2
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "opto/block.hpp"
30
#include "opto/c2compiler.hpp"
31
#include "opto/callnode.hpp"
32
#include "opto/cfgnode.hpp"
33
#include "opto/machnode.hpp"
34
#include "opto/opcodes.hpp"
35
#include "opto/phaseX.hpp"
36
#include "opto/rootnode.hpp"
37
#include "opto/runtime.hpp"
38
#include "opto/chaitin.hpp"
39
#include "runtime/deoptimization.hpp"
41
// Portions of code courtesy of Clifford Click
43
// Optimization - Graph Style
45
// To avoid float value underflow
46
#define MIN_BLOCK_FREQUENCY 1.e-35f
48
//----------------------------schedule_node_into_block-------------------------
49
// Insert node n into block b. Look for projections of n and make sure they
51
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
52
// Set basic block of n, Add n to b,
53
map_node_to_block(n, b);
56
// After Matching, nearly any old Node may have projections trailing it.
57
// These are usually machine-dependent flags. In any case, they might
58
// float to another block below this one. Move them up.
59
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
60
Node* use = n->fast_out(i);
62
Block* buse = get_block_for_node(use);
63
if (buse != b) { // In wrong block?
64
if (buse != nullptr) {
65
buse->find_remove(use); // Remove from wrong block
67
map_node_to_block(use, b);
74
//----------------------------replace_block_proj_ctrl-------------------------
75
// Nodes that have is_block_proj() nodes as their control need to use
76
// the appropriate Region for their actual block as their control since
77
// the projection will be in a predecessor block.
78
void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
79
const Node *in0 = n->in(0);
80
assert(in0 != nullptr, "Only control-dependent");
81
const Node *p = in0->is_block_proj();
82
if (p != nullptr && p != n) { // Control from a block projection?
83
assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
84
// Find trailing Region
85
Block *pb = get_block_for_node(in0); // Block-projection already has basic block
87
if (pb->_num_succs != 1) { // More then 1 successor?
88
// Search for successor
89
uint max = pb->number_of_nodes();
90
assert( max > 1, "" );
91
uint start = max - pb->_num_succs;
92
// Find which output path belongs to projection
93
for (j = start; j < max; j++) {
94
if( pb->get_node(j) == in0 )
97
assert( j < max, "must find" );
98
// Change control to match head of successor basic block
101
n->set_req(0, pb->_succs[j]->head());
105
bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
106
assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes");
107
if (dom_node == node) {
110
Block* d = find_block_for_node(dom_node);
111
Block* n = find_block_for_node(node);
112
assert(n != nullptr && d != nullptr, "blocks must exist");
115
if (dom_node->is_block_start()) {
118
if (node->is_block_start()) {
121
if (dom_node->is_block_proj()) {
124
if (node->is_block_proj()) {
128
assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint");
129
assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint");
131
// Neither 'node' nor 'dom_node' is a block start or block projection.
132
// Check if 'dom_node' is above 'node' in the control graph.
133
if (is_dominating_control(dom_node, node)) {
138
// If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node'
139
if (!is_dominating_control(node, dom_node)) {
142
assert(false, "neither dom_node nor node dominates the other");
148
return d->dom_lca(n) == d;
151
bool PhaseCFG::is_CFG(Node* n) {
152
return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n);
155
bool PhaseCFG::is_control_proj_or_safepoint(Node* n) const {
156
bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL);
157
assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint)
158
|| (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0");
162
Block* PhaseCFG::find_block_for_node(Node* n) const {
163
if (n->is_block_start() || n->is_block_proj()) {
164
return get_block_for_node(n);
166
// Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be
167
// an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block.
168
assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint");
169
Node* ctrl = n->in(0);
170
while (!ctrl->is_block_start()) {
173
return get_block_for_node(ctrl);
177
// Walk up the control graph from 'n' and check if 'dom_ctrl' is found.
178
bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) {
179
Node* ctrl = n->in(0);
180
while (!ctrl->is_block_start()) {
181
if (ctrl == dom_ctrl) {
190
//------------------------------schedule_pinned_nodes--------------------------
191
// Set the basic block for Nodes pinned into blocks
192
void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
193
// Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
194
GrowableArray <Node*> spstack(C->live_nodes() + 8);
196
while (spstack.is_nonempty()) {
197
Node* node = spstack.pop();
198
if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
199
if (node->pinned() && !has_block(node)) { // Pinned? Nail it down!
200
assert(node->in(0), "pinned Node must have Control");
201
// Before setting block replace block_proj control edge
202
replace_block_proj_ctrl(node);
203
Node* input = node->in(0);
204
while (!input->is_block_start()) {
205
input = input->in(0);
207
Block* block = get_block_for_node(input); // Basic block of controlling input
208
schedule_node_into_block(node, block);
211
// If the node has precedence edges (added when CastPP nodes are
212
// removed in final_graph_reshaping), fix the control of the
213
// node to cover the precedence edges and remove the
216
for (uint i = node->len()-1; i >= node->req(); i--) {
217
Node* m = node->in(i);
218
if (m == nullptr) continue;
220
// Only process precedence edges that are CFG nodes. Safepoints and control projections can be in the middle of a block
226
assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
227
n = is_dominator(n, m) ? m : n;
230
assert(node->is_Mach(), "sanity");
231
assert(node->as_Mach()->ideal_Opcode() == Op_StoreCM, "must be StoreCM node");
235
assert(node->in(0), "control should have been set");
236
assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
237
if (!is_dominator(n, node->in(0))) {
242
// process all inputs that are non null
243
for (int i = node->req()-1; i >= 0; --i) {
244
if (node->in(i) != nullptr) {
245
spstack.push(node->in(i));
253
// Assert that new input b2 is dominated by all previous inputs.
254
// Check this by by seeing that it is dominated by b1, the deepest
255
// input observed until b2.
256
static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
257
if (b1 == nullptr) return;
258
assert(b1->_dom_depth < b2->_dom_depth, "sanity");
260
while (tmp != b1 && tmp != nullptr) {
264
// Detected an unschedulable graph. Print some nice stuff and die.
265
tty->print_cr("!!! Unschedulable graph !!!");
266
for (uint j=0; j<n->len(); j++) { // For all inputs
267
Node* inn = n->in(j); // Get input
268
if (inn == nullptr) continue; // Ignore null, missing inputs
269
Block* inb = cfg->get_block_for_node(inn);
270
tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
271
inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
274
tty->print("Failing node: ");
276
assert(false, "unscheduable graph");
281
static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
282
// Find the last input dominated by all other inputs.
283
Block* deepb = nullptr; // Deepest block so far
284
int deepb_dom_depth = 0;
285
for (uint k = 0; k < n->len(); k++) { // For all inputs
286
Node* inn = n->in(k); // Get input
287
if (inn == nullptr) continue; // Ignore null, missing inputs
288
Block* inb = cfg->get_block_for_node(inn);
289
assert(inb != nullptr, "must already have scheduled this input");
290
if (deepb_dom_depth < (int) inb->_dom_depth) {
291
// The new inb must be dominated by the previous deepb.
292
// The various inputs must be linearly ordered in the dom
293
// tree, or else there will not be a unique deepest block.
294
DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
295
deepb = inb; // Save deepest block
296
deepb_dom_depth = deepb->_dom_depth;
299
assert(deepb != nullptr, "must be at least one input to n");
304
//------------------------------schedule_early---------------------------------
305
// Find the earliest Block any instruction can be placed in. Some instructions
306
// are pinned into Blocks. Unpinned instructions can appear in last block in
307
// which all their inputs occur.
308
bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
309
// Allocate stack with enough space to avoid frequent realloc
310
Node_Stack nstack(roots.size() + 8);
311
// _root will be processed among C->top() inputs
312
roots.push(C->top(), 0);
313
visited.set(C->top()->_idx);
315
while (roots.size() != 0) {
316
// Use local variables nstack_top_n & nstack_top_i to cache values
318
Node* parent_node = roots.node();
319
uint input_index = 0;
323
if (input_index == 0) {
324
// Fixup some control. Constants without control get attached
325
// to root and nodes that use is_block_proj() nodes should be attached
326
// to the region that starts their block.
327
const Node* control_input = parent_node->in(0);
328
if (control_input != nullptr) {
329
replace_block_proj_ctrl(parent_node);
331
// Is a constant with NO inputs?
