2
* Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "opto/addnode.hpp"
27
#include "opto/castnode.hpp"
28
#include "opto/connode.hpp"
29
#include "opto/convertnode.hpp"
30
#include "opto/matcher.hpp"
31
#include "opto/movenode.hpp"
32
#include "opto/phaseX.hpp"
33
#include "opto/subnode.hpp"
34
#include "runtime/stubRoutines.hpp"
35
#include "utilities/checkedCast.hpp"
37
//=============================================================================
38
//------------------------------Identity---------------------------------------
39
Node* Conv2BNode::Identity(PhaseGVN* phase) {
40
const Type *t = phase->type( in(1) );
41
if( t == Type::TOP ) return in(1);
42
if( t == TypeInt::ZERO ) return in(1);
43
if( t == TypeInt::ONE ) return in(1);
44
if( t == TypeInt::BOOL ) return in(1);
48
//------------------------------Value------------------------------------------
49
const Type* Conv2BNode::Value(PhaseGVN* phase) const {
50
const Type *t = phase->type( in(1) );
51
if( t == Type::TOP ) return Type::TOP;
52
if( t == TypeInt::ZERO ) return TypeInt::ZERO;
53
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
54
const TypePtr *tp = t->isa_ptr();
56
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
57
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
58
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
61
if (t->base() != Type::Int) return TypeInt::BOOL;
62
const TypeInt *ti = t->is_int();
63
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
67
Node* Conv2BNode::Ideal(PhaseGVN* phase, bool can_reshape) {
68
if (!Matcher::match_rule_supported(Op_Conv2B)) {
69
if (phase->C->post_loop_opts_phase()) {
70
// Get type of comparison to make
71
const Type* t = phase->type(in(1));
74
cmp = phase->transform(new CmpINode(in(1), phase->intcon(0)));
75
} else if (t->isa_ptr()) {
76
cmp = phase->transform(new CmpPNode(in(1), phase->zerocon(BasicType::T_OBJECT)));
78
assert(false, "Unrecognized comparison for Conv2B: %s", NodeClassNames[in(1)->Opcode()]);
81
// Replace Conv2B with the cmove
82
Node* bol = phase->transform(new BoolNode(cmp, BoolTest::eq));
83
return new CMoveINode(bol, phase->intcon(1), phase->intcon(0), TypeInt::BOOL);
85
phase->C->record_for_post_loop_opts_igvn(this);
91
uint ConvertNode::ideal_reg() const {
92
return _type->ideal_reg();
95
Node* ConvertNode::create_convert(BasicType source, BasicType target, Node* input) {
96
if (source == T_INT) {
97
if (target == T_LONG) {
98
return new ConvI2LNode(input);
99
} else if (target == T_FLOAT) {
100
return new ConvI2FNode(input);
101
} else if (target == T_DOUBLE) {
102
return new ConvI2DNode(input);
104
} else if (source == T_LONG) {
105
if (target == T_INT) {
106
return new ConvL2INode(input);
107
} else if (target == T_FLOAT) {
108
return new ConvL2FNode(input);
109
} else if (target == T_DOUBLE) {
110
return new ConvL2DNode(input);
112
} else if (source == T_FLOAT) {
113
if (target == T_INT) {
114
return new ConvF2INode(input);
115
} else if (target == T_LONG) {
116
return new ConvF2LNode(input);
117
} else if (target == T_DOUBLE) {
118
return new ConvF2DNode(input);
119
} else if (target == T_SHORT) {
120
return new ConvF2HFNode(input);
122
} else if (source == T_DOUBLE) {
123
if (target == T_INT) {
124
return new ConvD2INode(input);
125
} else if (target == T_LONG) {
126
return new ConvD2LNode(input);
127
} else if (target == T_FLOAT) {
128
return new ConvD2FNode(input);
130
} else if (source == T_SHORT) {
131
if (target == T_FLOAT) {
132
return new ConvHF2FNode(input);
136
assert(false, "Couldn't create conversion for type %s to %s", type2name(source), type2name(target));
140
// The conversions operations are all Alpha sorted. Please keep it that way!
