jdk

Форк
0
/
convertnode.cpp 
899 строк · 33.4 Кб
1
/*
2
 * Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "opto/addnode.hpp"
27
#include "opto/castnode.hpp"
28
#include "opto/connode.hpp"
29
#include "opto/convertnode.hpp"
30
#include "opto/matcher.hpp"
31
#include "opto/movenode.hpp"
32
#include "opto/phaseX.hpp"
33
#include "opto/subnode.hpp"
34
#include "runtime/stubRoutines.hpp"
35
#include "utilities/checkedCast.hpp"
36

37
//=============================================================================
38
//------------------------------Identity---------------------------------------
39
Node* Conv2BNode::Identity(PhaseGVN* phase) {
40
  const Type *t = phase->type( in(1) );
41
  if( t == Type::TOP ) return in(1);
42
  if( t == TypeInt::ZERO ) return in(1);
43
  if( t == TypeInt::ONE ) return in(1);
44
  if( t == TypeInt::BOOL ) return in(1);
45
  return this;
46
}
47

48
//------------------------------Value------------------------------------------
49
const Type* Conv2BNode::Value(PhaseGVN* phase) const {
50
  const Type *t = phase->type( in(1) );
51
  if( t == Type::TOP ) return Type::TOP;
52
  if( t == TypeInt::ZERO ) return TypeInt::ZERO;
53
  if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
54
  const TypePtr *tp = t->isa_ptr();
55
  if(tp != nullptr) {
56
    if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
57
    if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
58
    if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
59
    return TypeInt::BOOL;
60
  }
61
  if (t->base() != Type::Int) return TypeInt::BOOL;
62
  const TypeInt *ti = t->is_int();
63
  if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
64
  return TypeInt::BOOL;
65
}
66

67
Node* Conv2BNode::Ideal(PhaseGVN* phase, bool can_reshape) {
68
  if (!Matcher::match_rule_supported(Op_Conv2B)) {
69
    if (phase->C->post_loop_opts_phase()) {
70
      // Get type of comparison to make
71
      const Type* t = phase->type(in(1));
72
      Node* cmp = nullptr;
73
      if (t->isa_int()) {
74
        cmp = phase->transform(new CmpINode(in(1), phase->intcon(0)));
75
      } else if (t->isa_ptr()) {
76
        cmp = phase->transform(new CmpPNode(in(1), phase->zerocon(BasicType::T_OBJECT)));
77
      } else {
78
        assert(false, "Unrecognized comparison for Conv2B: %s", NodeClassNames[in(1)->Opcode()]);
79
      }
80

81
      // Replace Conv2B with the cmove
82
      Node* bol = phase->transform(new BoolNode(cmp, BoolTest::eq));
83
      return new CMoveINode(bol, phase->intcon(1), phase->intcon(0), TypeInt::BOOL);
84
    } else {
85
      phase->C->record_for_post_loop_opts_igvn(this);
86
    }
87
  }
88
  return nullptr;
89
}
90

91
uint ConvertNode::ideal_reg() const {
92
  return _type->ideal_reg();
93
}
94

95
Node* ConvertNode::create_convert(BasicType source, BasicType target, Node* input) {
96
  if (source == T_INT) {
97
    if (target == T_LONG) {
98
      return new ConvI2LNode(input);
99
    } else if (target == T_FLOAT) {
100
      return new ConvI2FNode(input);
101
    } else if (target == T_DOUBLE) {
102
      return new ConvI2DNode(input);
103
    }
104
  } else if (source == T_LONG) {
105
    if (target == T_INT) {
106
      return new ConvL2INode(input);
107
    } else if (target == T_FLOAT) {
108
      return new ConvL2FNode(input);
109
    } else if (target == T_DOUBLE) {
110
      return new ConvL2DNode(input);
111
    }
112
  } else if (source == T_FLOAT) {
113
    if (target == T_INT) {
114
      return new ConvF2INode(input);
115
    } else if (target == T_LONG) {
116
      return new ConvF2LNode(input);
117
    } else if (target == T_DOUBLE) {
118
      return new ConvF2DNode(input);
119
    } else if (target == T_SHORT) {
120
      return new ConvF2HFNode(input);
121
    }
122
  } else if (source == T_DOUBLE) {
123
    if (target == T_INT) {
124
      return new ConvD2INode(input);
125
    } else if (target == T_LONG) {
126
      return new ConvD2LNode(input);
127
    } else if (target == T_FLOAT) {
128
      return new ConvD2FNode(input);
129
    }
130
  } else if (source == T_SHORT) {
131
    if (target == T_FLOAT) {
132
      return new ConvHF2FNode(input);
133
    }
134
  }
135