332
if (parent_node->req() == 1) {
333
parent_node->set_req(0, _root);
338
// First, visit all inputs and force them to get a block. If an
339
// input is already in a block we quit following inputs (to avoid
340
// cycles). Instead we put that Node on a worklist to be handled
341
// later (since IT'S inputs may not have a block yet).
343
// Assume all n's inputs will be processed
346
while (input_index < parent_node->len()) {
347
Node* in = parent_node->in(input_index++);
352
int is_visited = visited.test_set(in->_idx);
353
if (!has_block(in)) {
355
assert(false, "graph should be schedulable");
358
// Save parent node and next input's index.
359
nstack.push(parent_node, input_index);
360
// Process current input now.
363
// Not all n's inputs processed.
366
} else if (!is_visited) {
367
// Visit this guy later, using worklist
373
// All of n's inputs have been processed, complete post-processing.
375
// Some instructions are pinned into a block. These include Region,
376
// Phi, Start, Return, and other control-dependent instructions and
377
// any projections which depend on them.
378
if (!parent_node->pinned()) {
379
// Set earliest legal block.
380
Block* earliest_block = find_deepest_input(parent_node, this);
381
map_node_to_block(parent_node, earliest_block);
383
assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
386
if (nstack.is_empty()) {
387
// Finished all nodes on stack.
388
// Process next node on the worklist 'roots'.
391
// Get saved parent node and next input's index.
392
parent_node = nstack.node();
393
input_index = nstack.index();
401
//------------------------------dom_lca----------------------------------------
402
// Find least common ancestor in dominator tree
403
// LCA is a current notion of LCA, to be raised above 'this'.
404
// As a convenient boundary condition, return 'this' if LCA is null.
405
// Find the LCA of those two nodes.
406
Block* Block::dom_lca(Block* LCA) {
407
if (LCA == nullptr || LCA == this) return this;
410
while (anc->_dom_depth > LCA->_dom_depth)
411
anc = anc->_idom; // Walk up till anc is as high as LCA
413
while (LCA->_dom_depth > anc->_dom_depth)
414
LCA = LCA->_idom; // Walk up till LCA is as high as anc
416
while (LCA != anc) { // Walk both up till they are the same
424
//--------------------------raise_LCA_above_use--------------------------------
425
// We are placing a definition, and have been given a def->use edge.
426
// The definition must dominate the use, so move the LCA upward in the
427
// dominator tree to dominate the use. If the use is a phi, adjust
428
// the LCA only with the phi input paths which actually use this def.
429
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
430
Block* buse = cfg->get_block_for_node(use);
431
if (buse == nullptr) return LCA; // Unused killing Projs have no use block
432
if (!use->is_Phi()) return buse->dom_lca(LCA);
433
uint pmax = use->req(); // Number of Phi inputs
434
// Why does not this loop just break after finding the matching input to
435
// the Phi? Well...it's like this. I do not have true def-use/use-def
436
// chains. Means I cannot distinguish, from the def-use direction, which
437
// of many use-defs lead from the same use to the same def. That is, this
438
// Phi might have several uses of the same def. Each use appears in a
439
// different predecessor block. But when I enter here, I cannot distinguish
440
// which use-def edge I should find the predecessor block for. So I find
441
// them all. Means I do a little extra work if a Phi uses the same value
443
for (uint j=1; j<pmax; j++) { // For all inputs
444
if (use->in(j) == def) { // Found matching input?
445
Block* pred = cfg->get_block_for_node(buse->pred(j));
446
LCA = pred->dom_lca(LCA);
452
//----------------------------raise_LCA_above_marks----------------------------
453
// Return a new LCA that dominates LCA and any of its marked predecessors.
454
// Search all my parents up to 'early' (exclusive), looking for predecessors
455
// which are marked with the given index. Return the LCA (in the dom tree)
456
// of all marked blocks. If there are none marked, return the original
458
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
461
while (worklist.size() > 0) {
462
Block* mid = worklist.pop();
463
if (mid == early) continue; // stop searching here
465
// Test and set the visited bit.
466
if (mid->raise_LCA_visited() == mark) continue; // already visited
468
// Don't process the current LCA, otherwise the search may terminate early
469
if (mid != LCA && mid->raise_LCA_mark() == mark) {
471
LCA = mid->dom_lca(LCA);
472
if (LCA == early) break; // stop searching everywhere
473
assert(early->dominates(LCA), "early is high enough");
474
// Resume searching at that point, skipping intermediate levels.
477
continue; // Don't mark as visited to avoid early termination.
479
// Keep searching through this block's predecessors.
480
for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
481
Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
482
worklist.push(mid_parent);
485
mid->set_raise_LCA_visited(mark);
490
//--------------------------memory_early_block--------------------------------
491
// This is a variation of find_deepest_input, the heart of schedule_early.
492
// Find the "early" block for a load, if we considered only memory and
493
// address inputs, that is, if other data inputs were ignored.
495
// Because a subset of edges are considered, the resulting block will
496
// be earlier (at a shallower dom_depth) than the true schedule_early
497
// point of the node. We compute this earlier block as a more permissive
498
// site for anti-dependency insertion, but only if subsume_loads is enabled.
499
static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
502
Node* store = load->in(MemNode::Memory);
503
load->as_Mach()->memory_inputs(base, index);
505
assert(base != NodeSentinel && index != NodeSentinel,
506
"unexpected base/index inputs");
509
int mem_inputs_length = 0;
510
if (base != nullptr) mem_inputs[mem_inputs_length++] = base;
511
if (index != nullptr) mem_inputs[mem_inputs_length++] = index;
512
if (store != nullptr) mem_inputs[mem_inputs_length++] = store;
514
// In the comparison below, add one to account for the control input,
515
// which may be null, but always takes up a spot in the in array.
516
if (mem_inputs_length + 1 < (int) load->req()) {
517
// This "load" has more inputs than just the memory, base and index inputs.
518
// For purposes of checking anti-dependences, we need to start
519
// from the early block of only the address portion of the instruction,
520
// and ignore other blocks that may have factored into the wider
521
// schedule_early calculation.
522
if (load->in(0) != nullptr) mem_inputs[mem_inputs_length++] = load->in(0);
524
Block* deepb = nullptr; // Deepest block so far
525
int deepb_dom_depth = 0;
526
for (int i = 0; i < mem_inputs_length; i++) {
527
Block* inb = cfg->get_block_for_node(mem_inputs[i]);
528
if (deepb_dom_depth < (int) inb->_dom_depth) {
529
// The new inb must be dominated by the previous deepb.
530
// The various inputs must be linearly ordered in the dom
531
// tree, or else there will not be a unique deepest block.
532
DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
533
deepb = inb; // Save deepest block
534
deepb_dom_depth = deepb->_dom_depth;
543
// This function is used by insert_anti_dependences to find unrelated loads for stores in implicit null checks.
544
bool PhaseCFG::unrelated_load_in_store_null_block(Node* store, Node* load) {
545
// We expect an anti-dependence edge from 'load' to 'store', except when
546
// implicit_null_check() has hoisted 'store' above its early block to
547
// perform an implicit null check, and 'load' is placed in the null
548
// block. In this case it is safe to ignore the anti-dependence, as the
549
// null block is only reached if 'store' tries to write to null object and
550
// 'load' read from non-null object (there is preceding check for that)
551
// These objects can't be the same.
552
Block* store_block = get_block_for_node(store);
553
Block* load_block = get_block_for_node(load);
554
Node* end = store_block->end();
555
if (end->is_MachNullCheck() && (end->in(1) == store) && store_block->dominates(load_block)) {
556
Node* if_true = end->find_out_with(Op_IfTrue);
557
assert(if_true != nullptr, "null check without null projection");
558
Node* null_block_region = if_true->find_out_with(Op_Region);
559
assert(null_block_region != nullptr, "null check without null region");
560
return get_block_for_node(null_block_region) == load_block;
565
//--------------------------insert_anti_dependences---------------------------
566
// A load may need to witness memory that nearby stores can overwrite.
567
// For each nearby store, either insert an "anti-dependence" edge
568
// from the load to the store, or else move LCA upward to force the
569
// load to (eventually) be scheduled in a block above the store.
571
// Do not add edges to stores on distinct control-flow paths;
572
// only add edges to stores which might interfere.