141
//=============================================================================
142
//------------------------------Value------------------------------------------
143
const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
144
const Type *t = phase->type( in(1) );
145
if( t == Type::TOP ) return Type::TOP;
146
if( t == Type::DOUBLE ) return Type::FLOAT;
147
const TypeD *td = t->is_double_constant();
148
return TypeF::make( (float)td->getd() );
151
//------------------------------Ideal------------------------------------------
152
// If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
153
Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
154
if ( in(1)->Opcode() == Op_SqrtD ) {
156
if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
157
if ( Matcher::match_rule_supported(Op_SqrtF) ) {
158
Node* convf2d = sqrtd->in(1);
159
return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
166
//------------------------------Identity---------------------------------------
167
// Float's can be converted to doubles with no loss of bits. Hence
168
// converting a float to a double and back to a float is a NOP.
169
Node* ConvD2FNode::Identity(PhaseGVN* phase) {
170
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
173
//=============================================================================
174
//------------------------------Value------------------------------------------
175
const Type* ConvD2INode::Value(PhaseGVN* phase) const {
176
const Type *t = phase->type( in(1) );
177
if( t == Type::TOP ) return Type::TOP;
178
if( t == Type::DOUBLE ) return TypeInt::INT;
179
const TypeD *td = t->is_double_constant();
180
return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
183
//------------------------------Ideal------------------------------------------
184
// If converting to an int type, skip any rounding nodes
185
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
186
if (in(1)->Opcode() == Op_RoundDouble) {
187
set_req(1, in(1)->in(1));
193
//------------------------------Identity---------------------------------------
194
// Int's can be converted to doubles with no loss of bits. Hence
195
// converting an integer to a double and back to an integer is a NOP.
196
Node* ConvD2INode::Identity(PhaseGVN* phase) {
197
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
200
//=============================================================================
201
//------------------------------Value------------------------------------------
202
const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
203
const Type *t = phase->type( in(1) );
204
if( t == Type::TOP ) return Type::TOP;
205
if( t == Type::DOUBLE ) return TypeLong::LONG;
206
const TypeD *td = t->is_double_constant();
207
return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
210
//------------------------------Identity---------------------------------------
211
Node* ConvD2LNode::Identity(PhaseGVN* phase) {
212
// Remove ConvD2L->ConvL2D->ConvD2L sequences.
213
if( in(1) ->Opcode() == Op_ConvL2D &&
214
in(1)->in(1)->Opcode() == Op_ConvD2L )
219
//------------------------------Ideal------------------------------------------
220
// If converting to an int type, skip any rounding nodes
221
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
222
if (in(1)->Opcode() == Op_RoundDouble) {
223
set_req(1, in(1)->in(1));
229
//=============================================================================
230
//------------------------------Value------------------------------------------
231
const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
232
const Type *t = phase->type( in(1) );
233
if( t == Type::TOP ) return Type::TOP;
234
if( t == Type::FLOAT ) return Type::DOUBLE;
235
const TypeF *tf = t->is_float_constant();
236
return TypeD::make( (double)tf->getf() );
239
//=============================================================================
240
//------------------------------Value------------------------------------------
241
const Type* ConvF2HFNode::Value(PhaseGVN* phase) const {
242
const Type *t = phase->type( in(1) );
243
if (t == Type::TOP) return Type::TOP;
244
if (t == Type::FLOAT || StubRoutines::f2hf_adr() == nullptr) {
245
return TypeInt::SHORT;
248
const TypeF *tf = t->is_float_constant();
249
return TypeInt::make( StubRoutines::f2hf(tf->getf()) );
252
//=============================================================================
253
//------------------------------Value------------------------------------------
254
const Type* ConvF2INode::Value(PhaseGVN* phase) const {
255
const Type *t = phase->type( in(1) );
256
if( t == Type::TOP ) return Type::TOP;
257
if( t == Type::FLOAT ) return TypeInt::INT;
258
const TypeF *tf = t->is_float_constant();
259
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
262
//------------------------------Identity---------------------------------------
263
Node* ConvF2INode::Identity(PhaseGVN* phase) {
264
// Remove ConvF2I->ConvI2F->ConvF2I sequences.