136
  assert(false, "Couldn't create conversion for type %s to %s", type2name(source), type2name(target));
137
  return nullptr;
138
}
139

140
// The conversions operations are all Alpha sorted.  Please keep it that way!
141
//=============================================================================
142
//------------------------------Value------------------------------------------
143
const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
144
  const Type *t = phase->type( in(1) );
145
  if( t == Type::TOP ) return Type::TOP;
146
  if( t == Type::DOUBLE ) return Type::FLOAT;
147
  const TypeD *td = t->is_double_constant();
148
  return TypeF::make( (float)td->getd() );
149
}
150

151
//------------------------------Ideal------------------------------------------
152
// If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
153
Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
154
  if ( in(1)->Opcode() == Op_SqrtD ) {
155
    Node* sqrtd = in(1);
156
    if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
157
      if ( Matcher::match_rule_supported(Op_SqrtF) ) {
158
        Node* convf2d = sqrtd->in(1);
159
        return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
160
      }
161
    }
162
  }
163
  return nullptr;
164
}
165

166
//------------------------------Identity---------------------------------------
167
// Float's can be converted to doubles with no loss of bits.  Hence
168
// converting a float to a double and back to a float is a NOP.
169
Node* ConvD2FNode::Identity(PhaseGVN* phase) {
170
  return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
171
}
172

173
//=============================================================================
174
//------------------------------Value------------------------------------------
175
const Type* ConvD2INode::Value(PhaseGVN* phase) const {
176
  const Type *t = phase->type( in(1) );
177
  if( t == Type::TOP ) return Type::TOP;
178
  if( t == Type::DOUBLE ) return TypeInt::INT;
179
  const TypeD *td = t->is_double_constant();
180
  return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
181
}
182

183
//------------------------------Ideal------------------------------------------
184
// If converting to an int type, skip any rounding nodes
185
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
186
  if (in(1)->Opcode() == Op_RoundDouble) {
187
    set_req(1, in(1)->in(1));
188
    return this;
189
  }
190
  return nullptr;
191
}
192

193
//------------------------------Identity---------------------------------------
194
// Int's can be converted to doubles with no loss of bits.  Hence
195
// converting an integer to a double and back to an integer is a NOP.
196
Node* ConvD2INode::Identity(PhaseGVN* phase) {
197
  return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
198
}
199

200
//=============================================================================
201
//------------------------------Value------------------------------------------
202
const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
203
  const Type *t = phase->type( in(1) );
204
  if( t == Type::TOP ) return Type::TOP;
205
  if( t == Type::DOUBLE ) return TypeLong::LONG;
206
  const TypeD *td = t->is_double_constant();
207
  return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
208
}
209

210
//------------------------------Identity---------------------------------------
211
Node* ConvD2LNode::Identity(PhaseGVN* phase) {
212
  // Remove ConvD2L->ConvL2D->ConvD2L sequences.
213
  if( in(1)       ->Opcode() == Op_ConvL2D &&
214
     in(1)->in(1)->Opcode() == Op_ConvD2L )
215
  return in(1)->in(1);
216
  return this;
217
}
218

219
//------------------------------Ideal------------------------------------------
220
// If converting to an int type, skip any rounding nodes
221
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
222
  if (in(1)->Opcode() == Op_RoundDouble) {
223
    set_req(1, in(1)->in(1));
224
    return this;
225
  }
226
  return nullptr;
227
}
228