574
// Return the (updated) LCA. There will not be any possibly interfering
575
// store between the load's "early block" and the updated LCA.
576
// Any stores in the updated LCA will have new precedence edges
577
// back to the load. The caller is expected to schedule the load
578
// in the LCA, in which case the precedence edges will make LCM
579
// preserve anti-dependences. The caller may also hoist the load
580
// above the LCA, if it is not the early block.
581
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
582
assert(load->needs_anti_dependence_check(), "must be a load of some sort");
583
assert(LCA != nullptr, "");
584
DEBUG_ONLY(Block* LCA_orig = LCA);
586
// Compute the alias index. Loads and stores with different alias indices
587
// do not need anti-dependence edges.
588
int load_alias_idx = C->get_alias_index(load->adr_type());
590
assert(Compile::AliasIdxTop <= load_alias_idx && load_alias_idx < C->num_alias_types(), "Invalid alias index");
591
if (load_alias_idx == Compile::AliasIdxBot && C->do_aliasing() &&
592
(PrintOpto || VerifyAliases ||
593
(PrintMiscellaneous && (WizardMode || Verbose)))) {
594
// Load nodes should not consume all of memory.
595
// Reporting a bottom type indicates a bug in adlc.
596
// If some particular type of node validly consumes all of memory,
597
// sharpen the preceding "if" to exclude it, so we can catch bugs here.
598
tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
600
if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
604
if (!C->alias_type(load_alias_idx)->is_rewritable()) {
605
// It is impossible to spoil this load by putting stores before it,
606
// because we know that the stores will never update the value
607
// which 'load' must witness.
611
node_idx_t load_index = load->_idx;
613
// Note the earliest legal placement of 'load', as determined by
614
// by the unique point in the dom tree where all memory effects
615
// and other inputs are first available. (Computed by schedule_early.)
616
// For normal loads, 'early' is the shallowest place (dom graph wise)
617
// to look for anti-deps between this load and any store.
618
Block* early = get_block_for_node(load);
620
// If we are subsuming loads, compute an "early" block that only considers
621
// memory or address inputs. This block may be different than the
622
// schedule_early block in that it could be at an even shallower depth in the
623
// dominator tree, and allow for a broader discovery of anti-dependences.
624
if (C->subsume_loads()) {
625
early = memory_early_block(load, early, this);
628
ResourceArea *area = Thread::current()->resource_area();
629
Node_List worklist_mem(area); // prior memory state to store
630
Node_List worklist_store(area); // possible-def to explore
631
Node_List worklist_visited(area); // visited mergemem nodes
632
Node_List non_early_stores(area); // all relevant stores outside of early
633
bool must_raise_LCA = false;
635
// 'load' uses some memory state; look for users of the same state.
636
// Recurse through MergeMem nodes to the stores that use them.
638
// Each of these stores is a possible definition of memory
639
// that 'load' needs to use. We need to force 'load'
640
// to occur before each such store. When the store is in
641
// the same block as 'load', we insert an anti-dependence
644
// The relevant stores "nearby" the load consist of a tree rooted
645
// at initial_mem, with internal nodes of type MergeMem.
646
// Therefore, the branches visited by the worklist are of this form:
647
// initial_mem -> (MergeMem ->)* store
648
// The anti-dependence constraints apply only to the fringe of this tree.
650
Node* initial_mem = load->in(MemNode::Memory);
651
worklist_store.push(initial_mem);
652
worklist_visited.push(initial_mem);
653
worklist_mem.push(nullptr);
654
while (worklist_store.size() > 0) {
655
// Examine a nearby store to see if it might interfere with our load.
656
Node* mem = worklist_mem.pop();
657
Node* store = worklist_store.pop();
658
uint op = store->Opcode();
660
// MergeMems do not directly have anti-deps.
661
// Treat them as internal nodes in a forward tree of memory states,
662
// the leaves of which are each a 'possible-def'.
663
if (store == initial_mem // root (exclusive) of tree we are searching
664
|| op == Op_MergeMem // internal node of tree we are searching
666
mem = store; // It's not a possibly interfering store.
667
if (store == initial_mem)
668
initial_mem = nullptr; // only process initial memory once
670
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
671
store = mem->fast_out(i);
672
if (store->is_MergeMem()) {
673
// Be sure we don't get into combinatorial problems.
674
// (Allow phis to be repeated; they can merge two relevant states.)
675
uint j = worklist_visited.size();
677
if (worklist_visited.at(j-1) == store) break;
679
if (j > 0) continue; // already on work list; do not repeat
680
worklist_visited.push(store);
682
worklist_mem.push(mem);
683
worklist_store.push(store);
688
if (op == Op_MachProj || op == Op_Catch) continue;
689
if (store->needs_anti_dependence_check()) continue; // not really a store
691
// Compute the alias index. Loads and stores with different alias
692
// indices do not need anti-dependence edges. Wide MemBar's are
693
// anti-dependent on everything (except immutable memories).
694
const TypePtr* adr_type = store->adr_type();
695
if (!C->can_alias(adr_type, load_alias_idx)) continue;
697
// Most slow-path runtime calls do NOT modify Java memory, but
698
// they can block and so write Raw memory.
699
if (store->is_Mach()) {
700
MachNode* mstore = store->as_Mach();
701
if (load_alias_idx != Compile::AliasIdxRaw) {
702
// Check for call into the runtime using the Java calling
703
// convention (and from there into a wrapper); it has no
704
// _method. Can't do this optimization for Native calls because
705
// they CAN write to Java memory.
706
if (mstore->ideal_Opcode() == Op_CallStaticJava) {
707
assert(mstore->is_MachSafePoint(), "");
708
MachSafePointNode* ms = (MachSafePointNode*) mstore;
709
assert(ms->is_MachCallJava(), "");
710
MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
711
if (mcj->_method == nullptr) {
712
// These runtime calls do not write to Java visible memory
713
// (other than Raw) and so do not require anti-dependence edges.
717
// Same for SafePoints: they read/write Raw but only read otherwise.
718
// This is basically a workaround for SafePoints only defining control
719
// instead of control + memory.
720
if (mstore->ideal_Opcode() == Op_SafePoint)
723
// Some raw memory, such as the load of "top" at an allocation,
724
// can be control dependent on the previous safepoint. See
725
// comments in GraphKit::allocate_heap() about control input.
726
// Inserting an anti-dep between such a safepoint and a use
727
// creates a cycle, and will cause a subsequent failure in
728
// local scheduling. (BugId 4919904)
729
// (%%% How can a control input be a safepoint and not a projection??)
730
if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
735
// Identify a block that the current load must be above,
736
// or else observe that 'store' is all the way up in the
737
// earliest legal block for 'load'. In the latter case,
738
// immediately insert an anti-dependence edge.
739
Block* store_block = get_block_for_node(store);
740
assert(store_block != nullptr, "unused killing projections skipped above");
742
if (store->is_Phi()) {
743
// Loop-phis need to raise load before input. (Other phis are treated
746
// 'load' uses memory which is one (or more) of the Phi's inputs.
747
// It must be scheduled not before the Phi, but rather before
748
// each of the relevant Phi inputs.
750
// Instead of finding the LCA of all inputs to a Phi that match 'mem',
751
// we mark each corresponding predecessor block and do a combined
752
// hoisting operation later (raise_LCA_above_marks).
754
// Do not assert(store_block != early, "Phi merging memory after access")
755
// PhiNode may be at start of block 'early' with backedge to 'early'
756
DEBUG_ONLY(bool found_match = false);
757
for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
758
if (store->in(j) == mem) { // Found matching input?
759
DEBUG_ONLY(found_match = true);
760
Block* pred_block = get_block_for_node(store_block->pred(j));
761
if (pred_block != early) {
762
// If any predecessor of the Phi matches the load's "early block",
763
// we do not need a precedence edge between the Phi and 'load'
764
// since the load will be forced into a block preceding the Phi.
765
pred_block->set_raise_LCA_mark(load_index);
766
assert(!LCA_orig->dominates(pred_block) ||
767
early->dominates(pred_block), "early is high enough");
768
must_raise_LCA = true;
770
// anti-dependent upon PHI pinned below 'early', no edge needed
771
LCA = early; // but can not schedule below 'early'
775
assert(found_match, "no worklist bug");
776
} else if (store_block != early) {
777
// 'store' is between the current LCA and earliest possible block.