265
if( in(1) ->Opcode() == Op_ConvI2F &&
266
in(1)->in(1)->Opcode() == Op_ConvF2I )
271
//------------------------------Ideal------------------------------------------
272
// If converting to an int type, skip any rounding nodes
273
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
274
if (in(1)->Opcode() == Op_RoundFloat) {
275
set_req(1, in(1)->in(1));
281
//=============================================================================
282
//------------------------------Value------------------------------------------
283
const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
284
const Type *t = phase->type( in(1) );
285
if( t == Type::TOP ) return Type::TOP;
286
if( t == Type::FLOAT ) return TypeLong::LONG;
287
const TypeF *tf = t->is_float_constant();
288
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
291
//------------------------------Identity---------------------------------------
292
Node* ConvF2LNode::Identity(PhaseGVN* phase) {
293
// Remove ConvF2L->ConvL2F->ConvF2L sequences.
294
if( in(1) ->Opcode() == Op_ConvL2F &&
295
in(1)->in(1)->Opcode() == Op_ConvF2L )
300
//------------------------------Ideal------------------------------------------
301
// If converting to an int type, skip any rounding nodes
302
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
303
if (in(1)->Opcode() == Op_RoundFloat) {
304
set_req(1, in(1)->in(1));
310
//=============================================================================
311
//------------------------------Value------------------------------------------
312
const Type* ConvHF2FNode::Value(PhaseGVN* phase) const {
313
const Type *t = phase->type( in(1) );
314
if (t == Type::TOP) return Type::TOP;
315
if (t == TypeInt::SHORT || StubRoutines::hf2f_adr() == nullptr) {
319
const TypeInt *ti = t->is_int();
321
return TypeF::make( StubRoutines::hf2f(ti->get_con()) );
326
//=============================================================================
327
//------------------------------Value------------------------------------------
328
const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
329
const Type *t = phase->type( in(1) );
330
if( t == Type::TOP ) return Type::TOP;
331
const TypeInt *ti = t->is_int();
332
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
336
//=============================================================================
337
//------------------------------Value------------------------------------------
338
const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
339
const Type *t = phase->type( in(1) );
340
if( t == Type::TOP ) return Type::TOP;
341
const TypeInt *ti = t->is_int();
342
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
346
//------------------------------Identity---------------------------------------
347
Node* ConvI2FNode::Identity(PhaseGVN* phase) {
348
// Remove ConvI2F->ConvF2I->ConvI2F sequences.
349
if( in(1) ->Opcode() == Op_ConvF2I &&
350
in(1)->in(1)->Opcode() == Op_ConvI2F )
355
//=============================================================================
356
//------------------------------Value------------------------------------------
357
const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
358
const Type *t = phase->type( in(1) );
359
if (t == Type::TOP) {
362
const TypeInt *ti = t->is_int();
363
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
364
// Join my declared type against my incoming type.
365
tl = tl->filter(_type);
366
if (!tl->isa_long()) {
369
const TypeLong* this_type = tl->is_long();
370
// Do NOT remove this node's type assertion until no more loop ops can happen.
371
if (phase->C->post_loop_opts_phase()) {
372
const TypeInt* in_type = phase->type(in(1))->isa_int();
373
if (in_type != nullptr &&
374
(in_type->_lo != this_type->_lo ||
375
in_type->_hi != this_type->_hi)) {
376
// Although this WORSENS the type, it increases GVN opportunities,
377
// because I2L nodes with the same input will common up, regardless
378
// of slightly differing type assertions. Such slight differences
379
// arise routinely as a result of loop unrolling, so this is a
380
// post-unrolling graph cleanup. Choose a type which depends only
381
// on my input. (Exception: Keep a range assertion of >=0 or <0.)
382
jlong lo1 = this_type->_lo;
383
jlong hi1 = this_type->_hi;
384
int w1 = this_type->_widen;
386
// Keep a range assertion of >=0.
387
lo1 = 0; hi1 = max_jint;
388
} else if (hi1 < 0) {
389
// Keep a range assertion of <0.
390
lo1 = min_jint; hi1 = -1;
392
lo1 = min_jint; hi1 = max_jint;
394
return TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
395
MIN2((jlong)in_type->_hi, hi1),
396
MAX2((int)in_type->_widen, w1));
402
Node* ConvI2LNode::Identity(PhaseGVN* phase) {
403
// If type is in "int" sub-range, we can
404
// convert I2L(L2I(x)) => x
405
// since the conversions have no effect.
406
if (in(1)->Opcode() == Op_ConvL2I) {
407
Node* x = in(1)->in(1);
408
const TypeLong* t = phase->type(x)->isa_long();
409
if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) {
417
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
418
jlong lo2, jlong hi2) {
419
// Two ranges overlap iff one range's low point falls in the other range.
