically) {
3216
    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3217
    // We may not have profiling here or it may not help us. If we
3218
    // have a speculative type use it to perform an exact cast.
3219
    ciKlass* spec_obj_type = obj_type->speculative_type();
3220
    if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3221
      Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3222
      if (stopped()) {            // Profile disagrees with this path.
3223
        set_control(null_ctl);    // Null is the only remaining possibility.
3224
        return intcon(0);
3225
      }
3226
      if (cast_obj != nullptr) {
3227
        not_null_obj = cast_obj;
3228
      }
3229
    }
3230
  }
3231

3232
  // Generate the subtype check
3233
  Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3234

3235
  // Plug in the success path to the general merge in slot 1.
3236
  region->init_req(_obj_path, control());
3237
  phi   ->init_req(_obj_path, intcon(1));
3238

3239
  // Plug in the failing path to the general merge in slot 2.
3240
  region->init_req(_fail_path, not_subtype_ctrl);
3241
  phi   ->init_req(_fail_path, intcon(0));
3242

3243
  // Return final merged results
3244
  set_control( _gvn.transform(region) );
3245
  record_for_igvn(region);
3246

3247
  // If we know the type check always succeeds then we don't use the
3248
  // profiling data at this bytecode. Don't lose it, feed it to the
3249
  // type system as a speculative type.
3250
  if (safe_for_replace) {
3251
    Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3252
    replace_in_map(obj, casted_obj);
3253
  }
3254

3255
  return _gvn.transform(phi);
3256
}
3257

3258
//-------------------------------gen_checkcast---------------------------------
3259
// Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3260
// array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3261
// uncommon-trap paths work.  Adjust stack after this call.
3262
// If failure_control is supplied and not null, it is filled in with
3263
// the control edge for the cast failure.  Otherwise, an appropriate
3264
// uncommon trap or exception is thrown.
3265
Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3266
                              Node* *failure_control) {
3267
  kill_dead_locals();           // Benefit all the uncommon traps
3268
  const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3269
  const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3270
  const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3271

3272
  // Fast cutout:  Check the case that the cast is vacuously true.
3273
  // This detects the common cases where the test will short-circuit
3274
  // away completely.  We do this before we perform the null check,
3275
  // because if the test is going to turn into zero code, we don't
3276
  // want a residual null check left around.  (Causes a slowdown,
3277
  // for example, in some objArray manipulations, such as a[i]=a[j].)
3278
  if (improved_klass_ptr_type->singleton()) {
3279
    const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3280
    if (objtp != nullptr) {
3281
      switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {
3282
      case Compile::SSC_always_true:
3283
        // If we know the type check always succeed then we don't use
3284
        // the profiling data at this bytecode. Don't lose it, feed it
3285
        // to the type system as a speculative type.
3286
        return record_profiled_receiver_for_speculation(obj);
3287
      case Compile::SSC_always_false:
3288
        // It needs a null check because a null will *pass* the cast check.
3289
        // A non-null value will always produce an exception.
3290
        if (!objtp->maybe_null()) {
3291
          bool is_aastore = (java_bc() == Bytecodes::_aastore);
3292
          Deoptimization::DeoptReason reason = is_aastore ?
3293
            Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3294
          builtin_throw(reason);
3295
          return top();
3296
        } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3297
          return null_assert(obj);
3298
        }
3299
        break; // Fall through to full check
3300
      default:
3301
        break;
3302
      }
3303
    }
3304
  }
3305

3306
  ciProfileData* data = nullptr;
3307
  bool safe_for_replace = false;
3308
  if (failure_control == nullptr) {        // use MDO in regular case only
3309
    assert(java_bc() == Bytecodes::_aastore ||
3310
           java_bc() == Bytecodes::_checkcast,
3311
           "interpreter profiles type checks only for these BCs");
3312
    data = method()->method_data()->bci_to_data(bci());
3313
    safe_for_replace = true;
3314
  }
3315

3316
  // Make the merge point
3317
  enum { _obj_path = 1, _null_path, PATH_LIMIT };
3318
  RegionNode* region = new RegionNode(PATH_LIMIT);
3319
  Node*       phi    = new PhiNode(region, toop);
3320
  C->set_has_split_ifs(true); // Has chance for split-if optimization
3321

3322
  // Use null-cast information if it is available
3323
  bool speculative_not_null = false;
3324
  bool never_see_null = ((failure_control == nullptr)  // regular case only
3325
                         && seems_never_null(obj, data, speculative_not_null));
3326

3327
  // Null check; get casted pointer; set region slot 3
3328
  Node* null_ctl = top();
3329
  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3330

3331
  // If not_null_obj is dead, only null-path is taken
3332
  if (stopped()) {              // Doing instance-of on a null?
3333
    set_control(null_ctl);
3334
    return null();
3335
  }
3336
  region->init_req(_null_path, null_ctl);
3337
  phi   ->init_req(_null_path, null());  // Set null path value
3338
  if (null_ctl == top()) {
3339
    // Do this eagerly, so that pattern matches like is_diamond_phi
3340
    // will work even during parsing.
3341
    assert(_null_path == PATH_LIMIT-1, "delete last");
3342
    region->del_req(_null_path);
3343
    phi   ->del_req(_null_path);
3344
  }
3345