778
// Label its block, and decide later on how to raise the LCA
779
// to include the effect on LCA of this store.
780
// If this store's block gets chosen as the raised LCA, we
781
// will find him on the non_early_stores list and stick him
782
// with a precedence edge.
783
// (But, don't bother if LCA is already raised all the way.)
784
if (LCA != early && !unrelated_load_in_store_null_block(store, load)) {
785
store_block->set_raise_LCA_mark(load_index);
786
must_raise_LCA = true;
787
non_early_stores.push(store);
790
// Found a possibly-interfering store in the load's 'early' block.
791
// This means 'load' cannot sink at all in the dominator tree.
792
// Add an anti-dep edge, and squeeze 'load' into the highest block.
793
assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
795
assert(store->find_edge(load) != -1 || unrelated_load_in_store_null_block(store, load),
796
"missing precedence edge");
798
store->add_prec(load);
801
// This turns off the process of gathering non_early_stores.
804
// (Worklist is now empty; all nearby stores have been visited.)
806
// Finished if 'load' must be scheduled in its 'early' block.
807
// If we found any stores there, they have already been given
809
if (LCA == early) return LCA;
811
// We get here only if there are no possibly-interfering stores
812
// in the load's 'early' block. Move LCA up above all predecessors
813
// which contain stores we have noted.
815
// The raised LCA block can be a home to such interfering stores,
816
// but its predecessors must not contain any such stores.
818
// The raised LCA will be a lower bound for placing the load,
819
// preventing the load from sinking past any block containing
820
// a store that may invalidate the memory state required by 'load'.
822
LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
823
if (LCA == early) return LCA;
825
// Insert anti-dependence edges from 'load' to each store
826
// in the non-early LCA block.
827
// Mine the non_early_stores list for such stores.
828
if (LCA->raise_LCA_mark() == load_index) {
829
while (non_early_stores.size() > 0) {
830
Node* store = non_early_stores.pop();
831
Block* store_block = get_block_for_node(store);
832
if (store_block == LCA) {
833
// add anti_dependence from store to load in its own block
834
assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
836
assert(store->find_edge(load) != -1, "missing precedence edge");
838
store->add_prec(load);
841
assert(store_block->raise_LCA_mark() == load_index, "block was marked");
842
// Any other stores we found must be either inside the new LCA
843
// or else outside the original LCA. In the latter case, they
844
// did not interfere with any use of 'load'.
845
assert(LCA->dominates(store_block)
846
|| !LCA_orig->dominates(store_block), "no stray stores");
851
// Return the highest block containing stores; any stores
852
// within that block have been given anti-dependence edges.
856
// This class is used to iterate backwards over the nodes in the graph.
858
class Node_Backward_Iterator {
861
Node_Backward_Iterator();
864
// Constructor for the iterator
865
Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
867
// Postincrement operator to iterate over the nodes
876
// Constructor for the Node_Backward_Iterator
877
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
878
: _visited(visited), _stack(stack), _cfg(cfg) {
879
// The stack should contain exactly the root
881
stack.push(root, root->outcnt());
883
// Clear the visited bits
887
// Iterator for the Node_Backward_Iterator
888
Node *Node_Backward_Iterator::next() {
890
// If the _stack is empty, then just return null: finished.
891
if ( !_stack.size() )
894
// I visit unvisited not-anti-dependence users first, then anti-dependent
895
// children next. I iterate backwards to support removal of nodes.
896
// The stack holds states consisting of 3 values:
897
// current Def node, flag which indicates 1st/2nd pass, index of current out edge
898
Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
899
bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
900
uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
903
// I cycle here when I am entering a deeper level of recursion.
904
// The key variable 'self' was set prior to jumping here.
907
_visited.set(self->_idx);
909
// Now schedule all uses as late as possible.
910
const Node* src = self->is_Proj() ? self->in(0) : self;
911
uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
913
// Schedule all nodes in a post-order visit
914
Node *unvisited = nullptr; // Unvisited anti-dependent Node, if any
916
// Scan for unvisited nodes
918
// For all uses, schedule late
919
Node* n = self->raw_out(--idx); // Use
921
// Skip already visited children
922
if ( _visited.test(n->_idx) )
925
// do not traverse backward control edges
926
Node *use = n->is_Proj() ? n->in(0) : n;
927
uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
929
if ( use_rpo < src_rpo )
932
// Phi nodes always precede uses in a basic block
933
if ( use_rpo == src_rpo && use->is_Phi() )
936
unvisited = n; // Found unvisited
938
// Check for possible-anti-dependent
939
// 1st pass: No such nodes, 2nd pass: Only such nodes.
940
if (n->needs_anti_dependence_check() == iterate_anti_dep) {
941
unvisited = n; // Found unvisited
946
// Did I find an unvisited not-anti-dependent Node?
948
if (!iterate_anti_dep) {
949
// 2nd pass: Iterate over nodes which needs_anti_dependence_check.
950
iterate_anti_dep = true;
951
idx = self->outcnt();
954
break; // All done with children; post-visit 'self'
957
// Visit the unvisited Node. Contains the obvious push to
958
// indicate I'm entering a deeper level of recursion. I push the
959
// old state onto the _stack and set a new state and loop (recurse).
960
_stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
962
iterate_anti_dep = false;
963
idx = self->outcnt();
964
} // End recursion loop
969
//------------------------------ComputeLatenciesBackwards----------------------
970
// Compute the latency of all the instructions.
971
void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
973
if (trace_opto_pipelining())
974
tty->print("\n#---- ComputeLatenciesBackwards ----\n");
977
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
980
// Walk over all the nodes from last to first
981
while ((n = iter.next())) {
982
// Set the latency for the definitions of this instruction
983
partial_latency_of_defs(n);
985
} // end ComputeLatenciesBackwards
987
//------------------------------partial_latency_of_defs------------------------
988
// Compute the latency impact of this node on all defs. This computes
989
// a number that increases as we approach the beginning of the routine.
990
void PhaseCFG::partial_latency_of_defs(Node *n) {
991
// Set the latency for this instruction
993
if (trace_opto_pipelining()) {
994
tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1007
uint nlen = n->len();
1008
uint use_latency = get_latency_for_node(n);
1009
uint use_pre_order = get_block_for_node(n)->_pre_order;
1011
for (uint j = 0; j < nlen; j++) {
1012
Node *def = n->in(j);
1014
if (!def || def == n) {
1018
// Walk backwards thru projections
1019
if (def->is_Proj()) {
1024
if (trace_opto_pipelining()) {
1025
tty->print("# in(%2d): ", j);
1030
// If the defining block is not known, assume it is ok
1031
Block *def_block = get_block_for_node(def);
1032
uint def_pre_order = def_block ? def_block->_pre_order : 0;
1034
if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
1038
uint delta_latency = n->latency(j);
1039
uint current_latency = delta_latency + use_latency;
1041
if (get_latency_for_node(def) < current_latency) {
1042
set_latency_for_node(def, current_latency);
1046
if (trace_opto_pipelining()) {
1047
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1053
//------------------------------latency_from_use-------------------------------
1054
// Compute the latency of a specific use
1055
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1056
// If self-reference, return no latency
1057
if (use == n || use->is_Root()) {
1061
uint def_pre_order = get_block_for_node(def)->_pre_order;
1064
// If the use is not a projection, then it is simple...
1065
if (!use->is_Proj()) {
1067
if (trace_opto_pipelining()) {
1068
tty->print("# out(): ");
1073
uint use_pre_order = get_block_for_node(use)->_pre_order;
1075
if (use_pre_order < def_pre_order)
1078
if (use_pre_order == def_pre_order && use->is_Phi())
1081
uint nlen = use->len();
1082
uint nl = get_latency_for_node(use);
1084
for ( uint j=0; j<nlen; j++ ) {
1085
if (use->in(j) == n) {
1086
// Change this if we want local latencies
1087
uint ul = use->latency(j);
1089
if (latency < l) latency = l;
1091
if (trace_opto_pipelining()) {
1092
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
1093
nl, j, ul, l, latency);
1099
// This is a projection, just grab the latency of the use(s)
1100
for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1101
uint l = latency_from_use(use, def, use->fast_out(j));
1102
if (latency < l) latency = l;
1109
//------------------------------latency_from_uses------------------------------
1110
// Compute the latency of this instruction relative to all of it's uses.