420
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
424
template<class T> static bool subtract_overflows(T x, T y) {
425
T s = java_subtract(x, y);
426
return (x >= 0) && (y < 0) && (s < 0);
429
template<class T> static bool subtract_underflows(T x, T y) {
430
T s = java_subtract(x, y);
431
return (x < 0) && (y > 0) && (s > 0);
434
template<class T> static bool add_overflows(T x, T y) {
435
T s = java_add(x, y);
436
return (x > 0) && (y > 0) && (s < 0);
439
template<class T> static bool add_underflows(T x, T y) {
440
T s = java_add(x, y);
441
return (x < 0) && (y < 0) && (s >= 0);
444
template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
445
const Node* n, bool pos) {
446
assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
449
bool x_y_lo_overflow;
450
bool x_y_hi_overflow;
453
x_y_lo = java_subtract(xlo, yhi);
454
x_y_hi = java_subtract(xhi, ylo);
455
x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi);
456
x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo);
458
assert(n->is_Add(), "Add or Sub only");
459
x_y_lo = java_add(xlo, ylo);
460
x_y_hi = java_add(xhi, yhi);
461
x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo);
462
x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi);
464
assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow");
465
assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow");
467
// Two ranges overlap iff one range's low point falls in the other range.
470
// (zlo + 2**nbits <= x_y_lo && x_y_lo <= zhi ** nbits)
471
if (x_y_lo_overflow) {
472
if (zlo <= x_y_lo && x_y_lo <= zhi) {
477
// (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi)
478
if (x_y_hi_overflow) {
479
if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) {
484
// (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits)
485
if (x_y_hi_overflow) {
486
if (zlo <= x_y_hi && x_y_hi <= zhi) {
491
// (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi)
492
if (x_y_lo_overflow) {
493
if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) {
502
static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
503
const Node* n, bool pos, BasicType bt) {
504
jlong xlo = tx->lo_as_long();
505
jlong xhi = tx->hi_as_long();
506
jlong ylo = ty->lo_as_long();
507
jlong yhi = ty->hi_as_long();
508
jlong zlo = tz->lo_as_long();
509
jlong zhi = tz->hi_as_long();
512
// See if x+y can cause positive overflow into z+2**32
513
// See if x+y can cause negative overflow into z-2**32
514
bool res = ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
515
checked_cast<jint>(xhi), checked_cast<jint>(yhi),
516
checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos);
518
jlong vbit = CONST64(1) << BitsPerInt;
519
if (n->Opcode() == Op_SubI) {
524
assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result");
528
assert(bt == T_LONG, "only int or long");
529
// See if x+y can cause positive overflow into z+2**64
530
// See if x+y can cause negative overflow into z-2**64
531
return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos);
535
static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
536
jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
538
jlong xlo = tx->lo_as_long();
539
jlong xhi = tx->hi_as_long();
540
jlong ylo = ty->lo_as_long();
541
jlong yhi = ty->hi_as_long();
542
jlong zlo = tz->lo_as_long();
543
jlong zhi = tz->hi_as_long();
550
rxlo = MAX2(xlo, zlo - yhi);
551
rxhi = MIN2(xhi, zhi - ylo);
552
rylo = MAX2(ylo, zlo - xhi);
553
ryhi = MIN2(yhi, zhi - xlo);
554
if (rxlo > rxhi || rylo > ryhi) {
562
assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow");
563
assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow");
568
template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
569
jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
571
assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
573
// Now it's always safe to assume x+y does not overflow.
574
// This is true even if some pairs x,y might cause overflow, as long
575
// as that overflow value cannot fall into [zlo,zhi].
577
// Confident that the arithmetic is "as if infinite precision",
578
// we can now use n's range to put constraints on those of x and y.
579
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
580
// more "restricted" range by intersecting [xlo,xhi] with the
581
// range obtained by subtracting y's range from the asserted range
582
// of the I2L conversion. Here's the interval arithmetic algebra:
583
// x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
584
// => x in [zlo-yhi, zhi-ylo]
585
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
586
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
587
// And similarly, x changing place with y.