229
//=============================================================================
230
//------------------------------Value------------------------------------------
231
const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
232
  const Type *t = phase->type( in(1) );
233
  if( t == Type::TOP ) return Type::TOP;
234
  if( t == Type::FLOAT ) return Type::DOUBLE;
235
  const TypeF *tf = t->is_float_constant();
236
  return TypeD::make( (double)tf->getf() );
237
}
238

239
//=============================================================================
240
//------------------------------Value------------------------------------------
241
const Type* ConvF2HFNode::Value(PhaseGVN* phase) const {
242
  const Type *t = phase->type( in(1) );
243
  if (t == Type::TOP) return Type::TOP;
244
  if (t == Type::FLOAT || StubRoutines::f2hf_adr() == nullptr) {
245
    return TypeInt::SHORT;
246
  }
247

248
  const TypeF *tf = t->is_float_constant();
249
  return TypeInt::make( StubRoutines::f2hf(tf->getf()) );
250
}
251

252
//=============================================================================
253
//------------------------------Value------------------------------------------
254
const Type* ConvF2INode::Value(PhaseGVN* phase) const {
255
  const Type *t = phase->type( in(1) );
256
  if( t == Type::TOP )       return Type::TOP;
257
  if( t == Type::FLOAT ) return TypeInt::INT;
258
  const TypeF *tf = t->is_float_constant();
259
  return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
260
}
261

262
//------------------------------Identity---------------------------------------
263
Node* ConvF2INode::Identity(PhaseGVN* phase) {
264
  // Remove ConvF2I->ConvI2F->ConvF2I sequences.
265
  if( in(1)       ->Opcode() == Op_ConvI2F &&
266
     in(1)->in(1)->Opcode() == Op_ConvF2I )
267
  return in(1)->in(1);
268
  return this;
269
}
270

271
//------------------------------Ideal------------------------------------------
272
// If converting to an int type, skip any rounding nodes
273
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
274
  if (in(1)->Opcode() == Op_RoundFloat) {
275
    set_req(1, in(1)->in(1));
276
    return this;
277
  }
278
  return nullptr;
279
}
280

281
//=============================================================================
282
//------------------------------Value------------------------------------------
283
const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
284
  const Type *t = phase->type( in(1) );
285
  if( t == Type::TOP )       return Type::TOP;
286
  if( t == Type::FLOAT ) return TypeLong::LONG;
287
  const TypeF *tf = t->is_float_constant();
288
  return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
289
}
290

291
//------------------------------Identity---------------------------------------
292
Node* ConvF2LNode::Identity(PhaseGVN* phase) {
293
  // Remove ConvF2L->ConvL2F->ConvF2L sequences.
294
  if( in(1)       ->Opcode() == Op_ConvL2F &&
295
     in(1)->in(1)->Opcode() == Op_ConvF2L )
296
  return in(1)->in(1);
297
  return this;
298
}
299

300
//------------------------------Ideal------------------------------------------
301
// If converting to an int type, skip any rounding nodes
302
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
303
  if (in(1)->Opcode() == Op_RoundFloat) {
304
    set_req(1, in(1)->in(1));
305
    return this;
306
  }
307
  return nullptr;
308
}
309

310
//=============================================================================
311
//------------------------------Value------------------------------------------
312
const Type* ConvHF2FNode::Value(PhaseGVN* phase) const {
313
  const Type *t = phase->type( in(1) );
314
  if (t == Type::TOP) return Type::TOP;
315
  if (t == TypeInt::SHORT || StubRoutines::hf2f_adr() == nullptr) {
316
    return Type::FLOAT;
317
  }
318

319
  const TypeInt *ti = t->is_int();
320
  if (ti->is_con()) {
321
    return TypeF::make( StubRoutines::hf2f(ti->get_con()) );
322
  }
323
  return Type::FLOAT;
324
}
325

326
//=============================================================================
327
//------------------------------Value------------------------------------------
328
const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
329
  const Type *t = phase->type( in(1) );
330
  if( t == Type::TOP ) return Type::TOP;
331
  const TypeInt *ti = t->is_int();
332
  if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
333
  return Type::DOUBLE;
334
}
335