1111
// This computes a number that increases as we approach the beginning of the
1113
void PhaseCFG::latency_from_uses(Node *n) {
1114
// Set the latency for this instruction
1116
if (trace_opto_pipelining()) {
1117
tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1122
const Node *def = n->is_Proj() ? n->in(0): n;
1124
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1125
uint l = latency_from_use(n, def, n->fast_out(i));
1127
if (latency < l) latency = l;
1130
set_latency_for_node(n, latency);
1133
//------------------------------is_cheaper_block-------------------------
1134
// Check if a block between early and LCA block of uses is cheaper by
1135
// frequency-based policy, latency-based policy and random-based policy
1136
bool PhaseCFG::is_cheaper_block(Block* LCA, Node* self, uint target_latency,
1137
uint end_latency, double least_freq,
1138
int cand_cnt, bool in_latency) {
1140
// Should be randomly accepted in stress mode
1141
return C->randomized_select(cand_cnt);
1145
if (LCA->_freq < least_freq) {
1149
// Otherwise, choose with latency
1150
const double delta = 1 + PROB_UNLIKELY_MAG(4);
1151
if (!in_latency && // No block containing latency
1152
LCA->_freq < least_freq * delta && // No worse frequency
1153
target_latency >= end_latency && // within latency range
1154
!self->is_iteratively_computed() // But don't hoist IV increments
1155
// because they may end up above other uses of their phi forcing
1156
// their result register to be different from their input.
1164
//------------------------------hoist_to_cheaper_block-------------------------
1165
// Pick a block for node self, between early and LCA block of uses, that is a
1166
// cheaper alternative to LCA.
1167
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1169
double least_freq = least->_freq;
1170
uint target = get_latency_for_node(self);
1171
uint start_latency = get_latency_for_node(LCA->head());
1172
uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1173
bool in_latency = (target <= start_latency);
1174
const Block* root_block = get_block_for_node(_root);
1176
// Turn off latency scheduling if scheduling is just plain off
1177
if (!C->do_scheduling())
1180
// Do not hoist (to cover latency) instructions which target a
1181
// single register. Hoisting stretches the live range of the
1182
// single register and may force spilling.
1183
MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr;
1184
if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1188
if (trace_opto_pipelining()) {
1189
tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1191
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1195
LCA->get_node(LCA->end_idx())->_idx,
1201
int cand_cnt = 0; // number of candidates tried
1203
// Walk up the dominator tree from LCA (Lowest common ancestor) to
1204
// the earliest legal location. Capture the least execution frequency,
1205
// or choose a random block if -XX:+StressGCM, or using latency-based policy
1206
while (LCA != early) {
1207
LCA = LCA->_idom; // Follow up the dominator tree
1209
if (LCA == nullptr) {
1210
// Bailout without retry
1211
assert(false, "graph should be schedulable");
1212
C->record_method_not_compilable("late schedule failed: LCA is null");
1216
// Don't hoist machine instructions to the root basic block
1217
if (mach && LCA == root_block)
1220
if (self->is_memory_writer() &&
1221
(LCA->_loop->depth() > early->_loop->depth())) {
1222
// LCA is an invalid placement for a memory writer: choosing it would
1223
// cause memory interference, as illustrated in schedule_late().
1226
verify_memory_writer_placement(LCA, self);
1228
uint start_lat = get_latency_for_node(LCA->head());
1229
uint end_idx = LCA->end_idx();
1230
uint end_lat = get_latency_for_node(LCA->get_node(end_idx));
1231
double LCA_freq = LCA->_freq;
1233
if (trace_opto_pipelining()) {
1234
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1235
LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1239
if (is_cheaper_block(LCA, self, target, end_lat, least_freq, cand_cnt, in_latency)) {
1240
least = LCA; // Found cheaper block
1241
least_freq = LCA_freq;
1242
start_latency = start_lat;
1243
end_latency = end_lat;
1244
if (target <= start_lat)
1250
if (trace_opto_pipelining()) {
1251
tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
1252
least->_pre_order, start_latency, least_freq);
1256
// See if the latency needs to be updated
1257
if (target < end_latency) {
1259
if (trace_opto_pipelining()) {
1260
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1263
set_latency_for_node(self, end_latency);
1264
partial_latency_of_defs(self);
1271
//------------------------------schedule_late-----------------------------------
1272
// Now schedule all codes as LATE as possible. This is the LCA in the
1273
// dominator tree of all USES of a value. Pick the block with the least
1274
// loop nesting depth that is lowest in the dominator tree.
1275
extern const char must_clone[];
1276
void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1278
if (trace_opto_pipelining())
1279
tty->print("\n#---- schedule_late ----\n");
1282
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1285
// Walk over all the nodes from last to first
1286
while ((self = iter.next())) {
1287
Block* early = get_block_for_node(self); // Earliest legal placement
1289
if (self->is_top()) {
1290
// Top node goes in bb #2 with other constants.
1291
// It must be special-cased, because it has no out edges.
1292
early->add_inst(self);
1296
// No uses, just terminate
1297
if (self->outcnt() == 0) {
1298
assert(self->is_MachProj(), "sanity");
1299
continue; // Must be a dead machine projection
1302
// If node is pinned in the block, then no scheduling can be done.
1303
if( self->pinned() ) // Pinned in block?
1307
// Assert that memory writers (e.g. stores) have a "home" block (the block
1308
// given by their control input), and that this block corresponds to their
1309
// earliest possible placement. This guarantees that
1310
// hoist_to_cheaper_block() will always have at least one valid choice.
1311
if (self->is_memory_writer()) {
1312
assert(find_block_for_node(self->in(0)) == early,
1313
"The home of a memory writer must also be its earliest placement");
1317
MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr;
1319
switch (mach->ideal_Opcode()) {
1321
// Don't move exception creation
1322
early->add_inst(self);
1325
case Op_CheckCastPP: {
1326
// Don't move CheckCastPP nodes away from their input, if the input
1327
// is a rawptr (5071820).
1328
Node *def = self->in(1);
1329
if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
1330
early->add_inst(self);
1332
_raw_oops.push(def);
1341
if (C->has_irreducible_loop() && self->is_memory_writer()) {
1342
// If the CFG is irreducible, place memory writers in their home block.
1343
// This prevents hoist_to_cheaper_block() from accidentally placing such
1344
// nodes into deeper loops, as in the following example:
1346
// Home placement of store in B1 (loop L1):
1350
// m2 <- store m1, ..
1356
// Wrong "hoisting" of store to B2 (in loop L2, child of L1):
1361
// m2 <- store m1, ..
1362
// # Wrong: m1 and m2 interfere at this point.
1367
// This "hoist inversion" can happen due to different factors such as
1368
// inaccurate estimation of frequencies for irreducible CFGs, and loops
1369
// with always-taken exits in reducible CFGs. In the reducible case,
1370
// hoist inversion is prevented by discarding invalid blocks (those in
1371
// deeper loops than the home block). In the irreducible case, the
1372
// invalid blocks cannot be identified due to incomplete loop nesting
1373
// information, hence a conservative solution is taken.
1375
if (trace_opto_pipelining()) {
1376
tty->print_cr("# Irreducible loops: schedule in home block B%d:",
1381
schedule_node_into_block(self, early);
1386
// Gather LCA of all uses
1387
Block *LCA = nullptr;
1389
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1390
// For all uses, find LCA
1391
Node* use = self->fast_out(i);
1392
LCA = raise_LCA_above_use(LCA, use, self, this);
1394
guarantee(LCA != nullptr, "There must be a LCA");
1395
} // (Hide defs of imax, i from rest of block.)
1397
// Place temps in the block of their use. This isn't a
1398
// requirement for correctness but it reduces useless
1399
// interference between temps and other nodes.
1400
if (mach != nullptr && mach->is_MachTemp()) {
1401
map_node_to_block(self, LCA);
1402
LCA->add_inst(self);
1406
// Check if 'self' could be anti-dependent on memory
1407
if (self->needs_anti_dependence_check()) {
1408
// Hoist LCA above possible-defs and insert anti-dependences to
1409
// defs in new LCA block.
1410
LCA = insert_anti_dependences(LCA, self);
1413
if (early->_dom_depth > LCA->_dom_depth) {
1414
// Somehow the LCA has moved above the earliest legal point.
1415
// (One way this can happen is via memory_early_block.)