3346
  Node* cast_obj = nullptr;
3347
  if (improved_klass_ptr_type->klass_is_exact()) {
3348
    // The following optimization tries to statically cast the speculative type of the object
3349
    // (for example obtained during profiling) to the type of the superklass and then do a
3350
    // dynamic check that the type of the object is what we expect. To work correctly
3351
    // for checkcast and aastore the type of superklass should be exact.
3352
    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3353
    // We may not have profiling here or it may not help us. If we have
3354
    // a speculative type use it to perform an exact cast.
3355
    ciKlass* spec_obj_type = obj_type->speculative_type();
3356
    if (spec_obj_type != nullptr || data != nullptr) {
3357
      cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3358
      if (cast_obj != nullptr) {
3359
        if (failure_control != nullptr) // failure is now impossible
3360
          (*failure_control) = top();
3361
        // adjust the type of the phi to the exact klass:
3362
        phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3363
      }
3364
    }
3365
  }
3366

3367
  if (cast_obj == nullptr) {
3368
    // Generate the subtype check
3369
    Node* improved_superklass = superklass;
3370
    if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3371
      improved_superklass = makecon(improved_klass_ptr_type);
3372
    }
3373
    Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3374

3375
    // Plug in success path into the merge
3376
    cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3377
    // Failure path ends in uncommon trap (or may be dead - failure impossible)
3378
    if (failure_control == nullptr) {
3379
      if (not_subtype_ctrl != top()) { // If failure is possible
3380
        PreserveJVMState pjvms(this);
3381
        set_control(not_subtype_ctrl);
3382
        bool is_aastore = (java_bc() == Bytecodes::_aastore);
3383
        Deoptimization::DeoptReason reason = is_aastore ?
3384
          Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3385
        builtin_throw(reason);
3386
      }
3387
    } else {
3388
      (*failure_control) = not_subtype_ctrl;
3389
    }
3390
  }
3391

3392
  region->init_req(_obj_path, control());
3393
  phi   ->init_req(_obj_path, cast_obj);
3394

3395
  // A merge of null or Casted-NotNull obj
3396
  Node* res = _gvn.transform(phi);
3397

3398
  // Note I do NOT always 'replace_in_map(obj,result)' here.
3399
  //  if( tk->klass()->can_be_primary_super()  )
3400
    // This means that if I successfully store an Object into an array-of-String
3401
    // I 'forget' that the Object is really now known to be a String.  I have to
3402
    // do this because we don't have true union types for interfaces - if I store
3403
    // a Baz into an array-of-Interface and then tell the optimizer it's an
3404
    // Interface, I forget that it's also a Baz and cannot do Baz-like field
3405
    // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3406
  //  replace_in_map( obj, res );
3407

3408
  // Return final merged results
3409
  set_control( _gvn.transform(region) );
3410
  record_for_igvn(region);
3411

3412
  return record_profiled_receiver_for_speculation(res);
3413
}
3414

3415
//------------------------------next_monitor-----------------------------------
3416
// What number should be given to the next monitor?
3417
int GraphKit::next_monitor() {
3418
  int current = jvms()->monitor_depth()* C->sync_stack_slots();
3419
  int next = current + C->sync_stack_slots();
3420
  // Keep the toplevel high water mark current:
3421
  if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3422
  return current;
3423
}
3424

3425
//------------------------------insert_mem_bar---------------------------------
3426
// Memory barrier to avoid floating things around
3427
// The membar serves as a pinch point between both control and all memory slices.
3428
Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3429
  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3430
  mb->init_req(TypeFunc::Control, control());
3431
  mb->init_req(TypeFunc::Memory,  reset_memory());
3432
  Node* membar = _gvn.transform(mb);
3433
  set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3434
  set_all_memory_call(membar);
3435
  return membar;
3436
}
3437

3438
//-------------------------insert_mem_bar_volatile----------------------------
3439
// Memory barrier to avoid floating things around
3440
// The membar serves as a pinch point between both control and memory(alias_idx).
3441
// If you want to make a pinch point on all memory slices, do not use this
3442
// function (even with AliasIdxBot); use insert_mem_bar() instead.
3443
Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3444
  // When Parse::do_put_xxx updates a volatile field, it appends a series
3445
  // of MemBarVolatile nodes, one for *each* volatile field alias category.
3446
  // The first membar is on the same memory slice as the field store opcode.
3447
  // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3448
  // All the other membars (for other volatile slices, including AliasIdxBot,
3449
  // which stands for all unknown volatile slices) are control-dependent
3450
  // on the first membar.  This prevents later volatile loads or stores
3451
  // from sliding up past the just-emitted store.
3452

3453
  MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3454
  mb->set_req(TypeFunc::Control,control());
3455
  if (alias_idx == Compile::AliasIdxBot) {
3456
    mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3457
  } else {
3458
    assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3459
    mb->set_req(TypeFunc::Memory, memory(alias_idx));
3460
  }
3461
  Node* membar = _gvn.transform(mb);
3462
  set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3463
  if (alias_idx == Compile::AliasIdxBot) {
3464
    merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3465
  } else {
3466
    set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3467
  }
3468
  return membar;
3469
}
3470