336
//=============================================================================
337
//------------------------------Value------------------------------------------
338
const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
339
  const Type *t = phase->type( in(1) );
340
  if( t == Type::TOP ) return Type::TOP;
341
  const TypeInt *ti = t->is_int();
342
  if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
343
  return Type::FLOAT;
344
}
345

346
//------------------------------Identity---------------------------------------
347
Node* ConvI2FNode::Identity(PhaseGVN* phase) {
348
  // Remove ConvI2F->ConvF2I->ConvI2F sequences.
349
  if( in(1)       ->Opcode() == Op_ConvF2I &&
350
     in(1)->in(1)->Opcode() == Op_ConvI2F )
351
  return in(1)->in(1);
352
  return this;
353
}
354

355
//=============================================================================
356
//------------------------------Value------------------------------------------
357
const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
358
  const Type *t = phase->type( in(1) );
359
  if (t == Type::TOP) {
360
    return Type::TOP;
361
  }
362
  const TypeInt *ti = t->is_int();
363
  const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
364
  // Join my declared type against my incoming type.
365
  tl = tl->filter(_type);
366
  if (!tl->isa_long()) {
367
    return tl;
368
  }
369
  const TypeLong* this_type = tl->is_long();
370
  // Do NOT remove this node's type assertion until no more loop ops can happen.
371
  if (phase->C->post_loop_opts_phase()) {
372
    const TypeInt* in_type = phase->type(in(1))->isa_int();
373
    if (in_type != nullptr &&
374
        (in_type->_lo != this_type->_lo ||
375
         in_type->_hi != this_type->_hi)) {
376
      // Although this WORSENS the type, it increases GVN opportunities,
377
      // because I2L nodes with the same input will common up, regardless
378
      // of slightly differing type assertions.  Such slight differences
379
      // arise routinely as a result of loop unrolling, so this is a
380
      // post-unrolling graph cleanup.  Choose a type which depends only
381
      // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
382
      jlong lo1 = this_type->_lo;
383
      jlong hi1 = this_type->_hi;
384
      int   w1  = this_type->_widen;
385
      if (lo1 >= 0) {
386
        // Keep a range assertion of >=0.
387
        lo1 = 0;        hi1 = max_jint;
388
      } else if (hi1 < 0) {
389
        // Keep a range assertion of <0.
390
        lo1 = min_jint; hi1 = -1;
391
      } else {
392
        lo1 = min_jint; hi1 = max_jint;
393
      }
394
      return TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
395
                            MIN2((jlong)in_type->_hi, hi1),
396
                            MAX2((int)in_type->_widen, w1));
397
    }
398
  }
399
  return this_type;
400
}
401

402
Node* ConvI2LNode::Identity(PhaseGVN* phase) {
403
  // If type is in "int" sub-range, we can
404
  // convert I2L(L2I(x)) => x
405
  // since the conversions have no effect.
406
  if (in(1)->Opcode() == Op_ConvL2I) {
407
    Node* x = in(1)->in(1);
408
    const TypeLong* t = phase->type(x)->isa_long();
409
    if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) {
410
      return x;
411
    }
412
  }
413
  return this;
414
}
415

416
#ifdef ASSERT
417
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
418
                                       jlong lo2, jlong hi2) {
419
  // Two ranges overlap iff one range's low point falls in the other range.
420
  return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
421
}
422
#endif
423

424
template<class T> static bool subtract_overflows(T x, T y) {
425
  T s = java_subtract(x, y);
426
  return (x >= 0) && (y < 0) && (s < 0);
427
}
428

429
template<class T> static bool subtract_underflows(T x, T y) {
430
  T s = java_subtract(x, y);
431
  return (x < 0) && (y > 0) && (s > 0);
432
}
433

434
template<class T> static bool add_overflows(T x, T y) {
435
  T s = java_add(x, y);
436
  return (x > 0) && (y > 0) && (s < 0);
437
}
438