1416
if (C->subsume_loads() == true && !C->failing()) {
1417
// Retry with subsume_loads == false
1418
// If this is the first failure, the sentinel string will "stick"
1419
// to the Compile object, and the C2Compiler will see it and retry.
1420
C->record_failure(C2Compiler::retry_no_subsuming_loads());
1422
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1423
assert(false, "graph should be schedulable");
1424
C->record_method_not_compilable("late schedule failed: incorrect graph");
1429
if (self->is_memory_writer()) {
1430
// If the LCA of a memory writer is a descendant of its home loop, hoist
1431
// it into a valid placement.
1432
while (LCA->_loop->depth() > early->_loop->depth()) {
1435
assert(LCA != nullptr, "a valid LCA must exist");
1436
verify_memory_writer_placement(LCA, self);
1439
// If there is no opportunity to hoist, then we're done.
1440
// In stress mode, try to hoist even the single operations.
1441
bool try_to_hoist = StressGCM || (LCA != early);
1443
// Must clone guys stay next to use; no hoisting allowed.
1444
// Also cannot hoist guys that alter memory or are otherwise not
1445
// allocatable (hoisting can make a value live longer, leading to
1446
// anti and output dependency problems which are normally resolved
1447
// by the register allocator giving everyone a different register).
1448
if (mach != nullptr && must_clone[mach->ideal_Opcode()])
1449
try_to_hoist = false;
1451
Block* late = nullptr;
1453
// Now find the block with the least execution frequency.
1454
// Start at the latest schedule and work up to the earliest schedule
1455
// in the dominator tree. Thus the Node will dominate all its uses.
1456
late = hoist_to_cheaper_block(LCA, early, self);
1458
// Just use the LCA of the uses.
1462
// Put the node into target block
1463
schedule_node_into_block(self, late);
1466
if (self->needs_anti_dependence_check()) {
1467
// since precedence edges are only inserted when we're sure they
1468
// are needed make sure that after placement in a block we don't
1469
// need any new precedence edges.
1470
verify_anti_dependences(late, self);
1473
} // Loop until all nodes have been visited
1475
} // end ScheduleLate
1477
//------------------------------GlobalCodeMotion-------------------------------
1478
void PhaseCFG::global_code_motion() {
1482
if (trace_opto_pipelining()) {
1483
tty->print("\n---- Start GlobalCodeMotion ----\n");
1487
// Initialize the node to block mapping for things on the proj_list
1488
for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1489
unmap_node_from_block(_matcher.get_projection(i));
1492
// Set the basic block for Nodes pinned into blocks
1494
schedule_pinned_nodes(visited);
1496
// Find the earliest Block any instruction can be placed in. Some
1497
// instructions are pinned into Blocks. Unpinned instructions can
1498
// appear in last block in which all their inputs occur.
1500
Node_Stack stack((C->live_nodes() >> 2) + 16); // pre-grow
1501
if (!schedule_early(visited, stack)) {
1502
// Bailout without retry
1503
assert(false, "early schedule failed");
1504
C->record_method_not_compilable("early schedule failed");
1508
// Build Def-Use edges.
1509
// Compute the latency information (via backwards walk) for all the
1510
// instructions in the graph
1511
_node_latency = new GrowableArray<uint>(); // resource_area allocation
1513
if (C->do_scheduling()) {
1514
compute_latencies_backwards(visited, stack);
1517
// Now schedule all codes as LATE as possible. This is the LCA in the
1518
// dominator tree of all USES of a value. Pick the block with the least
1519
// loop nesting depth that is lowest in the dominator tree.
1520
// ( visited.clear() called in schedule_late()->Node_Backward_Iterator() )
1521
schedule_late(visited, stack);
1527
if (trace_opto_pipelining()) {
1528
tty->print("\n---- Detect implicit null checks ----\n");
1532
// Detect implicit-null-check opportunities. Basically, find null checks
1533
// with suitable memory ops nearby. Use the memory op to do the null check.
1534
// I can generate a memory op if there is not one nearby.
1535
if (C->is_method_compilation()) {
1536
// By reversing the loop direction we get a very minor gain on mpegaudio.
1537
// Feel free to revert to a forward loop for clarity.
1538
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1539
for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1540
Node* proj = _matcher._null_check_tests[i];
1541
Node* val = _matcher._null_check_tests[i + 1];
1542
Block* block = get_block_for_node(proj);
1543
implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1544
// The implicit_null_check will only perform the transformation
1545
// if the null branch is truly uncommon, *and* it leads to an
1546
// uncommon trap. Combined with the too_many_traps guards
1547
// above, this prevents SEGV storms reported in 6366351,
1548
// by recompiling offending methods without this optimization.
1552
bool block_size_threshold_ok = false;
1553
intptr_t *recalc_pressure_nodes = nullptr;
1554
if (OptoRegScheduling) {
1555
for (uint i = 0; i < number_of_blocks(); i++) {
1556
Block* block = get_block(i);
1557
if (block->number_of_nodes() > 10) {
1558
block_size_threshold_ok = true;
1564
// Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1565
// is key to enabling this feature.
1566
PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1567
ResourceArea live_arena(mtCompiler); // Arena for liveness
1568
ResourceMark rm_live(&live_arena);
1569
PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1570
PhaseIFG ifg(&live_arena);
1571
if (OptoRegScheduling && block_size_threshold_ok) {
1572
regalloc.mark_ssa();
1573
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1574
rm_live.reset_to_mark(); // Reclaim working storage
1575
IndexSet::reset_memory(C, &live_arena);
1576
uint node_size = regalloc._lrg_map.max_lrg_id();
1577
ifg.init(node_size); // Empty IFG
1578
regalloc.set_ifg(ifg);
1579
regalloc.set_live(live);
1580
regalloc.gather_lrg_masks(false); // Collect LRG masks
1581
live.compute(node_size); // Compute liveness
1583
recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1584
for (uint i = 0; i < node_size; i++) {
1585
recalc_pressure_nodes[i] = 0;
1588
_regalloc = ®alloc;
1591
if (trace_opto_pipelining()) {
1592
tty->print("\n---- Start Local Scheduling ----\n");
1596
// Schedule locally. Right now a simple topological sort.
1597
// Later, do a real latency aware scheduler.
1598
GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1600
for (uint i = 0; i < number_of_blocks(); i++) {
1601
Block* block = get_block(i);
1602
if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1603
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1604
assert(false, "local schedule failed");
1605
C->record_method_not_compilable("local schedule failed");
1607
_regalloc = nullptr;
1611
_regalloc = nullptr;
1613
// If we inserted any instructions between a Call and his CatchNode,
1614
// clone the instructions on all paths below the Catch.
1615
for (uint i = 0; i < number_of_blocks(); i++) {
1616
Block* block = get_block(i);
1617
call_catch_cleanup(block);
1621
if (trace_opto_pipelining()) {
1622
tty->print("\n---- After GlobalCodeMotion ----\n");
1623
for (uint i = 0; i < number_of_blocks(); i++) {
1624
Block* block = get_block(i);
1630
_node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef);
1633
bool PhaseCFG::do_global_code_motion() {
1635
build_dominator_tree();
1640
NOT_PRODUCT( C->verify_graph_edges(); )
1642
estimate_block_frequency();
1644
global_code_motion();
1653
//------------------------------Estimate_Block_Frequency-----------------------
1654
// Estimate block frequencies based on IfNode probabilities.
1655
void PhaseCFG::estimate_block_frequency() {
1657
// Force conditional branches leading to uncommon traps to be unlikely,
1658
// not because we get to the uncommon_trap with less relative frequency,
1659
// but because an uncommon_trap typically causes a deopt, so we only get
1661
if (C->do_freq_based_layout()) {
1662
Block_List worklist;
1663
Block* root_blk = get_block(0);
1664
for (uint i = 1; i < root_blk->num_preds(); i++) {
1665
Block *pb = get_block_for_node(root_blk->pred(i));
1666
if (pb->has_uncommon_code()) {
1670
while (worklist.size() > 0) {
1671
Block* uct = worklist.pop();
1672
if (uct == get_root_block()) {
1675
for (uint i = 1; i < uct->num_preds(); i++) {
1676
Block *pb = get_block_for_node(uct->pred(i));
1677
if (pb->_num_succs == 1) {
1679
} else if (pb->num_fall_throughs() == 2) {
1680
pb->update_uncommon_branch(uct);
1686
// Create the loop tree and calculate loop depth.