3471
//------------------------------shared_lock------------------------------------
3472
// Emit locking code.
3473
FastLockNode* GraphKit::shared_lock(Node* obj) {
3474
  // bci is either a monitorenter bc or InvocationEntryBci
3475
  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3476
  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3477

3478
  if( !GenerateSynchronizationCode )
3479
    return nullptr;                // Not locking things?
3480
  if (stopped())                // Dead monitor?
3481
    return nullptr;
3482

3483
  assert(dead_locals_are_killed(), "should kill locals before sync. point");
3484

3485
  // Box the stack location
3486
  Node* box = new BoxLockNode(next_monitor());
3487
  // Check for bailout after new BoxLockNode
3488
  if (failing()) { return nullptr; }
3489
  box = _gvn.transform(box);
3490
  Node* mem = reset_memory();
3491

3492
  FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3493

3494
  // Add monitor to debug info for the slow path.  If we block inside the
3495
  // slow path and de-opt, we need the monitor hanging around
3496
  map()->push_monitor( flock );
3497

3498
  const TypeFunc *tf = LockNode::lock_type();
3499
  LockNode *lock = new LockNode(C, tf);
3500

3501
  lock->init_req( TypeFunc::Control, control() );
3502
  lock->init_req( TypeFunc::Memory , mem );
3503
  lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3504
  lock->init_req( TypeFunc::FramePtr, frameptr() );
3505
  lock->init_req( TypeFunc::ReturnAdr, top() );
3506

3507
  lock->init_req(TypeFunc::Parms + 0, obj);
3508
  lock->init_req(TypeFunc::Parms + 1, box);
3509
  lock->init_req(TypeFunc::Parms + 2, flock);
3510
  add_safepoint_edges(lock);
3511

3512
  lock = _gvn.transform( lock )->as_Lock();
3513

3514
  // lock has no side-effects, sets few values
3515
  set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3516

3517
  insert_mem_bar(Op_MemBarAcquireLock);
3518

3519
  // Add this to the worklist so that the lock can be eliminated
3520
  record_for_igvn(lock);
3521

3522
#ifndef PRODUCT
3523
  if (PrintLockStatistics) {
3524
    // Update the counter for this lock.  Don't bother using an atomic
3525
    // operation since we don't require absolute accuracy.
3526
    lock->create_lock_counter(map()->jvms());
3527
    increment_counter(lock->counter()->addr());
3528
  }
3529
#endif
3530

3531
  return flock;
3532
}
3533

3534

3535
//------------------------------shared_unlock----------------------------------
3536
// Emit unlocking code.
3537
void GraphKit::shared_unlock(Node* box, Node* obj) {
3538
  // bci is either a monitorenter bc or InvocationEntryBci
3539
  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3540
  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3541

3542
  if( !GenerateSynchronizationCode )
3543
    return;
3544
  if (stopped()) {               // Dead monitor?
3545
    map()->pop_monitor();        // Kill monitor from debug info
3546
    return;
3547
  }
3548

3549
  // Memory barrier to avoid floating things down past the locked region
3550
  insert_mem_bar(Op_MemBarReleaseLock);
3551

3552
  const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3553
  UnlockNode *unlock = new UnlockNode(C, tf);
3554
#ifdef ASSERT
3555
  unlock->set_dbg_jvms(sync_jvms());
3556
#endif
3557
  uint raw_idx = Compile::AliasIdxRaw;
3558
  unlock->init_req( TypeFunc::Control, control() );
3559
  unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3560
  unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3561
  unlock->init_req( TypeFunc::FramePtr, frameptr() );
3562
  unlock->init_req( TypeFunc::ReturnAdr, top() );
3563

3564
  unlock->init_req(TypeFunc::Parms + 0, obj);
3565
  unlock->init_req(TypeFunc::Parms + 1, box);
3566
  unlock = _gvn.transform(unlock)->as_Unlock();
3567

3568
  Node* mem = reset_memory();
3569

3570
  // unlock has no side-effects, sets few values
3571
  set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3572

3573
  // Kill monitor from debug info
3574
  map()->pop_monitor( );
3575
}
3576

3577
//-------------------------------get_layout_helper-----------------------------
3578
// If the given klass is a constant or known to be an array,
3579
// fetch the constant layout helper value into constant_value
3580
// and return null.  Otherwise, load the non-constant
3581
// layout helper value, and return the node which represents it.
3582
// This two-faced routine is useful because allocation sites
3583
// almost always feature constant types.
3584
Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3585
  const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3586
  if (!StressReflectiveCode && klass_t != nullptr) {
3587
    bool xklass = klass_t->klass_is_exact();
3588
    if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {
3589
      jint lhelper;
3590
      if (klass_t->isa_aryklassptr()) {
3591
        BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
3592
        if (is_reference_type(elem, true)) {
3593
          elem = T_OBJECT;
3594
        }
3595
        lhelper = Klass::array_layout_helper(elem);
3596
      } else {
3597
        lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3598
      }
3599
      if (lhelper != Klass::_lh_neutral_value) {
3600
        constant_value = lhelper;
3601
        return (Node*) nullptr;
3602
      }
3603
    }
3604
  }
3605
  constant_value = Klass::_lh_neutral_value;  // put in a known value
3606
  Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3607
  return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3608
}
3609