439
template<class T> static bool add_underflows(T x, T y) {
440
  T s = java_add(x, y);
441
  return (x < 0) && (y < 0) && (s >= 0);
442
}
443

444
template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
445
                                             const Node* n, bool pos) {
446
  assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
447
  T x_y_lo;
448
  T x_y_hi;
449
  bool x_y_lo_overflow;
450
  bool x_y_hi_overflow;
451

452
  if (n->is_Sub()) {
453
    x_y_lo = java_subtract(xlo, yhi);
454
    x_y_hi = java_subtract(xhi, ylo);
455
    x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi);
456
    x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo);
457
  } else {
458
    assert(n->is_Add(), "Add or Sub only");
459
    x_y_lo = java_add(xlo, ylo);
460
    x_y_hi = java_add(xhi, yhi);
461
    x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo);
462
    x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi);
463
  }
464
  assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow");
465
  assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow");
466

467
  // Two ranges overlap iff one range's low point falls in the other range.
468
  // nbits = 32 or 64
469
  if (pos) {
470
    // (zlo + 2**nbits  <= x_y_lo && x_y_lo <= zhi ** nbits)
471
    if (x_y_lo_overflow) {
472
      if (zlo <= x_y_lo && x_y_lo <= zhi) {
473
        return true;
474
      }
475
    }
476

477
    // (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi)
478
    if (x_y_hi_overflow) {
479
      if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) {
480
        return true;
481
      }
482
    }
483
  } else {
484
    // (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits)
485
    if (x_y_hi_overflow) {
486
      if (zlo <= x_y_hi && x_y_hi <= zhi) {
487
        return true;
488
      }
489
    }
490

491
    // (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi)
492
    if (x_y_lo_overflow) {
493
      if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) {
494
        return true;
495
      }
496
    }
497
  }
498

499
  return false;
500
}
501

502
static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
503
                           const Node* n, bool pos, BasicType bt) {
504
  jlong xlo = tx->lo_as_long();
505
  jlong xhi = tx->hi_as_long();
506
  jlong ylo = ty->lo_as_long();
507
  jlong yhi = ty->hi_as_long();
508
  jlong zlo = tz->lo_as_long();
509
  jlong zhi = tz->hi_as_long();
510

511
  if (bt == T_INT) {
512
    // See if x+y can cause positive overflow into z+2**32
513
    // See if x+y can cause negative overflow into z-2**32
514
    bool res =  ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
515
                               checked_cast<jint>(xhi), checked_cast<jint>(yhi),
516
                               checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos);
517
#ifdef ASSERT
518
    jlong vbit = CONST64(1) << BitsPerInt;
519
    if (n->Opcode() == Op_SubI) {
520
      jlong ylo0 = ylo;
521
      ylo = -yhi;
522
      yhi = -ylo0;
523
    }
524
    assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result");
525
#endif
526
    return res;
527
  }
528
  assert(bt == T_LONG, "only int or long");
529
  // See if x+y can cause positive overflow into z+2**64
530
  // See if x+y can cause negative overflow into z-2**64
531
  return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos);
532
}
533

534
#ifdef ASSERT
535
static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
536
                                         jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
537
                                         const Node* n) {
538
  jlong xlo = tx->lo_as_long();
539
  jlong xhi = tx->hi_as_long();
540
  jlong ylo = ty->lo_as_long();
541
  jlong yhi = ty->hi_as_long();
542
  jlong zlo = tz->lo_as_long();
543
  jlong zhi = tz->hi_as_long();
544
  if (n->is_Sub()) {
545
    swap(ylo, yhi);
546
    ylo = -ylo;
547
    yhi = -yhi;
548
  }
549

550
  rxlo = MAX2(xlo, zlo - yhi);
551
  rxhi = MIN2(xhi, zhi - ylo);
552
  rylo = MAX2(ylo, zlo - xhi);
553
  ryhi = MIN2(yhi, zhi - xlo);
554
  if (rxlo > rxhi || rylo > ryhi) {
555
    return false;
556
  }
557
  if (n->is_Sub()) {
558
    swap(rylo, ryhi);
559
    rylo = -rylo;
560
    ryhi = -ryhi;
561
  }
562
  assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow");
563
  assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow");
564
  return true;
565
}
566
#endif
567