589
if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) ||
590
subtract_overflows(xlo, zhi)) {
593
rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo));
594
rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi));
595
ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo));
596
rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi));
598
assert(n->is_Add(), "Add or Sub only");
599
if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) ||
600
subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) {
603
rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi));
604
rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo));
605
rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi));
606
ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo));
609
if (rxlo > rxhi || rylo > ryhi) {
610
return false; // x or y is dying; don't mess w/ it
616
static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
617
const TypeInteger*& rx, const TypeInteger*& ry,
618
const Node* n, const BasicType in_bt, BasicType out_bt) {
620
jlong xlo = tx->lo_as_long();
621
jlong xhi = tx->hi_as_long();
622
jlong ylo = ty->lo_as_long();
623
jlong yhi = ty->hi_as_long();
624
jlong zlo = tz->lo_as_long();
625
jlong zhi = tz->hi_as_long();
626
jlong rxlo, rxhi, rylo, ryhi;
628
if (in_bt == T_INT) {
630
jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi;
631
bool expected = compute_updates_ranges_verif(tx, ty, tz,
632
expected_rxlo, expected_rxhi,
633
expected_rylo, expected_ryhi, n);
635
if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
636
checked_cast<jint>(xhi), checked_cast<jint>(yhi),
637
checked_cast<jint>(zlo), checked_cast<jint>(zhi),
638
rxlo, rxhi, rylo, ryhi, n)) {
639
assert(!expected, "inconsistent");
642
assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent");
644
if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi,
645
rxlo, rxhi, rylo, ryhi, n)) {
650
int widen = MAX2(tx->widen_limit(), ty->widen_limit());
651
rx = TypeInteger::make(rxlo, rxhi, widen, out_bt);
652
ry = TypeInteger::make(rylo, ryhi, widen, out_bt);
657
// If there is an existing ConvI2L node with the given parent and type, return
658
// it. Otherwise, create and return a new one. Both reusing existing ConvI2L
659
// nodes and postponing the idealization of new ones are needed to avoid an
660
// explosion of recursive Ideal() calls when compiling long AddI chains.
661
static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
662
const TypeLong* type) {
663
Node* n = new ConvI2LNode(parent, type);
664
Node* existing = igvn->hash_find_insert(n);
665
if (existing != nullptr) {
669
return igvn->register_new_node_with_optimizer(n);
673
bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
674
BasicType in_bt, BasicType out_bt) {
675
int op = z->Opcode();
676
if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) {
679
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
680
if (phase->type(x) == Type::TOP) {
683
if (phase->type(y) == Type::TOP) {
686
const TypeInteger* tx = phase->type(x)->is_integer(in_bt);
687
const TypeInteger* ty = phase->type(y)->is_integer(in_bt);
689
if (ranges_overlap(tx, ty, tz, z, true, in_bt) ||
690
ranges_overlap(tx, ty, tz, z, false, in_bt)) {
693
return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt);
699
//------------------------------Ideal------------------------------------------
700
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
701
const TypeLong* this_type = this->type()->is_long();
702
if (can_reshape && !phase->C->post_loop_opts_phase()) {
703
// makes sure we run ::Value to potentially remove type assertion after loop opts
704
phase->C->record_for_post_loop_opts_igvn(this);
707
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
708
// but only if x and y have subranges that cannot cause 32-bit overflow,
709
// under the assumption that x+y is in my own subrange this->type().
711
// This assumption is based on a constraint (i.e., type assertion)
712
// established in Parse::array_addressing or perhaps elsewhere.
713
// This constraint has been adjoined to the "natural" type of
714
// the incoming argument in(0). We know (because of runtime
715
// checks) - that the result value I2L(x+y) is in the joined range.
716
// Hence we can restrict the incoming terms (x, y) to values such
717
// that their sum also lands in that range.
719
// This optimization is useful only on 64-bit systems, where we hope
720
// the addition will end up subsumed in an addressing mode.
721
// It is necessary to do this when optimizing an unrolled array
722
// copy loop such as x[i++] = y[i++].
724
// On 32-bit systems, it's better to perform as much 32-bit math as
725
// possible before the I2L conversion, because 32-bit math is cheaper.
726
// There's no common reason to "leak" a constant offset through the I2L.
727
// Addressing arithmetic will not absorb it as part of a 64-bit AddL.
728
PhaseIterGVN* igvn = phase->is_IterGVN();
730
const TypeInteger* rx = nullptr;
731
const TypeInteger* ry = nullptr;
732
if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) {
733
if (igvn == nullptr) {
734
// Postpone this optimization to iterative GVN, where we can handle deep
735
// AddI chains without an exponential number of recursive Ideal() calls.