1687
_root_loop = create_loop_tree();
1688
_root_loop->compute_loop_depth(0);
1690
// Compute block frequency of each block, relative to a single loop entry.
1691
_root_loop->compute_freq();
1693
// Adjust all frequencies to be relative to a single method entry
1694
_root_loop->_freq = 1.0;
1695
_root_loop->scale_freq();
1697
// Save outmost loop frequency for LRG frequency threshold
1698
_outer_loop_frequency = _root_loop->outer_loop_freq();
1700
// force paths ending at uncommon traps to be infrequent
1701
if (!C->do_freq_based_layout()) {
1702
Block_List worklist;
1703
Block* root_blk = get_block(0);
1704
for (uint i = 1; i < root_blk->num_preds(); i++) {
1705
Block *pb = get_block_for_node(root_blk->pred(i));
1706
if (pb->has_uncommon_code()) {
1710
while (worklist.size() > 0) {
1711
Block* uct = worklist.pop();
1712
uct->_freq = PROB_MIN;
1713
for (uint i = 1; i < uct->num_preds(); i++) {
1714
Block *pb = get_block_for_node(uct->pred(i));
1715
if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1723
for (uint i = 0; i < number_of_blocks(); i++) {
1724
Block* b = get_block(i);
1725
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1730
if (PrintCFGBlockFreq) {
1731
tty->print_cr("CFG Block Frequencies");
1732
_root_loop->dump_tree();
1734
tty->print_cr("PhaseCFG dump");
1736
tty->print_cr("Node dump");
1743
//----------------------------create_loop_tree--------------------------------
1744
// Create a loop tree from the CFG
1745
CFGLoop* PhaseCFG::create_loop_tree() {
1748
assert(get_block(0) == get_root_block(), "first block should be root block");
1749
for (uint i = 0; i < number_of_blocks(); i++) {
1750
Block* block = get_block(i);
1751
// Check that _loop field are clear...we could clear them if not.
1752
assert(block->_loop == nullptr, "clear _loop expected");
1753
// Sanity check that the RPO numbering is reflected in the _blocks array.
1754
// It doesn't have to be for the loop tree to be built, but if it is not,
1755
// then the blocks have been reordered since dom graph building...which
1756
// may question the RPO numbering
1757
assert(block->_rpo == i, "unexpected reverse post order number");
1762
CFGLoop* root_loop = new CFGLoop(idct++);
1764
Block_List worklist;
1766
// Assign blocks to loops
1767
for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1768
Block* block = get_block(i);
1770
if (block->head()->is_Loop()) {
1771
Block* loop_head = block;
1772
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1773
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1774
Block* tail = get_block_for_node(tail_n);
1776
// Defensively filter out Loop nodes for non-single-entry loops.
1777
// For all reasonable loops, the head occurs before the tail in RPO.
1778
if (i <= tail->_rpo) {
1780
// The tail and (recursive) predecessors of the tail
1781
// are made members of a new loop.
1783
assert(worklist.size() == 0, "nonempty worklist");
1784
CFGLoop* nloop = new CFGLoop(idct++);
1785
assert(loop_head->_loop == nullptr, "just checking");
1786
loop_head->_loop = nloop;
1787
// Add to nloop so push_pred() will skip over inner loops
1788
nloop->add_member(loop_head);
1789
nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1791
while (worklist.size() > 0) {
1792
Block* member = worklist.pop();
1793
if (member != loop_head) {
1794
for (uint j = 1; j < member->num_preds(); j++) {
1795
nloop->push_pred(member, j, worklist, this);
1803
// Create a member list for each loop consisting
1804
// of both blocks and (immediate child) loops.
1805
for (uint i = 0; i < number_of_blocks(); i++) {
1806
Block* block = get_block(i);
1807
CFGLoop* lp = block->_loop;
1808
if (lp == nullptr) {
1809
// Not assigned to a loop. Add it to the method's pseudo loop.
1810
block->_loop = root_loop;
1813
if (lp == root_loop || block != lp->head()) { // loop heads are already members
1814
lp->add_member(block);
1816
if (lp != root_loop) {
1817
if (lp->parent() == nullptr) {
1818
// Not a nested loop. Make it a child of the method's pseudo loop.
1819
root_loop->add_nested_loop(lp);
1821
if (block == lp->head()) {
1822
// Add nested loop to member list of parent loop.
1823
lp->parent()->add_member(lp);
1831
//------------------------------push_pred--------------------------------------
1832
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1833
Node* pred_n = blk->pred(i);
1834
Block* pred = cfg->get_block_for_node(pred_n);
1835
CFGLoop *pred_loop = pred->_loop;
1836
if (pred_loop == nullptr) {
1837
// Filter out blocks for non-single-entry loops.
1838
// For all reasonable loops, the head occurs before the tail in RPO.
1839
if (pred->_rpo > head()->_rpo) {
1841
worklist.push(pred);
1843
} else if (pred_loop != this) {
1845
while (pred_loop->_parent != nullptr && pred_loop->_parent != this) {
1846
pred_loop = pred_loop->_parent;
1848
// Make pred's loop be a child
1849
if (pred_loop->_parent == nullptr) {
1850
add_nested_loop(pred_loop);
1851
// Continue with loop entry predecessor.
1852
Block* pred_head = pred_loop->head();
1853
assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1854
assert(pred_head != head(), "loop head in only one loop");
1855
push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1857
assert(pred_loop->_parent == this && _parent == nullptr, "just checking");
1862
//------------------------------add_nested_loop--------------------------------
1863
// Make cl a child of the current loop in the loop tree.
1864
void CFGLoop::add_nested_loop(CFGLoop* cl) {
1865
assert(_parent == nullptr, "no parent yet");
1866
assert(cl != this, "not my own parent");
1868
CFGLoop* ch = _child;
1869
if (ch == nullptr) {
1872
while (ch->_sibling != nullptr) { ch = ch->_sibling; }
1877
//------------------------------compute_loop_depth-----------------------------
1878
// Store the loop depth in each CFGLoop object.
1879
// Recursively walk the children to do the same for them.
1880
void CFGLoop::compute_loop_depth(int depth) {
1882
CFGLoop* ch = _child;
1883
while (ch != nullptr) {
1884
ch->compute_loop_depth(depth + 1);
1889
//------------------------------compute_freq-----------------------------------
1890
// Compute the frequency of each block and loop, relative to a single entry
1891
// into the dominating loop head.
1892
void CFGLoop::compute_freq() {
1893
// Bottom up traversal of loop tree (visit inner loops first.)
1894
// Set loop head frequency to 1.0, then transitively
1895
// compute frequency for all successors in the loop,
1896
// as well as for each exit edge. Inner loops are
1897
// treated as single blocks with loop exit targets
1898
// as the successor blocks.
1900
// Nested loops first
1901
CFGLoop* ch = _child;
1902
while (ch != nullptr) {
1906
assert (_members.length() > 0, "no empty loops");
1909
for (int i = 0; i < _members.length(); i++) {
1910
CFGElement* s = _members.at(i);
1911
double freq = s->_freq;
1912
if (s->is_block()) {
1913
Block* b = s->as_Block();
1914
for (uint j = 0; j < b->_num_succs; j++) {
1915
Block* sb = b->_succs[j];
1916
update_succ_freq(sb, freq * b->succ_prob(j));
1919
CFGLoop* lp = s->as_CFGLoop();
1920
assert(lp->_parent == this, "immediate child");
1921
for (int k = 0; k < lp->_exits.length(); k++) {
1922
Block* eb = lp->_exits.at(k).get_target();
1923
double prob = lp->_exits.at(k).get_prob();
1924
update_succ_freq(eb, freq * prob);
1929
// For all loops other than the outer, "method" loop,
1930
// sum and normalize the exit probability. The "method" loop
1931
// should keep the initial exit probability of 1, so that
1932
// inner blocks do not get erroneously scaled.
1934
// Total the exit probabilities for this loop.
1935
double exits_sum = 0.0f;
1936
for (int i = 0; i < _exits.length(); i++) {
1937
exits_sum += _exits.at(i).get_prob();
1940
// Normalize the exit probabilities. Until now, the
1941
// probabilities estimate the possibility of exit per
1942
// a single loop iteration; afterward, they estimate
1943
// the probability of exit per loop entry.