568
template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
569
                                                     jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
570
                                                     const Node* n) {
571
  assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
572

573
  // Now it's always safe to assume x+y does not overflow.
574
  // This is true even if some pairs x,y might cause overflow, as long
575
  // as that overflow value cannot fall into [zlo,zhi].
576

577
  // Confident that the arithmetic is "as if infinite precision",
578
  // we can now use n's range to put constraints on those of x and y.
579
  // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
580
  // more "restricted" range by intersecting [xlo,xhi] with the
581
  // range obtained by subtracting y's range from the asserted range
582
  // of the I2L conversion.  Here's the interval arithmetic algebra:
583
  //    x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
584
  //    => x in [zlo-yhi, zhi-ylo]
585
  //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
586
  //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
587
  // And similarly, x changing place with y.
588
  if (n->is_Sub()) {
589
    if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) ||
590
        subtract_overflows(xlo, zhi)) {
591
      return false;
592
    }
593
    rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo));
594
    rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi));
595
    ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo));
596
    rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi));
597
  } else {
598
    assert(n->is_Add(), "Add or Sub only");
599
    if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) ||
600
        subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) {
601
      return false;
602
    }
603
    rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi));
604
    rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo));
605
    rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi));
606
    ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo));
607
  }
608

609
  if (rxlo > rxhi || rylo > ryhi) {
610
    return false; // x or y is dying; don't mess w/ it
611
  }
612

613
  return true;
614
}
615

616
static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
617
                                   const TypeInteger*& rx, const TypeInteger*& ry,
618
                                   const Node* n, const BasicType in_bt, BasicType out_bt) {
619

620
  jlong xlo = tx->lo_as_long();
621
  jlong xhi = tx->hi_as_long();
622
  jlong ylo = ty->lo_as_long();
623
  jlong yhi = ty->hi_as_long();
624
  jlong zlo = tz->lo_as_long();
625
  jlong zhi = tz->hi_as_long();
626
  jlong rxlo, rxhi, rylo, ryhi;
627

628
  if (in_bt == T_INT) {
629
#ifdef ASSERT
630
    jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi;
631
    bool expected = compute_updates_ranges_verif(tx, ty, tz,
632
                                                 expected_rxlo, expected_rxhi,
633
                                                 expected_rylo, expected_ryhi, n);
634
#endif
635
    if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
636
                                checked_cast<jint>(xhi), checked_cast<jint>(yhi),
637
                                checked_cast<jint>(zlo), checked_cast<jint>(zhi),
638
                                rxlo, rxhi, rylo, ryhi, n)) {
639
      assert(!expected, "inconsistent");
640
      return false;
641
    }
642
    assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent");
643
  } else {
644
    if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi,
645
                            rxlo, rxhi, rylo, ryhi, n)) {
646
      return false;
647
    }
648
  }
649

650
  int widen =  MAX2(tx->widen_limit(), ty->widen_limit());
651
  rx = TypeInteger::make(rxlo, rxhi, widen, out_bt);
652
  ry = TypeInteger::make(rylo, ryhi, widen, out_bt);
653
  return true;
654
}
655

656
#ifdef _LP64
657
// If there is an existing ConvI2L node with the given parent and type, return
658
// it. Otherwise, create and return a new one. Both reusing existing ConvI2L
659
// nodes and postponing the idealization of new ones are needed to avoid an
660
// explosion of recursive Ideal() calls when compiling long AddI chains.
661
static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
662
                                  const TypeLong* type) {
663
  Node* n = new ConvI2LNode(parent, type);
664
  Node* existing = igvn->hash_find_insert(n);
665
  if (existing != nullptr) {
666
    n->destruct(igvn);
667
    return existing;
668
  }
669
  return igvn->register_new_node_with_optimizer(n);
670
}
671
#endif
672