736
phase->record_for_igvn(this);
739
int op = z->Opcode();
743
Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
744
Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
746
case Op_AddI: return new AddLNode(cx, cy);
747
case Op_SubI: return new SubLNode(cx, cy);
748
default: ShouldNotReachHere();
756
//=============================================================================
757
//------------------------------Value------------------------------------------
758
const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
759
const Type *t = phase->type( in(1) );
760
if( t == Type::TOP ) return Type::TOP;
761
const TypeLong *tl = t->is_long();
762
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
766
//=============================================================================
767
//------------------------------Value------------------------------------------
768
const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
769
const Type *t = phase->type( in(1) );
770
if( t == Type::TOP ) return Type::TOP;
771
const TypeLong *tl = t->is_long();
772
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
776
//=============================================================================
777
//----------------------------Identity-----------------------------------------
778
Node* ConvL2INode::Identity(PhaseGVN* phase) {
779
// Convert L2I(I2L(x)) => x
780
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
784
//------------------------------Value------------------------------------------
785
const Type* ConvL2INode::Value(PhaseGVN* phase) const {
786
const Type *t = phase->type( in(1) );
787
if( t == Type::TOP ) return Type::TOP;
788
const TypeLong *tl = t->is_long();
789
const TypeInt* ti = TypeInt::INT;
792
ti = TypeInt::make((jint)tl->get_con());
793
} else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
794
ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
796
return ti->filter(_type);
799
//------------------------------Ideal------------------------------------------
800
// Return a node which is more "ideal" than the current node.
801
// Blow off prior masking to int
802
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
804
uint andl_op = andl->Opcode();
805
if( andl_op == Op_AndL ) {
806
// Blow off prior masking to int
807
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
808
set_req_X(1,andl->in(1), phase);
813
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
814
// This replaces an 'AddL' with an 'AddI'.
815
if( andl_op == Op_AddL ) {
816
// Don't do this for nodes which have more than one user since
817
// we'll end up computing the long add anyway.
818
if (andl->outcnt() > 1) return nullptr;
820
Node* x = andl->in(1);
821
Node* y = andl->in(2);
822
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
823
if (phase->type(x) == Type::TOP) return nullptr;
824
if (phase->type(y) == Type::TOP) return nullptr;
825
Node *add1 = phase->transform(new ConvL2INode(x));
826
Node *add2 = phase->transform(new ConvL2INode(y));
827
return new AddINode(add1,add2);
830
// Disable optimization: LoadL->ConvL2I ==> LoadI.
831
// It causes problems (sizes of Load and Store nodes do not match)
832
// in objects initialization code and Escape Analysis.
838
//=============================================================================
839
//------------------------------Identity---------------------------------------
840
// Remove redundant roundings
841
Node* RoundFloatNode::Identity(PhaseGVN* phase) {
842
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
843
// Do not round constants
844
if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
845
int op = in(1)->Opcode();
846
// Redundant rounding
847
if( op == Op_RoundFloat ) return in(1);
849
if( op == Op_Parm ) return in(1);
850
if( op == Op_LoadF ) return in(1);
854
//------------------------------Value------------------------------------------
855
const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
856
return phase->type( in(1) );
859
//=============================================================================
860
//------------------------------Identity---------------------------------------
861
// Remove redundant roundings. Incoming arguments are already rounded.
862
Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
863
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
864
// Do not round constants
865
if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
866
int op = in(1)->Opcode();
867
// Redundant rounding
868
if( op == Op_RoundDouble ) return in(1);
870
if( op == Op_Parm ) return in(1);
871
if( op == Op_LoadD ) return in(1);
872
if( op == Op_ConvF2D ) return in(1);
873
if( op == Op_ConvI2D ) return in(1);
877
//------------------------------Value------------------------------------------
878
const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
879
return phase->type( in(1) );
882
//=============================================================================
883
RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
884
ConINode* rm = gvn.intcon(rmode);
885
return new RoundDoubleModeNode(arg, (Node *)rm);
888
//------------------------------Identity---------------------------------------
889
// Remove redundant roundings.
890
Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
891
int op = in(1)->Opcode();
892
// Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
893
if(op == Op_RoundDoubleMode) return in(1);
896
const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
899
//=============================================================================