3610
// We just put in an allocate/initialize with a big raw-memory effect.
3611
// Hook selected additional alias categories on the initialization.
3612
static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3613
                                MergeMemNode* init_in_merge,
3614
                                Node* init_out_raw) {
3615
  DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3616
  assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3617

3618
  Node* prevmem = kit.memory(alias_idx);
3619
  init_in_merge->set_memory_at(alias_idx, prevmem);
3620
  kit.set_memory(init_out_raw, alias_idx);
3621
}
3622

3623
//---------------------------set_output_for_allocation-------------------------
3624
Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3625
                                          const TypeOopPtr* oop_type,
3626
                                          bool deoptimize_on_exception) {
3627
  int rawidx = Compile::AliasIdxRaw;
3628
  alloc->set_req( TypeFunc::FramePtr, frameptr() );
3629
  add_safepoint_edges(alloc);
3630
  Node* allocx = _gvn.transform(alloc);
3631
  set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3632
  // create memory projection for i_o
3633
  set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3634
  make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3635

3636
  // create a memory projection as for the normal control path
3637
  Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3638
  set_memory(malloc, rawidx);
3639

3640
  // a normal slow-call doesn't change i_o, but an allocation does
3641
  // we create a separate i_o projection for the normal control path
3642
  set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3643
  Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3644

3645
  // put in an initialization barrier
3646
  InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3647
                                                 rawoop)->as_Initialize();
3648
  assert(alloc->initialization() == init,  "2-way macro link must work");
3649
  assert(init ->allocation()     == alloc, "2-way macro link must work");
3650
  {
3651
    // Extract memory strands which may participate in the new object's
3652
    // initialization, and source them from the new InitializeNode.
3653
    // This will allow us to observe initializations when they occur,
3654
    // and link them properly (as a group) to the InitializeNode.
3655
    assert(init->in(InitializeNode::Memory) == malloc, "");
3656
    MergeMemNode* minit_in = MergeMemNode::make(malloc);
3657
    init->set_req(InitializeNode::Memory, minit_in);
3658
    record_for_igvn(minit_in); // fold it up later, if possible
3659
    Node* minit_out = memory(rawidx);
3660
    assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3661
    // Add an edge in the MergeMem for the header fields so an access
3662
    // to one of those has correct memory state
3663
    set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3664
    set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3665
    if (oop_type->isa_aryptr()) {
3666
      const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3667
      int            elemidx  = C->get_alias_index(telemref);
3668
      hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3669
    } else if (oop_type->isa_instptr()) {
3670
      ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3671
      for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3672
        ciField* field = ik->nonstatic_field_at(i);
3673
        if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3674
          continue;  // do not bother to track really large numbers of fields
3675
        // Find (or create) the alias category for this field:
3676
        int fieldidx = C->alias_type(field)->index();
3677
        hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3678
      }
3679
    }
3680
  }
3681

3682
  // Cast raw oop to the real thing...
3683
  Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3684
  javaoop = _gvn.transform(javaoop);
3685
  C->set_recent_alloc(control(), javaoop);
3686
  assert(just_allocated_object(control()) == javaoop, "just allocated");
3687

3688
#ifdef ASSERT
3689
  { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3690
    assert(AllocateNode::Ideal_allocation(rawoop) == alloc,
3691
           "Ideal_allocation works");
3692
    assert(AllocateNode::Ideal_allocation(javaoop) == alloc,
3693
           "Ideal_allocation works");
3694
    if (alloc->is_AllocateArray()) {
3695
      assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(),
3696
             "Ideal_allocation works");
3697
      assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(),
3698
             "Ideal_allocation works");
3699
    } else {
3700
      assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3701
    }
3702
  }
3703
#endif //ASSERT
3704

3705
  return javaoop;
3706
}
3707

3708
//---------------------------new_instance--------------------------------------
3709
// This routine takes a klass_node which may be constant (for a static type)
3710
// or may be non-constant (for reflective code).  It will work equally well
3711
// for either, and the graph will fold nicely if the optimizer later reduces
3712
// the type to a constant.
3713
// The optional arguments are for specialized use by intrinsics:
3714
//  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3715
//  - If 'return_size_val', report the total object size to the caller.
3716
//  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3717
Node* GraphKit::new_instance(Node* klass_node,
3718
                             Node* extra_slow_test,
3719
                             Node* *return_size_val,
3720
                             bool deoptimize_on_exception) {
3721
  // Compute size in doublewords
3722
  // The size is always an integral number of doublewords, represented
3723
  // as a positive bytewise size stored in the klass's layout_helper.
3724
  // The layout_helper also encodes (in a low bit) the need for a slow path.
3725
  jint  layout_con = Klass::_lh_neutral_value;
3726
  Node* layout_val = get_layout_helper(klass_node, layout_con);
3727
  int   layout_is_con = (layout_val == nullptr);
3728