673
bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
674
                            BasicType in_bt, BasicType out_bt) {
675
  int op = z->Opcode();
676
  if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) {
677
    Node* x = z->in(1);
678
    Node* y = z->in(2);
679
    assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
680
    if (phase->type(x) == Type::TOP) {
681
      return false;
682
    }
683
    if (phase->type(y) == Type::TOP) {
684
      return false;
685
    }
686
    const TypeInteger* tx = phase->type(x)->is_integer(in_bt);
687
    const TypeInteger* ty = phase->type(y)->is_integer(in_bt);
688

689
    if (ranges_overlap(tx, ty, tz, z, true, in_bt) ||
690
        ranges_overlap(tx, ty, tz, z, false, in_bt)) {
691
      return false;
692
    }
693
    return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt);
694
  }
695
  return false;
696
}
697

698

699
//------------------------------Ideal------------------------------------------
700
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
701
  const TypeLong* this_type = this->type()->is_long();
702
  if (can_reshape && !phase->C->post_loop_opts_phase()) {
703
    // makes sure we run ::Value to potentially remove type assertion after loop opts
704
    phase->C->record_for_post_loop_opts_igvn(this);
705
  }
706
#ifdef _LP64
707
  // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
708
  // but only if x and y have subranges that cannot cause 32-bit overflow,
709
  // under the assumption that x+y is in my own subrange this->type().
710

711
  // This assumption is based on a constraint (i.e., type assertion)
712
  // established in Parse::array_addressing or perhaps elsewhere.
713
  // This constraint has been adjoined to the "natural" type of
714
  // the incoming argument in(0).  We know (because of runtime
715
  // checks) - that the result value I2L(x+y) is in the joined range.
716
  // Hence we can restrict the incoming terms (x, y) to values such
717
  // that their sum also lands in that range.
718

719
  // This optimization is useful only on 64-bit systems, where we hope
720
  // the addition will end up subsumed in an addressing mode.
721
  // It is necessary to do this when optimizing an unrolled array
722
  // copy loop such as x[i++] = y[i++].
723

724
  // On 32-bit systems, it's better to perform as much 32-bit math as
725
  // possible before the I2L conversion, because 32-bit math is cheaper.
726
  // There's no common reason to "leak" a constant offset through the I2L.
727
  // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
728
  PhaseIterGVN* igvn = phase->is_IterGVN();
729
  Node* z = in(1);
730
  const TypeInteger* rx = nullptr;
731
  const TypeInteger* ry = nullptr;
732
  if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) {
733
    if (igvn == nullptr) {
734
      // Postpone this optimization to iterative GVN, where we can handle deep
735
      // AddI chains without an exponential number of recursive Ideal() calls.
736
      phase->record_for_igvn(this);
737
      return nullptr;
738
    }
739
    int op = z->Opcode();
740
    Node* x = z->in(1);
741
    Node* y = z->in(2);
742

743
    Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
744
    Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
745
    switch (op) {
746
      case Op_AddI:  return new AddLNode(cx, cy);
747
      case Op_SubI:  return new SubLNode(cx, cy);
748
      default:       ShouldNotReachHere();
749
    }
750
  }
751
#endif //_LP64
752

753
  return nullptr;
754
}
755

756
//=============================================================================
757
//------------------------------Value------------------------------------------
758
const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
759
  const Type *t = phase->type( in(1) );
760
  if( t == Type::TOP ) return Type::TOP;
761
  const TypeLong *tl = t->is_long();
762
  if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
763
  return Type::DOUBLE;
764
}
765

766
//=============================================================================
767
//------------------------------Value------------------------------------------
768
const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
769
  const Type *t = phase->type( in(1) );
770
  if( t == Type::TOP ) return Type::TOP;
771
  const TypeLong *tl = t->is_long();
772
  if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
773
  return Type::FLOAT;
774
}
775

776
//=============================================================================
777
//----------------------------Identity-----------------------------------------
778
Node* ConvL2INode::Identity(PhaseGVN* phase) {
779
  // Convert L2I(I2L(x)) => x
780
  if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
781
  return this;
782
}
783