1944
for (int i = 0; i < _exits.length(); i++) {
1945
Block* et = _exits.at(i).get_target();
1946
float new_prob = 0.0f;
1947
if (_exits.at(i).get_prob() > 0.0f) {
1948
new_prob = _exits.at(i).get_prob() / exits_sum;
1950
BlockProbPair bpp(et, new_prob);
1951
_exits.at_put(i, bpp);
1954
// Save the total, but guard against unreasonable probability,
1955
// as the value is used to estimate the loop trip count.
1956
// An infinite trip count would blur relative block
1958
if (exits_sum > 1.0f) exits_sum = 1.0;
1959
if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1960
_exit_prob = exits_sum;
1964
//------------------------------succ_prob-------------------------------------
1965
// Determine the probability of reaching successor 'i' from the receiver block.
1966
float Block::succ_prob(uint i) {
1967
int eidx = end_idx();
1968
Node *n = get_node(eidx); // Get ending Node
1970
int op = n->Opcode();
1972
if (n->is_MachNullCheck()) {
1973
// Can only reach here if called after lcm. The original Op_If is gone,
1974
// so we attempt to infer the probability from one or both of the
1975
// successor blocks.
1976
assert(_num_succs == 2, "expecting 2 successors of a null check");
1977
// If either successor has only one predecessor, then the
1978
// probability estimate can be derived using the
1979
// relative frequency of the successor and this block.
1980
if (_succs[i]->num_preds() == 2) {
1981
return _succs[i]->_freq / _freq;
1982
} else if (_succs[1-i]->num_preds() == 2) {
1983
return 1 - (_succs[1-i]->_freq / _freq);
1985
// Estimate using both successor frequencies
1986
float freq = _succs[i]->_freq;
1987
return freq / (freq + _succs[1-i]->_freq);
1990
op = n->as_Mach()->ideal_Opcode();
1994
// Switch on branch type
1996
case Op_CountedLoopEnd:
1998
assert (i < 2, "just checking");
1999
// Conditionals pass on only part of their frequency
2000
float prob = n->as_MachIf()->_prob;
2001
assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
2002
// If succ[i] is the FALSE branch, invert path info
2003
if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
2004
return 1.0f - prob; // not taken
2006
return prob; // taken
2011
return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con];
2014
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2015
if (ci->_con == CatchProjNode::fall_through_index) {
2016
// Fall-thru path gets the lion's share.
2017
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
2019
// Presume exceptional paths are equally unlikely
2020
return PROB_UNLIKELY_MAG(5);
2026
// Pass frequency straight thru to target
2029
case Op_NeverBranch:
2037
// Do not push out freq to root block
2041
ShouldNotReachHere();
2047
//------------------------------num_fall_throughs-----------------------------
2048
// Return the number of fall-through candidates for a block
2049
int Block::num_fall_throughs() {
2050
int eidx = end_idx();
2051
Node *n = get_node(eidx); // Get ending Node
2053
int op = n->Opcode();
2055
if (n->is_MachNullCheck()) {
2056
// In theory, either side can fall-thru, for simplicity sake,
2057
// let's say only the false branch can now.
2060
op = n->as_Mach()->ideal_Opcode();
2063
// Switch on branch type
2065
case Op_CountedLoopEnd:
2074
for (uint i = 0; i < _num_succs; i++) {
2075
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2076
if (ci->_con == CatchProjNode::fall_through_index) {
2084
case Op_NeverBranch:
2093
ShouldNotReachHere();
2099
//------------------------------succ_fall_through-----------------------------
2100
// Return true if a specific successor could be fall-through target.
2101
bool Block::succ_fall_through(uint i) {
2102
int eidx = end_idx();
2103
Node *n = get_node(eidx); // Get ending Node
2105
int op = n->Opcode();
2107
if (n->is_MachNullCheck()) {
2108
// In theory, either side can fall-thru, for simplicity sake,
2109
// let's say only the false branch can now.
2110
return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
2112
op = n->as_Mach()->ideal_Opcode();
2115
// Switch on branch type
2117
case Op_CountedLoopEnd:
2124
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2125
return ci->_con == CatchProjNode::fall_through_index;
2129
case Op_NeverBranch:
2138
ShouldNotReachHere();
2144
//------------------------------update_uncommon_branch------------------------
2145
// Update the probability of a two-branch to be uncommon
2146
void Block::update_uncommon_branch(Block* ub) {
2147
int eidx = end_idx();
2148
Node *n = get_node(eidx); // Get ending Node
2150
int op = n->as_Mach()->ideal_Opcode();
2152
assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2153
assert(num_fall_throughs() == 2, "must be a two way branch block");
2155
// Which successor is ub?
2157
for (s = 0; s <_num_succs; s++) {
2158
if (_succs[s] == ub) break;
2160
assert(s < 2, "uncommon successor must be found");
2162
// If ub is the true path, make the proability small, else
2163
// ub is the false path, and make the probability large
2164
bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2166
// Get existing probability
2167
float p = n->as_MachIf()->_prob;
2169
if (invert) p = 1.0 - p;
2173
if (invert) p = 1.0 - p;
2175
n->as_MachIf()->_prob = p;
2178
//------------------------------update_succ_freq-------------------------------
2179
// Update the appropriate frequency associated with block 'b', a successor of
2180
// a block in this loop.
2181
void CFGLoop::update_succ_freq(Block* b, double freq) {
2182
if (b->_loop == this) {
2184
// back branch within the loop
2185
// Do nothing now, the loop carried frequency will be
2186
// adjust later in scale_freq().
2188
// simple branch within the loop
2191
} else if (!in_loop_nest(b)) {
2192
// branch is exit from this loop
2193
BlockProbPair bpp(b, freq);
2196
// branch into nested loop
2197
CFGLoop* ch = b->_loop;
2202
//------------------------------in_loop_nest-----------------------------------
2203
// Determine if block b is in the receiver's loop nest.
2204
bool CFGLoop::in_loop_nest(Block* b) {
2206
CFGLoop* b_loop = b->_loop;
2207
int b_depth = b_loop->_depth;
2208
if (depth == b_depth) {
2211
while (b_depth > depth) {
2212
b_loop = b_loop->_parent;
2213
b_depth = b_loop->_depth;
2215
return b_loop == this;
2218
//------------------------------scale_freq-------------------------------------
2219
// Scale frequency of loops and blocks by trip counts from outer loops
2220
// Do a top down traversal of loop tree (visit outer loops first.)
2221
void CFGLoop::scale_freq() {
2222
double loop_freq = _freq * trip_count();
2224
for (int i = 0; i < _members.length(); i++) {
2225
CFGElement* s = _members.at(i);
2226
double block_freq = s->_freq * loop_freq;
2227
if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2228
block_freq = MIN_BLOCK_FREQUENCY;
2229
s->_freq = block_freq;
2231
CFGLoop* ch = _child;
2232
while (ch != nullptr) {
2238
// Frequency of outer loop
2239
double CFGLoop::outer_loop_freq() const {
2240
if (_child != nullptr) {
2241
return _child->_freq;
2247
//------------------------------dump_tree--------------------------------------
2248
void CFGLoop::dump_tree() const {
2250
if (_child != nullptr) _child->dump_tree();
2251
if (_sibling != nullptr) _sibling->dump_tree();
2254
//------------------------------dump-------------------------------------------
2255
void CFGLoop::dump() const {
2256
for (int i = 0; i < _depth; i++) tty->print(" ");
2257
tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
2258
_depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2259
for (int i = 0; i < _depth; i++) tty->print(" ");
2260
tty->print(" members:");
2262
for (int i = 0; i < _members.length(); i++) {
2265
for (int j = 0; j < _depth+1; j++) tty->print(" ");
2268
CFGElement *s = _members.at(i);
2269
if (s->is_block()) {
2270
Block *b = s->as_Block();
2271
tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2273
CFGLoop* lp = s->as_CFGLoop();
2274
tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2278
for (int i = 0; i < _depth; i++) tty->print(" ");
2279
tty->print(" exits: ");
2281
for (int i = 0; i < _exits.length(); i++) {
2284
for (int j = 0; j < _depth+1; j++) tty->print(" ");
2287
Block *blk = _exits.at(i).get_target();
2288
double prob = _exits.at(i).get_prob();
2289
tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));