3729
  if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3730
  // Generate the initial go-slow test.  It's either ALWAYS (return a
3731
  // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3732
  // case) a computed value derived from the layout_helper.
3733
  Node* initial_slow_test = nullptr;
3734
  if (layout_is_con) {
3735
    assert(!StressReflectiveCode, "stress mode does not use these paths");
3736
    bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3737
    initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3738
  } else {   // reflective case
3739
    // This reflective path is used by Unsafe.allocateInstance.
3740
    // (It may be stress-tested by specifying StressReflectiveCode.)
3741
    // Basically, we want to get into the VM is there's an illegal argument.
3742
    Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3743
    initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3744
    if (extra_slow_test != intcon(0)) {
3745
      initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3746
    }
3747
    // (Macro-expander will further convert this to a Bool, if necessary.)
3748
  }
3749

3750
  // Find the size in bytes.  This is easy; it's the layout_helper.
3751
  // The size value must be valid even if the slow path is taken.
3752
  Node* size = nullptr;
3753
  if (layout_is_con) {
3754
    size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3755
  } else {   // reflective case
3756
    // This reflective path is used by clone and Unsafe.allocateInstance.
3757
    size = ConvI2X(layout_val);
3758

3759
    // Clear the low bits to extract layout_helper_size_in_bytes:
3760
    assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3761
    Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3762
    size = _gvn.transform( new AndXNode(size, mask) );
3763
  }
3764
  if (return_size_val != nullptr) {
3765
    (*return_size_val) = size;
3766
  }
3767

3768
  // This is a precise notnull oop of the klass.
3769
  // (Actually, it need not be precise if this is a reflective allocation.)
3770
  // It's what we cast the result to.
3771
  const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3772
  if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3773
  const TypeOopPtr* oop_type = tklass->as_instance_type();
3774

3775
  // Now generate allocation code
3776

3777
  // The entire memory state is needed for slow path of the allocation
3778
  // since GC and deoptimization can happened.
3779
  Node *mem = reset_memory();
3780
  set_all_memory(mem); // Create new memory state
3781

3782
  AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3783
                                         control(), mem, i_o(),
3784
                                         size, klass_node,
3785
                                         initial_slow_test);
3786

3787
  return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3788
}
3789

3790
//-------------------------------new_array-------------------------------------
3791
// helper for both newarray and anewarray
3792
// The 'length' parameter is (obviously) the length of the array.
3793
// The optional arguments are for specialized use by intrinsics:
3794
//  - If 'return_size_val', report the non-padded array size (sum of header size
3795
//    and array body) to the caller.
3796
//  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3797
Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3798
                          Node* length,         // number of array elements
3799
                          int   nargs,          // number of arguments to push back for uncommon trap
3800
                          Node* *return_size_val,
3801
                          bool deoptimize_on_exception) {
3802
  jint  layout_con = Klass::_lh_neutral_value;
3803
  Node* layout_val = get_layout_helper(klass_node, layout_con);
3804
  int   layout_is_con = (layout_val == nullptr);
3805

3806
  if (!layout_is_con && !StressReflectiveCode &&
3807
      !too_many_traps(Deoptimization::Reason_class_check)) {
3808
    // This is a reflective array creation site.
3809
    // Optimistically assume that it is a subtype of Object[],
3810
    // so that we can fold up all the address arithmetic.
3811
    layout_con = Klass::array_layout_helper(T_OBJECT);
3812
    Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3813
    Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3814
    { BuildCutout unless(this, bol_lh, PROB_MAX);
3815
      inc_sp(nargs);
3816
      uncommon_trap(Deoptimization::Reason_class_check,
3817
                    Deoptimization::Action_maybe_recompile);
3818
    }
3819
    layout_val = nullptr;
3820
    layout_is_con = true;
3821
  }
3822

3823
  // Generate the initial go-slow test.  Make sure we do not overflow
3824
  // if length is huge (near 2Gig) or negative!  We do not need
3825
  // exact double-words here, just a close approximation of needed
3826
  // double-words.  We can't add any offset or rounding bits, lest we
3827
  // take a size -1 of bytes and make it positive.  Use an unsigned
3828
  // compare, so negative sizes look hugely positive.
3829
  int fast_size_limit = FastAllocateSizeLimit;
3830
  if (layout_is_con) {
3831
    assert(!StressReflectiveCode, "stress mode does not use these paths");
3832
    // Increase the size limit if we have exact knowledge of array type.
3833
    int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3834
    fast_size_limit <<= (LogBytesPerLong - log2_esize);
3835
  }
3836

3837
  Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3838
  Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3839