784
//------------------------------Value------------------------------------------
785
const Type* ConvL2INode::Value(PhaseGVN* phase) const {
786
  const Type *t = phase->type( in(1) );
787
  if( t == Type::TOP ) return Type::TOP;
788
  const TypeLong *tl = t->is_long();
789
  const TypeInt* ti = TypeInt::INT;
790
  if (tl->is_con()) {
791
    // Easy case.
792
    ti = TypeInt::make((jint)tl->get_con());
793
  } else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
794
    ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
795
  }
796
  return ti->filter(_type);
797
}
798

799
//------------------------------Ideal------------------------------------------
800
// Return a node which is more "ideal" than the current node.
801
// Blow off prior masking to int
802
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
803
  Node *andl = in(1);
804
  uint andl_op = andl->Opcode();
805
  if( andl_op == Op_AndL ) {
806
    // Blow off prior masking to int
807
    if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
808
      set_req_X(1,andl->in(1), phase);
809
      return this;
810
    }
811
  }
812

813
  // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
814
  // This replaces an 'AddL' with an 'AddI'.
815
  if( andl_op == Op_AddL ) {
816
    // Don't do this for nodes which have more than one user since
817
    // we'll end up computing the long add anyway.
818
    if (andl->outcnt() > 1) return nullptr;
819

820
    Node* x = andl->in(1);
821
    Node* y = andl->in(2);
822
    assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
823
    if (phase->type(x) == Type::TOP)  return nullptr;
824
    if (phase->type(y) == Type::TOP)  return nullptr;
825
    Node *add1 = phase->transform(new ConvL2INode(x));
826
    Node *add2 = phase->transform(new ConvL2INode(y));
827
    return new AddINode(add1,add2);
828
  }
829

830
  // Disable optimization: LoadL->ConvL2I ==> LoadI.
831
  // It causes problems (sizes of Load and Store nodes do not match)
832
  // in objects initialization code and Escape Analysis.
833
  return nullptr;
834
}
835

836

837

838
//=============================================================================
839
//------------------------------Identity---------------------------------------
840
// Remove redundant roundings
841
Node* RoundFloatNode::Identity(PhaseGVN* phase) {
842
  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
843
  // Do not round constants
844
  if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
845
  int op = in(1)->Opcode();
846
  // Redundant rounding
847
  if( op == Op_RoundFloat ) return in(1);
848
  // Already rounded
849
  if( op == Op_Parm ) return in(1);
850
  if( op == Op_LoadF ) return in(1);
851
  return this;
852
}
853

854
//------------------------------Value------------------------------------------
855
const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
856
  return phase->type( in(1) );
857
}
858

859
//=============================================================================
860
//------------------------------Identity---------------------------------------
861
// Remove redundant roundings.  Incoming arguments are already rounded.
862
Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
863
  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
864
  // Do not round constants
865
  if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
866
  int op = in(1)->Opcode();
867
  // Redundant rounding
868
  if( op == Op_RoundDouble ) return in(1);
869
  // Already rounded
870
  if( op == Op_Parm ) return in(1);
871
  if( op == Op_LoadD ) return in(1);
872
  if( op == Op_ConvF2D ) return in(1);
873
  if( op == Op_ConvI2D ) return in(1);
874
  return this;
875
}
876

877
//------------------------------Value------------------------------------------
878
const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
879
  return phase->type( in(1) );
880
}
881

882
//=============================================================================
883
RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
884
  ConINode* rm = gvn.intcon(rmode);
885
  return new RoundDoubleModeNode(arg, (Node *)rm);
886
}
887

888
//------------------------------Identity---------------------------------------
889
// Remove redundant roundings.
890
Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
891
  int op = in(1)->Opcode();
892
  // Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
893
  if(op == Op_RoundDoubleMode) return in(1);
894
  return this;
895
}
896
const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
897
  return Type::DOUBLE;
898
}
899
//=============================================================================
900

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.