3840
  // --- Size Computation ---
3841
  // array_size = round_to_heap(array_header + (length << elem_shift));
3842
  // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3843
  // and align_to(x, y) == ((x + y-1) & ~(y-1))
3844
  // The rounding mask is strength-reduced, if possible.
3845
  int round_mask = MinObjAlignmentInBytes - 1;
3846
  Node* header_size = nullptr;
3847
  // (T_BYTE has the weakest alignment and size restrictions...)
3848
  if (layout_is_con) {
3849
    int       hsize  = Klass::layout_helper_header_size(layout_con);
3850
    int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3851
    if ((round_mask & ~right_n_bits(eshift)) == 0)
3852
      round_mask = 0;  // strength-reduce it if it goes away completely
3853
    assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3854
    int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3855
    assert(header_size_min <= hsize, "generic minimum is smallest");
3856
    header_size = intcon(hsize);
3857
  } else {
3858
    Node* hss   = intcon(Klass::_lh_header_size_shift);
3859
    Node* hsm   = intcon(Klass::_lh_header_size_mask);
3860
    header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3861
    header_size = _gvn.transform(new AndINode(header_size, hsm));
3862
  }
3863

3864
  Node* elem_shift = nullptr;
3865
  if (layout_is_con) {
3866
    int eshift = Klass::layout_helper_log2_element_size(layout_con);
3867
    if (eshift != 0)
3868
      elem_shift = intcon(eshift);
3869
  } else {
3870
    // There is no need to mask or shift this value.
3871
    // The semantics of LShiftINode include an implicit mask to 0x1F.
3872
    assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3873
    elem_shift = layout_val;
3874
  }
3875

3876
  // Transition to native address size for all offset calculations:
3877
  Node* lengthx = ConvI2X(length);
3878
  Node* headerx = ConvI2X(header_size);
3879
#ifdef _LP64
3880
  { const TypeInt* tilen = _gvn.find_int_type(length);
3881
    if (tilen != nullptr && tilen->_lo < 0) {
3882
      // Add a manual constraint to a positive range.  Cf. array_element_address.
3883
      jint size_max = fast_size_limit;
3884
      if (size_max > tilen->_hi)  size_max = tilen->_hi;
3885
      const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3886

3887
      // Only do a narrow I2L conversion if the range check passed.
3888
      IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3889
      _gvn.transform(iff);
3890
      RegionNode* region = new RegionNode(3);
3891
      _gvn.set_type(region, Type::CONTROL);
3892
      lengthx = new PhiNode(region, TypeLong::LONG);
3893
      _gvn.set_type(lengthx, TypeLong::LONG);
3894

3895
      // Range check passed. Use ConvI2L node with narrow type.
3896
      Node* passed = IfFalse(iff);
3897
      region->init_req(1, passed);
3898
      // Make I2L conversion control dependent to prevent it from
3899
      // floating above the range check during loop optimizations.
3900
      lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3901

3902
      // Range check failed. Use ConvI2L with wide type because length may be invalid.
3903
      region->init_req(2, IfTrue(iff));
3904
      lengthx->init_req(2, ConvI2X(length));
3905

3906
      set_control(region);
3907
      record_for_igvn(region);
3908
      record_for_igvn(lengthx);
3909
    }
3910
  }
3911
#endif
3912

3913
  // Combine header size and body size for the array copy part, then align (if
3914
  // necessary) for the allocation part. This computation cannot overflow,
3915
  // because it is used only in two places, one where the length is sharply
3916
  // limited, and the other after a successful allocation.
3917
  Node* abody = lengthx;
3918
  if (elem_shift != nullptr) {
3919
    abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
3920
  }
3921
  Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3922

3923
  if (return_size_val != nullptr) {
3924
    // This is the size
3925
    (*return_size_val) = non_rounded_size;
3926
  }
3927

3928
  Node* size = non_rounded_size;
3929
  if (round_mask != 0) {
3930
    Node* mask1 = MakeConX(round_mask);
3931
    size = _gvn.transform(new AddXNode(size, mask1));
3932
    Node* mask2 = MakeConX(~round_mask);
3933
    size = _gvn.transform(new AndXNode(size, mask2));
3934
  }
3935
  // else if round_mask == 0, the size computation is self-rounding
3936

3937
  // Now generate allocation code
3938

3939
  // The entire memory state is needed for slow path of the allocation
3940
  // since GC and deoptimization can happened.
3941
  Node *mem = reset_memory();
3942
  set_all_memory(mem); // Create new memory state
3943

3944
  if (initial_slow_test->is_Bool()) {
3945
    // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3946
    initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3947
  }
3948

3949
  const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3950
  Node* valid_length_test = _gvn.intcon(1);
3951
  if (ary_type->isa_aryptr()) {
3952
    BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3953
    jint max = TypeAryPtr::max_array_length(bt);
3954
    Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3955
    valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3956
  }
3957

3958
  // Create the AllocateArrayNode and its result projections
3959
  AllocateArrayNode* alloc
3960
    = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3961
                            control(), mem, i_o(),
3962
                            size, klass_node,
3963
                            initial_slow_test,
3964
                            length, valid_length_test);
3965

3966
  // Cast to correct type.  Note that the klass_node may be constant or not,
3967
  // and in the latter case the actual array type will be inexact also.
3968
  // (This happens via a non-constant argument to inline_native_newArray.)
3969
  // In any case, the value of klass_node provides the desired array type.
3970
  const TypeInt* length_type = _gvn.find_int_type(length);
3971
  if (ary_type->isa_aryptr() && length_type != nullptr) {
3972
    // Try to get a better type than POS for the size
3973
    ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3974
  }
3975

3976
  Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3977

3978
  array_ideal_length(alloc, ary_type, true);
3979
  return javaoop;
3980
}
3981

3982
// The following "Ideal_foo" functions are placed here because they recognize
3983
// the graph shapes created by the functions immediately above.
3984

3985
//---------------------------Ideal_allocation----------------------------------
3986
// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3987
AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) {
3988
  if (ptr == nullptr) {     // reduce dumb test in callers
3989
    return nullptr;
3990
  }
3991

3992
  BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
3993
  ptr = bs->step_over_gc_barrier(ptr);
3994

3995
  if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3996
    ptr = ptr->in(1);
3997
    if (ptr == nullptr) return nullptr;
3998
  }
3999
  // Return null for allocations with several casts:
4000
  //   j.l.reflect.Array.newInstance(jobject, jint)
4001
  //   Object.clone()
4002
  // to keep more precise type from last cast.
4003
  if (ptr->is_Proj()) {
4004
    Node* allo = ptr->in(0);
4005
    if (allo != nullptr && allo->is_Allocate()) {
4006
      return allo->as_Allocate();
4007
    }
4008
  }
4009
  // Report failure to match.
4010
  return nullptr;
4011
}
4012

4013
// Fancy version which also strips off an offset (and reports it to caller).
4014
AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase,
4015
                                             intptr_t& offset) {
4016
  Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4017
  if (base == nullptr)  return nullptr;
4018
  return Ideal_allocation(base);
4019
}
4020

4021
// Trace Initialize <- Proj[Parm] <- Allocate
4022
AllocateNode* InitializeNode::allocation() {
4023
  Node* rawoop = in(InitializeNode::RawAddress);
4024
  if (rawoop->is_Proj()) {
4025
    Node* alloc = rawoop->in(0);
4026
    if (alloc->is_Allocate()) {
4027
      return alloc->as_Allocate();
4028
    }
4029
  }
4030
  return nullptr;
4031
}
4032

4033
// Trace Allocate -> Proj[Parm] -> Initialize
4034
InitializeNode* AllocateNode::initialization() {
4035
  ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4036
  if (rawoop == nullptr)  return nullptr;
4037
  for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4038
    Node* init = rawoop->fast_out(i);
4039
    if (init->is_Initialize()) {
4040
      assert(init->as_Initialize()->allocation() == this, "2-way link");
4041
      return init->as_Initialize();
4042
    }
4043
  }
4044
  return nullptr;
4045
}
4046

4047
// Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
4048
void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) {
4049
  // Too many traps seen?
4050
  if (too_many_traps(reason)) {
4051
#ifdef ASSERT
4052
    if (TraceLoopPredicate) {
4053
      int tc = C->trap_count(reason);
4054
      tty->print("too many traps=%s tcount=%d in ",
4055
                    Deoptimization::trap_reason_name(reason), tc);
4056
      method()->print(); // which method has too many predicate traps
4057
      tty->cr();
4058
    }
4059
#endif
4060
    // We cannot afford to take more traps here,
4061
    // do not generate Parse Predicate.
4062
    return;
4063
  }
4064

4065
  ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn);
4066
  _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn));
4067
  Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate));
4068
  {
4069
    PreserveJVMState pjvms(this);
4070
    set_control(if_false);
4071
    inc_sp(nargs);
4072
    uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4073
  }
4074
  Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate));
4075
  set_control(if_true);
4076
}
4077

4078
// Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All
4079
// Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate.
4080
void GraphKit::add_parse_predicates(int nargs) {
4081
  if (UseLoopPredicate) {
4082
    add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4083
  }
4084
  if (UseProfiledLoopPredicate) {
4085
    add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4086
  }
4087
  // Loop Limit Check Predicate should be near the loop.
4088
  add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4089
}
4090

4091
void GraphKit::sync_kit(IdealKit& ideal) {
4092
  set_all_memory(ideal.merged_memory());
4093
  set_i_o(ideal.i_o());
4094
  set_control(ideal.ctrl());
4095
}
4096

4097
void GraphKit::final_sync(IdealKit& ideal) {
4098
  // Final sync IdealKit and graphKit.
4099
  sync_kit(ideal);
4100
}
4101

4102
Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4103
  Node* len = load_array_length(load_String_value(str, set_ctrl));
4104
  Node* coder = load_String_coder(str, set_ctrl);
4105
  // Divide length by 2 if coder is UTF16
4106
  return _gvn.transform(new RShiftINode(len, coder));
4107
}
4108

4109
Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4110
  int value_offset = java_lang_String::value_offset();
4111
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4112
                                                     false, nullptr, 0);
4113
  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4114
  const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4115
                                                  TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4116
                                                  ciTypeArrayKlass::make(T_BYTE), true, 0);
4117
  Node* p = basic_plus_adr(str, str, value_offset);
4118
  Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4119
                              IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4120
  return load;
4121
}
4122

4123
Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4124
  if (!CompactStrings) {
4125
    return intcon(java_lang_String::CODER_UTF16);
4126
  }
4127
  int coder_offset = java_lang_String::coder_offset();
4128
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4129
                                                     false, nullptr, 0);
4130
  const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4131

4132
  Node* p = basic_plus_adr(str, str, coder_offset);
4133
  Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4134
                              IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4135
  return load;
4136
}
4137

4138
void GraphKit::store_String_value(Node* str, Node* value) {
4139
  int value_offset = java_lang_String::value_offset();
4140
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4141
                                                     false, nullptr, 0);
4142
  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4143

4144
  access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4145
                  value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4146
}
4147

4148
void GraphKit::store_String_coder(Node* str, Node* value) {
4149
  int coder_offset = java_lang_String::coder_offset();
4150
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4151
                                                     false, nullptr, 0);
4152
  const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4153

4154
  access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4155
                  value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4156
}
4157

4158
// Capture src and dst memory state with a MergeMemNode
4159
Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4160
  if (src_type == dst_type) {
4161
    // Types are equal, we don't need a MergeMemNode
4162
    return memory(src_type);
4163
  }
4164
  MergeMemNode* merge = MergeMemNode::make(map()->memory());
4165
  record_for_igvn(merge); // fold it up later, if possible
4166
  int src_idx = C->get_alias_index(src_type);
4167
  int dst_idx = C->get_alias_index(dst_type);
4168
  merge->set_memory_at(src_idx, memory(src_idx));
4169
  merge->set_memory_at(dst_idx, memory(dst_idx));
4170
  return merge;
4171
}
4172

4173
Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4174
  assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4175
  assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4176
  // If input and output memory types differ, capture both states to preserve
4177
  // the dependency between preceding and subsequent loads/stores.
4178
  // For example, the following program:
4179
  //  StoreB
4180
  //  compress_string
4181
  //  LoadB
4182
  // has this memory graph (use->def):
4183
  //  LoadB -> compress_string -> CharMem
4184
  //             ... -> StoreB -> ByteMem
4185
  // The intrinsic hides the dependency between LoadB and StoreB, causing
4186
  // the load to read from memory not containing the result of the StoreB.
4187
  // The correct memory graph should look like this:
4188
  //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4189
  Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4190
  StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4191
  Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str)));
4192
  set_memory(res_mem, TypeAryPtr::BYTES);
4193
  return str;
4194
}
4195

4196
void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4197
  assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4198
  assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4199
  // Capture src and dst memory (see comment in 'compress_string').
4200
  Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4201
  StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4202
  set_memory(_gvn.transform(str), dst_type);
4203
}
4204

4205
void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4206
  /**
4207
   * int i_char = start;
4208
   * for (int i_byte = 0; i_byte < count; i_byte++) {
4209
   *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4210
   * }
4211
   */
4212
  add_parse_predicates();
4213
  C->set_has_loops(true);
4214

4215
  RegionNode* head = new RegionNode(3);
4216
  head->init_req(1, control());
4217
  gvn().set_type(head, Type::CONTROL);
4218
  record_for_igvn(head);
4219

4220
  Node* i_byte = new PhiNode(head, TypeInt::INT);
4221
  i_byte->init_req(1, intcon(0));
4222
  gvn().set_type(i_byte, TypeInt::INT);
4223
  record_for_igvn(i_byte);
4224

4225
  Node* i_char = new PhiNode(head, TypeInt::INT);
4226
  i_char->init_req(1, start);
4227
  gvn().set_type(i_char, TypeInt::INT);
4228
  record_for_igvn(i_char);
4229

4230
  Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4231
  gvn().set_type(mem, Type::MEMORY);
4232
  record_for_igvn(mem);
4233
  set_control(head);
4234
  set_memory(mem, TypeAryPtr::BYTES);
4235
  Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true);
4236
  Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4237
                             AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4238
                             false, false, true /* mismatched */);
4239

4240
  IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4241
  head->init_req(2, IfTrue(iff));
4242
  mem->init_req(2, st);
4243
  i_byte->init_req(2, AddI(i_byte, intcon(1)));
4244
  i_char->init_req(2, AddI(i_char, intcon(2)));
4245

4246
  set_control(IfFalse(iff));
4247
  set_memory(st, TypeAryPtr::BYTES);
4248
}
4249

4250
Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4251
  if (!field->is_constant()) {
4252
    return nullptr; // Field not marked as constant.
4253
  }
4254
  ciInstance* holder = nullptr;
4255
  if (!field->is_static()) {
4256
    ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4257
    if (const_oop != nullptr && const_oop->is_instance()) {
4258
      holder = const_oop->as_instance();
4259
    }
4260
  }
4261
  const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4262
                                                        /*is_unsigned_load=*/false);
4263
  if (con_type != nullptr) {
4264
    return makecon(con_type);
4265
  }
4266
  return nullptr;
4267
}
4268

4269
Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4270
  const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4271
  const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4272
  if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4273
    const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4274
    Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4275
    return casted_obj;
4276
  }
4277
  return obj;
4278
}
4279

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.